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Abstract
Kakimizu complexes of Seifert fibered spaces can be described as either

horizontal or vertical, depending on what type of surfaces represent their ver-
tices. Horizontal Kakimizu complexes are shown to be trivial. Each vertical
Kakimizu complex is shown to be isomorphic to a Kakimizu complex of the
base orbifold minus its singular points.

1 Introduction
For nearly a century, it has been known that for every knot K there is a compact
orientable surface whose boundary is K. Seifert surfaces, named after Herbert Seifert
who proved the existence of such surfaces, are used extensively for both topological
and quantitative investigations into knots and 3-manifolds. There can be infinitely
many distinct Seifert surfaces for a given knot, obtained, for instance, by adding trivial
handles to a given Seifert surface, or, more interestingly, by “spinning” it around a
decomposing annulus or torus. This was first proved by J. R. Eisner, see [6]. The
abundance of Seifert surfaces led Osamu Kakimizu, in the 1990s, to define a complex,
later named after him, whose vertices are isotopy classes of Seifert surfaces of a given
knot and whose n-simplices are (n+1)-tuples of vertices that admit pairwise disjoint
representatives.

The Kakimizu complex of a knot has been described by several authors, most
notably Makoto Sakuma and Kenneth Shackleton, who exhibited diameter bounds
in terms of the genus of a knot (see [19]); Jessica Banks, who described in full detail
how and when the Kakimizu complex of a knot fails to be locally finite (see [3]) and
also how to compute the Kakimizu complex of a composite knot from the Kakimizu
complexes of its summands (see [2]); Piotr Przytycki and the author, who established
that the Kakimizu complexes of knots and certain more general 3-manifolds are con-
tractible (see [18]); and Johnson, Pelayo and Wilson, who proved that the Kakimizu
complex of a knot is quasi-Euclidean (see [15].)

In [20], the author generalized the definition of Kakimizu complex to the context
of (codimension 1)−submanifolds of n-manifolds. The argument used in [18] still
applies and shows the Kakimizu complex to be contractible in this larger context.
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This paper grew out of a desire to study concrete examples of Kakimizu com-
plexes of 3-manifolds other than knot complements. As a case study, driven by
personal experience rather than the innate poetry, we consider Seifert fibered spaces.
Seifert fibered spaces, first studied by Herbert Seifert in [22], are 3-dimensional man-
ifolds that are foliated by circles. We give a brief overview in Section 3. Seifert
fibered spaces provide an arena in which much is known about incompressible sur-
faces. This knowledge proves sufficient to characterize Kakimizu complexes for this
class of 3-manifolds. Some of these Kakimizu complexes are easily proved to be triv-
ial, see Theorem 4. Others prove less tractable, see Theorem 9, but can be expressed
in terms of Kakimizu complexes of the base orbifold. We prove the following:

Theorem 4. Every horizontal Kakimizu complex of an orientable Seifert fibered space
with a given fibration is trivial.

Theorem 9. Every vertical Kakimizu complex of an orientable Seifert fibered space
with a given fibration is isomorphic to the corresponding Kakimizu complex of the
surface obtained from the base orbifold by removing neighborhoods of the singular
points.

Theorem 9 is proved for closed orientable Seifert fibered spaces to avoid techni-
calities arising from case discussions. Most notably, to prove an analogous theorem
for closed orientable Seifert fibered spaces with non empty boundary it would be
necessary to prove a more general version of Proposition 8. Whereas the universal
cover of a good aspherical orbifold without boundary is usually the hyperbolic plane,
the universal cover of good aspherical orbifolds with boundary is more complicated.
In particular, its compactification has boundary that is partitioned into segments
alternately consisting of limit points and lifts of boundary points.

I wish to thank the referee for many insightful comments and Misha Kapovich for
numerous helpful conversations.

2 The Kakimizu complex
In the following we will always assume: 1) M is a compact (possibly closed) connected
oriented 3-manifold; 2) α is an element of H2(M,∂M,Z).

In the context of knots, a Seifert surface is an orientable spanning surface of a knot.
This wording obscures the essential features of interest in the present investigation.
Here we are interested primarily in three features of Seifert surfaces of knots: 1)
they represent a generator of the second relative homology H2(S3\K,K) (we will
be interested in surfaces that represent relative second homology classes); 2) they
have connected complements (we will make an analogous assumption); 3) they can
be “projected” onto each other in the sense described in [18].

Definition 1. A Seifert surface for (M,α) is a pair (w, S), where S is a multi-surface,
i.e., a union, S1 t · · · t Sn, of pairwise disjoint oriented properly embedded 2-sided
surfaces in M and w is an n-tuple of natural numbers (w1, . . . , wn) such that the
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Figure 1: A Seifert surface for the trefoil

homology class w1[[S1]] + · · · + wn[[Sn]] equals α. Moreover, we require that S have
connected complement. We call S the underlying surface of (w, S).

The existence of Seifert surfaces of knots was first established by Seifert. This
existence result has been generalized in several ways. A proof of the existence of a
hypersurface in an n-manifold realizing a given (n − 1)-dimensional homology class
can be found in Bruno Martelli’s “Introduction to Geometric Topology”. We include
a brief discussion in the Appendix (see Proposition 10).

Our definition of Seifert surface disallows null homologous subsets. Indeed, a null
homologous subset would bound a component of M\S and would hence be separating.
In fact, S contains no bounding subsets. Conversely, if S ′ contains no bounding
subsets, then M\S ′ is connected.

Lemma 1. If (w, S) represents α, then w is determined by the underlying surface S.

Proof: Suppose that (w, S) and (w′, S) represent α, where w = (w1, · · · , wn) and
w′ = ((w′)1, · · · , (w′)n). Then

w1[[S1]] + · · ·+ wn[[Sn]] = α = (w′)1[[S1]] + · · ·+ (w′)n[[Sn]],

hence
(w1 − (w′)1)[[S1]] + · · · (wn − (w′)n)[[Sn]] = 0.

Since S has no null homologous subsets, this ensures that

w1 − (w′)1 = 0, . . . , wn − (w′)n = 0.

Thus
w1 = (w′)1, · · · , wn = (w′)n.

Since the underlying multi-surface S of a Seifert surface (w, S) determines w, we
will often speak of a Seifert surface S, when w does not feature in our discussion.
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Definition 2. For each pair (M,α), the isomorphism between H1(M,∂M) and H1(M)
identifies an element a∗ of H1(M) corresponding to α that lifts to a homomorphism
ha : π1(M) → Z. We denote the covering space corresponding to Nα = kernel(ha) by
(pα, Ŝα, S), or simply (p, Ŝ, S), and call it the infinite cyclic covering space associated
with α.

We describe the Kakimizu complex of (M,α): The vertices are Thurston norm
minimizing Seifert surfaces (w, S) of (M,α), considered up to isotopy of underlying
surfaces. We write v = [(w, S)], where [(w, S)] is the isotopy class of S and v de-
notes the corresponding vertex. Let v, v′ be a pair of vertices with representatives
(w, S), (w′, S ′). Here M\S and M\S ′ are connected. It follows that lifts of M\S and
M\S ′ to the covering space associated with α are simply components of p−1(M\S)
and p−1(M\S ′). We construct a graph Γ(M,α) by declaring the vertices v, v′ to span
an edge e = (v, v′) if and only if representatives (w, S), (w′, S ′) of v, v′ can be chosen
so that a lift of M\S to the covering space associated with α intersects exactly two
lifts of M\S ′. (This condition implies that S and S ′ are disjoint, but not vice versa.)

Definition 3. Let X be a simplicial complex. If, whenever the 1-skeleton of a simplex
σ is in X, the simplex σ is also in X, then X is said to be a flag complex.

Definition 4. The Kakimizu complex of (M,α), denoted by Kak(M,α) is the flag
complex with Γ(M,α) as its 1-skeleton.

Theorem 1. For every 3-manifold M and every α ∈ H2(M,∂M), Kak(M,α) is
contractible.

Proof: See Theorem 1.1 in [18] and the proof of Theorem 5 in [20].

Theorem 2. For every 3-manifold M and every α ∈ H2(M,∂M), Kak(M,α) is
connected.

Proof: This is a corollary of Theorem 1.
Analogously, we define the Kakimizu complex for a surface S and a relative first

homology class β of S:

Definition 5. A Seifert curve for (S, β) is a pair (w, c), where c is a multi-curve,
i.e., a union, c1t · · ·t cn, of pairwise disjoint oriented properly embedded 2-sided arcs
and curves in S and w is an n-tuple of natural numbers (w1, . . . , wn) such that the
homology class w1[[c1]] + · · · + wn[[cn]] equals β. Moreover, we require that c have
connected complement. We call c the underlying curve of (w, c).

The Kakimizu complex of (S, α) is defined analogously to the Kakimizu complex of
a 3-manifold. The vertices are Seifert curves (w, c) of (S, α), considered up to isotopy
of underlying curves. We write v = [(w, c)], where [(w, c)] is the isotopy class of c
and v is the corresponding vertex. Let v, v′ be a pair of vertices with representatives
(w, c), (w′, c′). Here S\c and S\c′ are connected, hence path-connected. It follows
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identify after twist

Figure 2: A fibered solid torus

that lifts of S\c and S\c′ to the covering space associated with α are simply path
components of p−1(S\c) and p−1(S\c′). We construct a graph Γ(S, α) by declaring
the vertices v, v′ to span an edge e = (v, v′) if and only if representatives (w, c), (w′, c′)
of v, v′ can be chosen so that a lift of S\c to the covering space associated with α
intersects exactly two lifts of S\c′. (This condition implies that c and c′ are disjoint,
but not vice versa.)

Definition 6. The Kakimizu complex of (S, α), denoted by Kak(S, α) is the flag
complex with Γ(S, α) as its 1-skeleton.

3 Seifert fibered spaces
Several excellent sources describe Seifert fibered spaces in great detail. We recommend
H. Seifert’s original paper on the subject (see [22]) and W. Heil’s translation (see [23]).

Definition 7. A fibered solid torus is a solid torus obtained from D2× [0, 1] by gluing
D × {0} to D × {1} after a rotation by a rational multiple of 2π. For the rotation
by 2πν

µ
, where µ, ν ∈ Z and g.c.d.(µ, ν) = 1, we denote the resulting solid torus by

V (ν, µ). For notational convenience, we require that 0 < ν < µ. The simple closed
curves resulting from identifying intervals of the form {y} × [0, 1], y ∈ D2 are called
fibers.

A fiber other than the one resulting by identifying {(0, 0)}×[0, 1] is called a regular
fiber. The fiber resulting by identifying {(0, 0)}× [0, 1] is called an exceptional fiber if
regular fibers intersect a meridian disk more than once and a regular fiber otherwise.

We are interested in orientable Seifert fibered spaces and hence need only consider
fibered solid tori. To understand nonorientable Seifert fibered spaces one needs also
to understand the fibered solid Klein bottle and allow it to take the place of fibered
solid tori in the definition below.

Definition 8. A Seifert fibered space M is a compact connected 3-manifold that
can be decomposed into a union of disjoint circles each of which has a neighborhood
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that is homeomorphic to a fibered solid torus via a homeomorphism that takes circles
to fibers. The circles into which M decomposes are also called fibers of M. Fibers
of M are regular or exceptional in accordance with their images under the relevant
homeomorphisms. A particular decomposition of M into fibers is called a fibration of
M.

Definition 9. Given a Seifert fibered space M together with a fibration, we form
the quotient space B by identifying each fiber to a point. We denote the quotient
map by p : M → B. Topologically, the quotient space is a surface. However, we add
information by recording the points corresponding to exceptional fibers. Specifically,
for a fiber e, if nearby regular fibers wrap around e exactly µ times, then we declare
p(e) to be a singular point of B of index µ. We thereby endow B with an orbifold
structure and call it the base orbifold.

See [21] for the basics of orbifolds and their relation to Seifert fibered spaces. Note
that even for an orientable Seifert fibered space, the base orbifold can be orientable
or nonorientable. Consider, for instance, the twisted circle bundle over the Möbius
band. It is homeomorphic to a twisted I-bundle over the Klein bottle. This is an
orientable 3-manifold and, via the former description, a Seifert fibered space. Its
double is of interest, because it admits two distinct, though homeomorphic, Seifert
fibrations as twisted circle bundles over the Klein bottle.

Seifert fibered spaces are completely determined by a set of invariants computed
from the base orbifold and the µs and νs of their exceptional fibers. Their fundamental
groups can be computed from this set of invariants. Relevant to the investigation here
is that for a Seifert fibered space M there is a short exact sequence:

1 → C → π1(M) → π1(B) → 1

where C is a normal cyclic subgroup of π1(M) generated by a regular fiber, B is the
base orbifold, and π1(B) is the orbifold-fundamental group of B (see [21]).

4 Incompressible surfaces in Seifert fibered spaces
We are interested in Thurston norm minimizing surfaces that represent relative second
homology classes of an orientable Seifert fibered space M. Such surfaces are necessarily
essential in M. Let M be a compact, orientable Seifert fibered space and let F be a
two-sided incompressible surface in M. If F is everywhere transverse to the fibers of
M, then F is said to be horizontal. If every fiber that meets F is entirely contained
in F, then F is said to be vertical. Incompressible surfaces in Seifert fibered spaces
were studied by several authors, see for instance Burde–Zieschang ([5]), Gordon–Heil
([9]), Hempel–Jaco ([11]), Jaco–Shalen ([14]), Tollefson ([25]) and Waldhausen ([27]).

Theorem 3. [13, VI.34] (Jaco) Let M be an orientable Seifert fibered space. If
F is a connected, two-sided, incompressible surface in M, then one of the following
alternatives holds:
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(i) F is a disk or an annulus and F is parallel into ∂M ;

(ii) F does not separate M and F is a fiber in a fibration of M as a surface bundle
over the circle;

(iii) F does separate M and M = M1 ∪M2, where ∂Mi = F and Mi is a twisted
I-bundle over a compact surface;

(iv) F is an annulus or a torus and F is saturated, i.e., consists of fibers, in some
Seifert fibration of M.

It is important to note that case (i) describes surfaces that are inessential and case
(iii) describes surfaces that are trivial in second homology. Moreover, in the proof
of Jaco’s Theorem, the Seifert fibration of M is fixed and a presentation of π1(M)
is computed with respect to this fibration. Case (ii) results only for surfaces whose
fundamental group does not contain the group C, whereas case (iv) results only for
surfaces whose fundamental group contains C. In particular, the surfaces in case (ii)
cannot be vertical with respect to the given fibration and the surfaces in case (iv)
cannot be horizontal. Thus F does not realize these two cases simultaneously with
respect to the given fibration.

In case (ii), the structure of M as a surface bundle over the circle relates to
the Seifert fibration of M. For instance if F is (torus) × {points} in the three-torus
S1 × S1 × S1, then the fibers of the Seifert fibration are of the form {p}× S1. Clearly,
this is not the only Seifert fibration for the three-torus, but it is the one that gives
rise to case (ii).

On the other hand, consider the case where F is a torus fiber in a nontrivial
torus bundle over the circle. Theorem VI.26 in [13] describes the surfaces and surface
bundles in case (ii) in more detail. In particular, the gluing map φ for the surface
bundle is of finite order, say n. Thus as M is obtained from F × [0, 1] via the gluing
map φ, setting (p, 1) = (φ(p), 0), we see that intervals of the form {p}×[0, 1]∪{φ(p)}×
[0, 1] ∪ · · · ∪ {φn−1(p)} × [0, 1] match up to form the fibers of a Seifert fibration. It is
with respect to this Seifert fibration that F is horizontal. It is also with respect to
this Seifert fibration that the subgroup C is not contained in the fundamental group
of F. Thus given a Seifert fibered space with a particular fibration, the surfaces in
case (ii) are horizontal and the surfaces in case (iv) are vertical.

Lemma 2. Let M be an orientable Seifert fibered space and let F be a two-sided
essential surface in M. If F is connected and horizontal with respect to a given Seifert
fibration, then it is neither isotopic nor homologous to a vertical surface with respect
to this fibration. Likewise, if F is connected and vertical with respect to a given
Seifert fibration, then it is neither isotopic nor homologous to a horizontal surface
with respect to this fibration.

This follows from the proofs of Theorems VI.26 and VI.34 in [13].

Definition 10. Let M be an orientable Seifert fibered space. A Kakimizu complex of
M is horizontal (vertical, respectively) with respect to a given Seifert fibration of M
if one vertex of the complex is realized by a horizontal (vertical, respectively) surface
with respect to the given Seifert fibration of M.
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Remark 11. By Lemma 2, a Kakimizu complex of the Seifert fibered space M is
either horizontal or vertical and not both with respect to a given Seifert fibration of
M.

5 Horizontal Kakimizu complexes
In light of Theorem 3, horizontal Kakimizu complexes are easily shown to be trivial.

Theorem 4. Every horizontal Kakimizu complex of an orientable Seifert fibered space
with a given fibration is trivial.

Proof: Let M be an orientable Seifert fibered space and let Kak(M,α) be a horizontal
Kakimizu complex of M. Let F be a horizontal surface in M representing a vertex of
Kak(M,α). Recall case (ii) of Theorem 3. By Theorem 2, Kak(M,α) is connected,
hence it suffices to show that the link of the vertex corresponding to F is empty. A
surface representing a vertex in this link would have to be disjoint from F. Since the
complement of F is homeomorphic to F × (0, 1), such a surface would be isotopic to
F. Thus this link is empty.

Corollary 5. If F and F ′ are homologous horizontal surfaces in an orientable Seifert
fibered space, then F and F ′ are isotopic.

Corollary 6. More generally, suppose that M is a surface bundle over the circle with
fiber F and is also a surface bundle over the circle with fiber F ′. If F and F ′ are
homologous, then they are isotopic.

Both corollaries are special cases of Theorem 4 in [24].

6 Orbifolds and Baer’s Theorem concerning homo-
topy and isotopy of curves in surfaces

In what follows we will be interested in simple closed curves in 2-dimensional orb-
ifolds. A classical theorem of Reinhold Baer establishes that, for simple closed curves
in a surface, homotopy implies isotopy. We prove an analogous result for simple closed
curves in orbifolds. In order to do so, we will need to define the relevant concepts on
orbifolds. The orbifolds relevant to our discussion are good (covered by a surface) as-
pherical (not covered by the sphere) orbifolds without boundary. From here forward,
all orbifolds will be good aspherical orbifolds without boundary.

The theorem of Reinhold Baer is the following:

Theorem 7. (R. Baer) Two simple closed curves in a surface are isotopic if and
only if they are homotopic.

Theorem 7 is also known as the Baer–Epstein Theorem, due to Epstein’s gener-
alization of Baer’s Theorem (see [1, Satz 1, page 106] and [7, Theorem 4.1]).
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Definition 12. A simple closed curve in an orbifold B is said to be regular if it is
disjoint from the singular set of B.

Definition 13. Let b, b′ be regular simple closed curves in an orbifold B. By abuse
of notation, b denotes both the map b : S1 → B and its image and b′ denotes both the
map b′ : S1 → B and its image. An orbifold-homotopy between b and b′ is a map

H : S1 × [0, 1] → B

such that

1. H(s, 0) = b(s), H(s, 1) = b′(s) ∀s ∈ S1;

2. H lifts to a map H̃ : R× [0, 1] −→ B̃ for B̃ the universal cover of B.

Definition 14. Let b, b′ be as above. An orbifold-isotopy between b and b′ is a map

H : S1 × [0, 1] → B

such that

1. H(s, 0) = b(s), H(s, 1) = b′(s) ∀s ∈ S1;

2. H(·, t) is injective ∀t ∈ [0, 1];

3. The image of H is disjoint from the singular points of B.

Definition 15. A closed curve in an orbifold is inessential in the orbifold B if it is
orbifold-homotopic to a point or orbifold-homotopic into ∂B. Otherwise, it is essential.

Proposition 8. Suppose that B is a good aspherical orbifold without boundary. Let b
and b′ be regular essential simple closed curves in B. Then b and b′ are orbifold-isotopic
if and only if they are orbifold-homotopic.

Lemma 3. If b and b′ are orbifold-isotopic, then they are orbifold-homotopic.

Proof: Let b and b′ be regular essential simple closed curves in B. Suppose that b and
b′ are orbifold-isotopic in B. By definition, they are isotopic when restricted to the sur-
face B\{singular set}. The isotopy lifts to the universal cover of B\{singular set},
a subsurface of B̃. Thus the orbifold-isotopy is an orbifold-homotopy.

Lemma 4. Proposition 8 holds when b ∩ b′ = ∅.

Proof: By Lemma 3, orbifold-isotopy implies orbifold-homotopy. To prove the con-
verse, suppose that b and b′ are orbifold-homotopic via an orbifold-homotopy,

H : S1 × [0, 1] −→ B.
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Figure 3: A lune

The universal cover, B̃, of B, is a plane. In fact, with very few exceptions, B̃ is the
hyperbolic plane. We prove the lemma in this case. In the remaining cases, the proof
is similar. Abusing notation slightly, we continue to denote the standard unit disk
compactification of B̃ by B̃. (In the case of the Euclidean plane, we also compactify
to a closed unit disk.)

Choose a lift, b̃, of b to B̃. Then b̃ is an embedded arc. Indeed, to see that
the endpoints of b̃ cannot coincide, consider the simple closed curve b in B. It is
orbifold-homotopic to a geodesic l. The orbifold-homotopy lifts to a homotopy H̃ :
R × [0, 1] −→ B̃ where H̃|R×{0} = b̃. Denote the simple curve H̃|R×{1} by l̃. Then l̃

is finite distance from b̃. Geodesics in the hyperbolic plane (as well as the Euclidean
plane) have distinct ends. Since b̃ is finite distance from l̃, its endpoints coincide
with those of l̃. In particular, they do not coincide with each other. We denote the
endpoints by ±ξ.

The orbifold-homotopy between b and b′ also lifts to a homotopy G̃ : R× [0, 1] −→
B̃ where G̃|R×{0} = b̃. Denote the simple curve G̃|R×{1} by b̃′. Since b̃ and b̃′ are finite
distance apart, the endpoints of b̃′ are also ±ξ. Thus b̃ and b̃′ cobound a lune, Ã, in
B̃. See Figure 3.

A priori it is possible that lifts of b′ other than b̃′ lie in Ã. In this case, we replace
b̃′ by an innermost lift of b′, i.e., a lift of b′ so that no other lifts of b′ lie in the lune
cobounded by b̃ and the given lift of b′. Abusing notation, we continue to denote this
lift of b′ by b̃′ and the (smaller) lune cobounded by b̃ and b̃′ by Ã. (It is a subtle fact
that in the case where B̃ is the hyperbolic plane, the lift of b′ obtained from the lifted
homotopy is, in fact, necessarily innermost.)

We wish to show that Ã projects to an annulus (with no singular points) in B
cobounded by b and b′. In particular, this will ensure that b and b′ are orbifold-isotopic.
To this end we are interested in the action of the group of covering transformation
on Ã.

Consider a covering transformation φ. It permutes distinct lifts of b and, likewise,
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it permutes distinct lifts of b′. Hence either φ(b̃) = b̃, or else φ(b̃) ∩ b̃ = ∅. Likewise,
either φ(b̃′) = b̃′, or else φ(b̃′) ∩ b̃′ = ∅. Since b ∩ b′ = ∅, b̃ is disjoint from all lifts of
b′ and b̃′ is disjoint from all lifts of b. In particular, b̃ is disjoint from φ(b̃′) and b̃′ is
disjoint from φ(b̃). Since Ã is cobounded by b̃ and b̃′, its image, φ(Ã), is cobounded
by φ(b̃) and φ(b̃′). The boundary components of φ(Ã) hence either coincide with or
are disjoint from the boundary components of Ã. Any lift of b′ in the interior of φ(Ã)
would pull back (via φ−1) to a lift of b′ in the interior of Ã. Hence, since Ã is an
innermost lune, φ(Ã) is also an innermost lune. It follows that either φ(Ã) = Ã, or
else φ(Ã) is disjoint from Ã.

We are interested in covering transformations that map Ã to itself. So suppose
φ(Ã) = Ã. Consider ±ξ. If φ interchanges ±ξ, then, since it is an orientation pre-
serving map of the disk, it also interchanges b̃ and b̃′. But this is impossible. Hence
φ fixes ξ,−ξ.

The covering transformations that map Ã to itself form a subgroup that we denote
by Stab(Ã). A priori, if φ lies in Stab(Ã), then it can act on Ã by translation or
rotation. However, a rotation has a fixed point x in the interior of Ã, and therefore
fixes the three points x, ξ,−ξ. A nontrivial rotation is therefore out of the question,
hence Stab(Ã) acts on Ã only by translations.

To understand the action of Stab(Ã) on Ã, we consider the restriction of Stab(Ã)
to b̃. Since the image of b̃ under the covering map is the simple closed curve b, the
restriction of Stab(Ã) to b is the infinite cyclic group. Moreover, the kernel of this
restriction map must be trivial, since it consists of covering transformations that fix
b̃ pointwise. Therefore Stab(Ã) is the infinite cyclic group. The quotient space,

A = Ã / ∼〈g〉

is thus an annulus that embeds into B, whence b and b′ cobound the annulus A which
contains no singular points. They are therefore orbifold-isotopic.

Definition 16. Two transverse simple closed curves in a surface are said to be in
minimal position if either they coincide, or they are transverse and intersect in the
minimal possible number of points in their isotopy classes.

In the proof of Proposition 8 we will employ the Bigon Criterion, see for instance
[8, Proposition 1.7].

Definition 17. Two transverse simple closed curves b and b′ in a surface Σ form a
bigon if there is an embedded disk in Σ whose boundary is the union of a subarc of b
and a subarc of b′ that meet in their endpoints. See Figure 4.

Criterion 18. (Bigon Criterion) Two transverse simple closed curves in a surface Σ
are in minimal position if and only if they do not form a bigon.

Proof: See [8, Proposition 1.7].
In establishing the Bigon Criterion, Farb–Margalit prove a key lemma, Lemma

1.8, for surfaces and their universal covers:
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Figure 4: An innermost bigon

Lemma 5. ([8, Lemma 1.8]) If transverse simple closed curves b and b′ in a surface
Σ do not form bigons, then in the universal cover of Σ, any pair of lifts b̃ and b̃′, of b
and b′, intersect in at most one point.

The lemma is proved by establishing the contrapositive: if a pair of lifts b̃ and b̃′

of the transverse curves b and b′ in the surface Σ form a bigon in the universal cover,
Σ̃, of Σ, then b and b′ form a bigon. We are interested in orbifolds and their universal
covers. In this setting, the proof of [8, Lemma 1.8] applies with a minor augmentation
to establish an analogous result:

Lemma 6. If a pair of lifts b̃ and b̃′ of transverse curves b and b′ in an orbifold B
form a bigon in the universal cover, B̃, of B, then b and b′ form a bigon containing
no singular points.

Proof: Applied in the orbifold setting, the proof of [8, Lemma 1.8] establishes that,
given an innermost bigon D̃ formed by b̃ and b̃′, any covering transformation, φ, with
fixed points in the interior of D̃ is a rotation that takes D̃ to itself. Given that φ takes
the corners of D̃ to themselves or each other, the rotation must be either through an
angle of 2π (the identity) or an angle of π. Note however, that a rotation through an
angle of π would interchange b̃ and b̃′, but this is impossible. Hence the covering map
is injective on D̃ and the conclusion holds.

Proof: (Proposition 8) By Lemma 3, orbifold-isotopy implies orbifold-homotopy. We
next proceed as in the proof of Lemma 4. In the argument establishing that orbifold-
homotopy implies orbifold-isotopy, we choose lifts of b and b′ to the compactified
universal cover B̃. When we proceed analogously, the resulting lifts b̃ and b̃′ are
not necessarily disjoint. Unlike in the proof of Lemma 4, there is, at this stage, not
necessarily an innermost choice of b̃′, but this will be of no concern here.

Lemma 6 tells us that by applying an orbifold-isotopy to b and b′, we can eliminate
bigons formed by b̃ and b̃′. From here forward, we will assume that b and b′ have been
orbifold-isotoped into minimal position in the complement of the singular points.

As in the proof of Lemma 4, there is a covering transformation, g, that acts
nontrivially on b̃ and b̃′.

12



Claim 1: b̃ ∩ b̃′ = ∅

Proof of Claim 1: Since g(b̃) = b̃ and g(b̃′) = b̃′, g(b̃∩ b̃′) = b̃∩ b̃′. Since b and b′ are
essential, g has infinite order. Hence either b̃ ∩ b̃′ = ∅, or else the set b̃ ∩ b̃′ is infinite.
Since there are no bigons, the latter is impossible. Thus b̃∩ b̃′ = ∅. This proves Claim
1.

Claim 2: If φ is a covering transformation of B̃, then b̃ ∩ φ(b̃′) = ∅.

Proof of Claim 2: If φ fixes the set {±ξ}, then Claim 2 follows from the proof
of Claim 1. In the remaining case, φ(±ξ) is disjoint from {±ξ}. In particular, since
φ(b̃′) is just a different lift of b′, the endpoints of φ(b̃′) lie on one side of b̃′ and hence
on one side of b̃. Thus, if b̃ ∩ φ(b̃′) 6= ∅, then b̃ and φ(b̃′) form a bigon. By Lemma 6,
b and b′ form a bigon that does not contain singular points. By applying the Bigon
Criterion to B\{singular points}, we see that this contradicts our assumption that
b and b′ are in minimal position. This proves Claim 2.

Claim 2 (Strong Form): Any pair of lifts of b and b′ to B̃ are disjoint.

Proof of Claim 2 (Strong Form): For suitable covering transformations φ and φ′,
the lifts of b and b′ are φ(b̃) and φ′(b̃′). Claim 2 (Strong Form) thus follows by applying
Claim 2 to b̃ and φ−1 ◦ φ′(b̃′). This proves Claim 2 (Strong Form).

It follows that b and b′ are disjoint. Therefore, by Lemma 4, orbifold-homotopic
regular simple closed curves are orbifold-isotopic.

It is worthwhile to highlight Claim 1 in the proof above and state it as an inde-
pendent lemma:

Lemma 7. Suppose that the transverse simple closed curves b and b′ in an orbifold
B are orbifold-homotopic. If lifts, b̃ and b̃′, of b and b′ limit on the same points in an
appropriate compactification to the universal cover B̃ of B and do not form bigons,
then b̃ and b̃′ are disjoint.

It is also worthwhile to highlight Claim 2 (Strong Form) in the proof above and
state it as an independent lemma:

Lemma 8. Suppose that the transverse simple closed curves b and b′ in an orbifold
B are orbifold-homotopic and do not form bigons in the complement of the singular
points. Then any pair of lifts of b and b′ are disjoint.

Remark 19. With suitable modifications, Proposition 8 holds when B has boundary
and, moreover, b and b′ are allowed to be arcs.

7 Vertical Kakimizu complexes
As it turns out, any vertical Kakimizu complex can be computed entirely in terms
of the base orbifold of the Seifert fibered space. To simplify matters, we will only
consider closed orientable Seifert fibered spaces. (The proof in the general case is
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similar, but involves more cases.) The orbifold over which such a Seifert fibered space
fibers does not have boundary. Moreover, a Seifert fibered space that admits vertical
Kakimizu complexes contains an essential vertical surface that is nontrivial in second
homology. Such a Seifert fibered space cannot have a bad or spherical base orbifold.
To summarize, the Seifert fibered spaces we consider here have base orbifolds that
are, as in Section 6, good aspherical orbifolds without boundary.

Lemma 9. Let M be an orientable Seifert fibered space with a fixed fibration and let
α be a second homology class of M. If F is a vertical surface representing α, then F
consists of regular fibers of M.

Proof: Let F be a vertical surface representing α and let f be a fiber of M that lies
in F. Denote a fibered solid torus neighborhood of f by T and denote the collar of f
in F ∩ T by C(f). Then C(f) consists of fibers. There are only two options: either
these fibers are parallel to f or they wind around f twice. In the former case, f is
a regular fiber. In the latter case, C(f) is a Möbius band. However, since M and F
are orientable, the latter case cannot occur. Thus F consists of regular fibers.

Let M be an orientable Seifert fibered space with base orbifold B and let α be
a second homology class of M generated by a vertical weighted multi-surface (w, S).
Let B− be the surface obtained from B by removing neighborhoods of the singular
points. Let β be the first homology class corresponding to the projection of (w, S)
restricted to B−.

We define a map:
Φ : Kak(B−, β) −→ Kak(M,α)

as follows: given a vertex v of Kak(B−, β), let (w, b) be a representative of v. Set
S = p−1(b) and Φ(v) = [(w, S)]. To see that this vertex map is well-defined, consider
another representative, (w, b′) of v. By definition, b′ is orbifold-isotopic to b. This
isotopy extends to an isotopy between S ′ = p−1(b′) and S.

Next, consider an edge e = (v, v′) of Kak(B−, β). The existence of e guarantees
that there are representatives (w, b) of v and (w′, b′) of v′ so that a lift of B−\b to the
covering space of B− associated with β intersects exactly two lifts of B−\b′. Note that
the infinite cyclic covering space of B− associated with β can be constructed from a
countably infinite collection of copies of B−\b (or of B−\b′) via suitable identifications.
Likewise, for S = p−1(b) and S ′ = p−1(b′), the infinite cyclic covering space of M
associated with α can be constructed from a countably infinite collection of copies of
M\S (or of M\S ′) via suitable identifications. It follows that a lift of B−\b to the
covering space of B− associated with β intersects exactly two lifts of B−\b′ if and
only if a lift of M\S to the covering space of M associated with α intersects exactly
two lifts of M\S ′. We extend our vertex map to the 1-skeleton as follows:

Φ((v, v′)) = ([w, S], [(w′, S ′])

We have defined Φ on the 1−skeleton of Kak(B−, β). Since Kak(B−, β) and Kak(M,α)
are flag complexes, the map extends from the 1−skeleton to Kak(B−, β).
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Theorem 9. Every vertical Kakimizu complex of an orientable Seifert fibered space
with a given fibration is isomorphic to the corresponding Kakimizu complex of the
surface obtained from the base orbifold by removing neighborhoods of the singular
points.

Specifically, let M be an orientable Seifert fibered space with base orbifold B and
let α be a second homology class of M generated by a weighted vertical surface (w, S).
Let B− be the surface obtained from B by removing neighborhoods of the singular
points. Let β be the first homology class corresponding to the projection of (w, S)
restricted to B−. Then the map Φ : Kak(B−, β) −→ Kak(M,α), defined above, is an
isomorphism.

Our challenge will be to show that Φ is injective. We first prove a couple of
lemmas.
Lemma 10. Let M be a closed orientable Seifert fibered space with base orbifold B.
The projection map p : M −→ B lifts to a projection map p̃ : M̃ −→ B̃, where M̃
and B̃ are the universal covers of M and B.

Proof: Peter Scott proves this in the discussion leading up to [21, Lemma 3.1].
Lemma 11. Let M be a closed orientable Seifert fibered space with base orbifold
B and let B− be as above. Let F, F ′ be connected essential vertical surfaces in M
and denote p(F ) by b and p(F ′) by b′. If F and F ′ are isotopic, then b and b′ are
orbifold-isotopic.

Proof: We choose an essential simple closed curve on the torus F that projects to b
and denote it by f. We then denote the image of f under the isotopy between F and
F ′ by f ′. We denote the restriction of the isotopy between F and F ′ to an isotopy
between f and f ′ by H. The isotopy H lifts to an isotopy H̃ between lifts f̃ and f̃ ′ of
f and f ′ to M̃. Therefore, for p̃ : M̃ → B̃ as in Lemma 10, p̃◦H̃ is a lift of p◦H to B̃.
Hence p ◦H lifts to a homotopy in B̃. Thus the homotopy p ◦H between b and b′ is
an orbifold-homotopy. By Proposition 8, b and b′ are orbifold-isotopic, hence isotopic
in B−.

Lemma 12. Φ is injective.

Proof: We first show that Φ is injective on vertices. Let v = [(w, c)] and v′ = [(w′, c′)]
be vertices of Kak(B−, β) and suppose that Φ(v) = Φ(v′). Since Φ(v) = Φ(v′), the
vertices are represented by isotopic vertical multi-surfaces. This can only happen if
the surfaces are isotopic component-wise. Let b, b′ be components of c, c′ such that
S = p−1(b) and S ′ = p−1(b′) are isotopic. By Lemma 11, b and b′ are orbifold-isotopic,
hence isotopic in B−. Thus Φ is injective on vertices. Since a pair of vertices spans
at most one edge and since Kak(B−, β) is a simplicial complex, Φ is injective.

Proof: (Proof of Theorem 9) We wish to show that the map Φ is an isomorphism.
Lemma 12 established that Φ is injective. To see that Φ is surjective, suppose that
[(w, S)] ∈ Kak(M,α). By Lemma 9, S consists of regular fibers. Thus the projection,
b of S lies in B−. Hence [(w, b)] ∈ Kak(B−, β) and Φ([(w, b)]) = [(w, S)]. Thus Φ is
surjective.
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A Existence of spanning submanifolds
In Lemmas 6.6 to 6.8 of [12], John Hempel described necessary and sufficient condi-
tions for the existence of incompressible surfaces in 3-manifolds. Such arguments were
also used by Réné Thom and Jean-Pierre Serre in their work related to Steenrod re-
alization problems. These arguments can be tailored to prove the existence of Seifert
surfaces and their generalizations to arbitrary dimensions. The resulting argument
is sometimes referred to as “the canonical proof of Seifert’s theorem” and is men-
tioned, for instance, in Bruno Martelli’s comprehensive “Introduction to Geometric
Topology” (see [17, Proposition 1.7.16]). We include it here for completeness.

Proposition 10. Let M be a compact (possibly closed) connected oriented n-manifold
and let α be an infinite element of Hn−1(M,∂M,Z). Then there is a properly embedded
orientable (n− 1)−dimensional submanifold Σ of M with [[Σ]] = α.

Proof: The isomorphism between Hn−1(M,∂M) and H1(M) identifies an element a∗

of H1(M) corresponding to α. A fundamental relationship between singular cohomol-
ogy and Eilenberg-MacLane spaces tells us that there is a natural bijection

T : 〈M,K(Z, 1)〉 → H1(M)

(see [?, Theorem 4.57]), where

T ([f ]) = f ∗(γ)

for a certain distinguished class γ ∈ H1(K(Z, 1)). Since K(Z, 1) = S1, a∗ corresponds
to a map

fa : M → S1

such that
T ([fa]) = f ∗

a (γ) = a∗.

Moreover, since H1(S1) = Z, we may assume that γ is the generator, 1 ∈ Z. (We will
not use this fact immediately, but it will be relevant below.)

By replacing fa by a smooth approximation, if necessary, we may assume that fa
is smooth. Let p be a regular value of fa and denote f−1(p) by Σ. Since p is a regular
value of fa, Σ is a properly embedded orientable (n− 1)−dimensional submanifold of
M. Note that the cohomology class γ = 1 ∈ H1(S1) is realized by intersection with p.

Claim: The Poincaré dual of [[Σ]] is a∗.

Consider a 1-cycle c. Then

〈a∗, c〉 = 〈f ∗
a (γ), c〉 = 〈γ, (fa)∗(c)〉 = I(p, fa(c)) =

∑
(±1)f−1

a (p) ∩ c = I(Σ, c).

Thus the cohomology class a∗ is realized by intersection with Σ. This proves the claim.
Since a∗ is realized by intersection with Σ, [[Σ]] is dual to a∗ which is dual to α.

Thus [[Σ]] = α.
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Proposition 11. Let M be a compact (possibly closed) connected oriented n-manifold
and let α be an infinite element of Hn−1(M,∂M,Z). Then there is a properly em-
bedded orientable (n− 1)−dimensional weighted submanifold S of M with connected
complement such that [[Σ]] = α.

Proof: It suffices to show that the submanifold Σ provided by Proposition 10 can be
tailored to produce a homologous weighted submanifold S with connected comple-
ment. We proceed by induction on the number of components of the complement of
Σ. If there is only one complementary component, then Σ has connected complement
and the proposition follows.

Suppose there are n > 1 complementary components and let C be one such com-
ponent. Partition the components of Σ that limit on C into ∂C+ and ∂C− according
to whether the co-orientation points into or out of C. Construct a new surface Σ1

by replacing the components of ∂C− by copies of ∂C+ and then replacing parallel
components of the resulting surface with appropriately weighted single components.
Then Σ1 has at least one fewer complementary component, yet [[Σ1]] = [[Σ]].

Proceeding in this manner, repeating the process until there is only one comple-
mentary component, we obtain a surface Σn with connected complement such that
[[Σn]] = α.
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