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Abstract

We define the surface complex for 3-manifolds and embark on a case study
in the arena of Seifert fibered spaces. The base orbifold of a Seifert fibered space
captures some of the topology of the Seifert fibered space, so, not surprisingly,
the surface complex of a Seifert fibered space always contains a subcomplex
isomorphic to the curve complex of the base orbifold.

1 Introduction
The curve complex associated with a surface continues to generate interesting re-
search, both as an object of study in its own right and as a tool for understanding
the mapping class groups of surfaces and Heegaard splittings of 3-manifolds. It is
defined in terms of disjoint submanifolds of a surface. Specifically, in [2], W. Harvey
considers a surface S of genus at least 2. To study the mapping class group and
Teichmüller modular group, he defines a flag complex whose vertices correspond to
isotopy classes of simple closed curves and whose edges correspond to pairs of vertices
admitting disjoint representatives. H. Masur and Y. Minsky describe the geometry
and topology of Harvey’s curve complex in [9] and [10], allowing J. Hempel to glean
structural information about Heegaard splittings in terms of the curve complex in [4].
The curve complex can be modified to accommodate surfaces in which disjoint sim-
ple closed curves are always isotopic. For instance, for the 2-torus edges are defined
as pairs of vertices with representatives that meet once transversely. The resulting
complex is the Farey graph.

Building on the success of the curve complex, we move the discussion up one di-
mension in an attempt to identify and describe the surface complex associated with a
3-manifold. While vertices of the surface complex still correspond to isotopy classes
of surfaces in a given 3-manifold, edges correspond to pairs of vertices with represen-
tatives that meet transversely in a number of components that differs depending on
how the representatives sit with respect to the topology of the given 3-manifold.

Though the complex studied in [13] is quite different from the surface complex,
some of the reasoning applies to the surface complex of a Seifert fibered space. Given
a Seifert fibered space M with base orbifold Q and natural projection p : M → Q, we
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denote the surface obtained from the base orbifold by deleting regular neighborhoods
of the cone points by Q̂. Our surfaces and Seifert fibered spaces will always be
connected. We prove the following theorems:

Theorem 1. If M is a totally orientable Seifert fibered space with nonzero Euler
number, then S(M) is isomorphic to the curve complex of Q̂.

Theorem 2. If M is a totally orientable Seifert fibered space with base orbifold of
genus 0 and Euler number 0, then S(M) contains a subcomplex isomorphic to the
curve complex of the surface obtained from Q̂. Moreover, S(M) is contained in the
cone on this subcomplex.

Special case. If M is a totally orientable Seifert fibered space with base orbifold of
genus 0, Euler number 0, and either 4 or 5 exceptional fibers with identical invariants,
then S(M) is isomorphic to the cone on the curve complex of Q̂.

Theorem 3. If M is a totally orientable Seifert fibered space with Euler number 0
and base orbifold of positive genus, then S(M) contains a subcomplex isomorphic to
the curve complex of the surface obtained from Q̂. Moreover, Sd(M) is connected, for
d the least common multiple of α1, . . . , αk. In particular, S(M) = Sd(M).

I wish to thank Alex Zupan for suggesting this problem and Misha Kapovich for
numerous helpful conversations.

2 Preliminaries
For more background and notational conventions, see [3], [5], [6], [11], [14], and [17].

Definition 1. (Surface complex) Let M be a compact orientable 3-manifold. We
define a sequence of complexes {Si(M)}, and the surface complex, S(M), of M as
follows:

• Vertices in {Si(M)} and S(M) correspond to isotopy classes of compact con-
nected orientable essential (incompressible, boundary incompressible and not
boundary parallel) surfaces (properly embedded) in M .

• A pair of distinct vertices (v1, v2) spans an edge in S0(M) if and only if v1
and v2 admit disjoint representatives. Inductively, we construct a sequence of
complexes, {Si(M)}, whose vertices coincide, for all i, with those of S0(M).
Given Si(M), the pair of vertices {v1, v2} spans an edge in Si+1(M) if and only
if v1 and v2 lie in distinct components of Si(M) and admit representatives whose
intersection has i+ 1 components.

• For all i, Si(M) is a flag complex.

The surface complex of M , denoted S(M), is defined to be Si0(M), where i0 is the
smallest natural number such that Si0(M) is connected.
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There are many sources on Seifert fibered spaces. Of particular interest is H.
Seifert’s original paper on the subject, [15]), or W. Heil’s translation, [16]. See also
[14] and [7].

Definition 2. A fibered solid torus is a solid torus obtained as follows: Given a solid
cylinder D2 × [0, 1], glue D×{0} to D×{1} after a rotation by a rational multiple of
2π. More specifically, the rotation is by 2πν

µ
, where µ, ν ∈ Z and g.c.d.(µ, ν) = 1. The

resulting solid torus is denoted by V (ν, µ). By convention, we require that 0 < ν < µ.
A fiber is a simple closed curve resulting by identification of the endpoints of intervals
of the form {y} × [0, 1], y ∈ D2.

An exceptional fiber is a fiber resulting by identifying {(0, 0)} ∈ D2 × [0, 1] to
{(0, 1)} ∈ D2 × [0, 1]. All other fibers are regular fibers.

identify after twist

Figure 1: A fibered solid torus

Definition 3. A Seifert fibered space M is a compact connected 3-manifold that
admits a decomposition into disjoint circles each of which has a neighborhood that is
homeomorphic to a fibered solid torus via a homeomorphism that takes circles to fibers.
The circles into which M falls are called fibers of M. A particular decomposition of
M into fibers is called a fibration of M. A fiber of M is exceptional if it is exceptional
fiber in a fibered solid torus neighborhood and regular otherwise.

Definition 4. Given a Seifert fibered space M and a fibration, we form a quotient
space, Q, by identifying each fiber to a point. The quotient map is denoted by p :
M → Q. Topologically, the quotient space is a surface. However, if nearby regular
fibers wrap around the exceptional fiber e exactly µ times, then we declare p(e) to be
a cone point of Q of multiplicity µ. Thus Q is an orbifold, called the base orbifold.

If the underlying surface of Q is a sphere, then we say that M has spherical base
orbifold. We denote the surface obtained from Q by removing regular neighborhoods
of the cone points by Q̂.

Note that even for an orientable Seifert fibered space, the base orbifold can be
orientable or nonorientable. Indeed, the twisted circle bundle over the Möbius band is
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Figure 2: A spherical base orbifold with 4 cone points

homeomorphic to a twisted I-bundle over the Klein bottle, an orientable 3-manifold
and a Seifert fibered space. Its double is of interest, because it admits two distinct,
though homeomorphic, Seifert fibrations. Both are twisted circle bundles over the
Klein bottle.

Definition 5. A Seifert fibered space p : M → Q is totally orientable if M and Q̂
are orientable.

The fibering of a Seifert fibered space enables local isotopies positioning a surface
to either coincide with or be transverse to the fibers. That this is possible globally is
the content of the following theorem:

Theorem 4. [6, VI.34] (Jaco) Let F be a connected, two-sided, essential surface in
an orientable Seifert fibered space M. Then one of the following holds:

(i) F is non separating in M and is a fiber in a fibration of M as a surface bundle
over the circle;

(ii) F separates M and M = M1 ∪ M2, where ∂Mi = F and Mi is a twisted
I-bundle over a compact surface;

(iii) F is an annulus or torus and F is saturated, i.e., consists of fibers, in some
Seifert fibration of M.

In Case (i), M can be described both as a Seifert fibered space and as a sur-
face bundle over the circle. Moreover, M is obtained by identifying the boundary
components of F × I. The quotient map p : M → Q restricts to F to give an irreg-
ular covering p|F → Q. The fibers of M consist of unions of intervals of the form
{point} × I. In the case where F is a torus, and in a handful of other cases, the
Seifert fibered space will admit more than one Seifert fibration. Case (ii) does not
occur if the base orbifold of M is orientable. Case (iii) describes vertical surfaces.

Remark 6. A vertical surface S in a Seifert fibered space M projects to a simple
curve. If S contained an exceptional fiber, e, then e would project to a point, p, in Q
on a simple curve s. Nearby regular fibers on s would wrap around e. This makes e a
branch locus of order µ. For µ ≥ 3, this is impressible. Hence µ ≤ 2. Furthermore, if
µ = 2, then S meets a fibered solid torus neighborhood of e is a Möbius band, implying
that S is not orientable. Thus vertical surfaces consist of regular fibers.
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Lemma 1. If F, F ′ are disjoint horizontal surfaces in the orientable Seifert fibered
space M with orientable base orbifold, then F and F ′ are isotopic.

Proof: It follows from Theorem 4 that F and F ′ are of type (ii) or (iii). Case (iii)
does not occur because the base orbifold is orientable. Thus F ′ is properly embedded
in F × I and must hence be isotopic to F .

Lemma 2. Let F be a two-sided essential surface in an orientable Seifert fibered space
M. If F is connected and horizontal with respect to a given Seifert fibration, then it
is neither isotopic nor homologous to a vertical surface with respect to this fibration.
Likewise, if F is connected and vertical with respect to a given Seifert fibration, then it
is neither isotopic nor homologous to a horizontal surface with respect to this fibration.

This follows from the proofs of Theorems VI.26 and VI.34 in [6].
Horizontal surfaces behave quite differently than vertical surfaces, but here too,

the considerations in [13] provide key insights. Recall the following theorem, see for
instance [13, Corollary 5], about the correspondence between horizontal surfaces and
2-dimensional homology classes:

Theorem 5. If F and F ′ are homologous horizontal surfaces in an orientable Seifert
fibered space, then F and F ′ are isotopic.

By definition, every Seifert fibered space is foliated by circles. One must not
confuse this Seifert fibration with an honest fibering as a circle bundle over the surface
or as a surface bundle over the circle. Of course, some Seifert fibered spaces, such as
the manifolds (surface)× S1, exhibit both a (trivial) Seifert fibering, a fibering as a
circle bundle over a surface, and a fibering as a surface bundle over the circle. One
of the invariants of a Seifert fibered space M is the Euler number. It measures the
obstruction of M to being a surface bundle over the circle. Only those Seifert fibered
spaces with Euler number 0 fiber as surface bundles over the circle.

More specifically, let M be Seifert fibered space with base orbifold Q and pro-
jection p : M → Q. Consider the Seifert fibered space M∗ with base orbifold Q∗
obtained from M by removing a fibered solid torus neighborhood T of a regular fiber.
Then M∗ admits a horizontal surface Q̃∗. The projection map restricts to an orbifold
covering of p|Q̃∗ : Q̃∗ → Q∗. In general, Q̃∗ will not extend to a horizontal surface
Q̃ covering Q, the obstruction being an integer b, the oriented intersection number
of a meridian of T with ∂Q. In other words, the horizontal surface Q̃∗ extends to a
horizontal surface Q̃ in M if and only if b = 0.

Seifert fibered spaces provide a superb arena in which to develop tools for studying
3-manifolds. The existence of a quotient map allows much of the information needed
to identify a Seifert fibered space to be captured in the base orbifold. This is true of
algebraic information, for instance in our computations of the fundamental group. To
a certain degree, it allows us to understand incompressible surfaces in Seifert fibered
spaces. A Seifert fibered space M is completely determined by a set of invariants
computed from the base orbifold, an invariant called the Euler number, and the µs
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and νs of the exceptional fibers. In the case of a closed totally orientable Seifert
fibered space the invariants are as follows:

M =< g, b, (α1, β1), . . . , (αk, βk) >

The number g is the genus of the base orbifold Q of M . The number b is the
Euler number. The pair (αi, βi) provides the slope of the meridian disk of a solid
torus neighborhood of the ith exceptional fiber in terms of “external” coordinates.
As in Definition 2, the pair (µi, νi) provides “internal” coordinates describing the
fibering of fibered solid torus neighborhood Vi of the ith exceptional fiber. On the
other hand, denote the surface obtained by deleting a regular neighborhood of a point
from Q̂ by Q̂−. Then Q̂− is a surface with boundary components (c1, . . . , ck+1). For
each i, choose a point pi in ci. Then the pair (ci × {pi}, {pi} × S1) of curves in the
boundary component ci × S1 of Q̂− × S1 provides coordinates in which to express the
slope of the meridian disk of the ith exceptional fiber. We take αi to be the number
of times a meridian of Vi meets {pi}×S1 (or any regular fiber, hence αi = µi ) and βi

to be the number of times it meets ci ×{pi}. To construct M from Q̂− × S1, perform
Dehn fillings of slope (αi, βi) along ci×S1 for i = 1, . . . , k, then perform a Dehn filling
of slope (1, b) along the remaining boundary component.

The fundamental group of M can be computed from this set of invariants.

π1(M) =< a1, b1, . . . , ag, bg, x1, . . . , xk, h |

h−bΠg
1[ai, bi]Π

k
1xi, [a1, h], [b1, h], . . . , [ag, h], [bg, h], [x1, h], . . . , [xk, h], x

α1
1 hβ1 , . . . , xαk

k hβk >

Since a Seifert fibered space admits horizontal surfaces if and only if its Euler
number is 0 and since horizontal surfaces are in 1-1 correspondence with 2-dimensional
homology classes, we compute, for M a Seifert fibered space with Euler number 0:

π1(M) =< a1, b1, . . . , ag, bg, x1, . . . , xn, h |

Πg
1[ai, bi]Π

n
1xi, [a1, h], [b1, h], . . . , [ag, h], [bg, h], [x1, h], . . . , [xn, h], x

α1
1 hβ1 , . . . , xαn

n hβn >

Abelianizing, we obtain:

H1(M) =< a1, b1, . . . , ag, bg, x1, . . . , xn, h | x1+ · · ·+xn, α1x1+β1h, . . . , αnxn+βnh >

Relations of the form αixi + βih yield relations between the xis. Specifically, we
obtain, for all i, j, the following:

βiαjxj + βiβjh = βjαixi + βjβih

Consider, for instance, the case α1 = 3, β1 = 2, α2 = 5, β2 = 3.

9x1 + 6h = 10x2 + 6h

9(x1 − x2) = x2
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This allows us to compute the abelian group expllcitly:

< x1, x2 | 9x1 = 10x2 >=< x1 − x2, x2 | 9(x1 − x2) = x2 >

=< x1 − x2 >= Z

The substitution used is an example of a standard procedure involving Nielsen equiva-
lence and the Euclidean algorithm. In general, Nielsen equivalence provides a method
for reducing the number of generators. This allows us to compute H1 explicitly:

H1(M) =< a1, b1, . . . , ag, bg, η >

If M is a product, then η = h, the homology class of a regular fiber. If there
are exceptional fibers, η will be represented by a simple closed curve, certainly not a
fiber, that can be thought of as a Poincaré dual to a horizontal surface.

By the Universal Coefficient Theorem and Poincaré duality, we obtain a presen-
tation of the 2-dimensional homology as a free group on 2g + 1 generators. The
generators can be thought of explicitly: The generator of H2(M) corresponding to
a1 will be [β1 × S1] (for β1 an embedded curve such that [β1] = b1), the generator
of H2(M) corresponding to b1 will be [α1 × S1] (for α1 an embedded curve such that
[α1] = a1), . . . , the generator of H2(M) corresponding to ag will be [bg × S1] (for βg

an embedded curve such that [βg] = bg), the generator of H2(M) corresponding to
bg will be [ag × S1] (for αg an embedded curve such that [αg] = ag), the generator
corresponding to η will be the homology class of a horizontal surface. Abusing nota-
tion, we will use the same notation for the generators of H2(M) = H1(M) = H1(M):
a1, b1, . . . , ag, bg, η.

Intuitively speaking, exceptional fibers can “get in the way of horizontal surfaces”.
More rigorously put, a Seifert fibered space admits horizontal surfaces if and only if
its Euler number is 0. The case of Seifert fibered spaces with spherical base turns out
to be rather constrained. In view of our knowledge of the curve complex, the theorem
below tells us exactly what to expect.

Remark 7. Analogous computations can be made for Seifert fibered spaces with bound-
ary. For instance, a Seifert fibered space fibered over the disk with k exceptional fibers
will have second relative homology equal to Z.

3 Finegold’s torus complex
In her dissertation, Brie Finegold defines and studies both oriented and unoriented
torus complexes for special linear groups over rings in dimension n ≥ 2. She is
interested in generating systems of groups, but the discussion is interesting in its own
right. For the group Z, Finegold’s construction of C(Tn) reduces to the following:

Definition 8. (Finegold’s unoriented torus complex for the integers)
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• Vertices of C(Tn) correspond to primitive, nonzero, integral vectors, (x1, . . . , xn)
∈ Zn, up to sign. (I. e., elements of QP n−1.) We write [(x1, . . . , xn)] for the
equivalence class of (x1, . . . , xn).

• For 1 ≤ k ≤ n− 1, the vertices [v0], [v1], . . . , [vk] span a k-simplex if and only if
the n× k matrix M(v0, v1, . . . , vk) is a submatrix of an element of SL(n,Z). A
set of n+ 1 vertices spans an n-simplex if and only if every subset obtained by
omitting a vertex spans an (n− 1)-simplex.

For n = 2, the result is the Farey complex. The Farey complex is the curve
complex of a torus. It is important to note that the 2-torus does not admit disjoint
non isotopic essential curves. The edges of the curve complex are therefore defined
to be pairs of isotopy classes of curves that meet (transversely) in exactly one point.

The first cohomology of Tn is Zn. Given a 1-dimensional cohomology class v, its
dual is an (n− 1)-dimensional homology class. Since nonzero (n− 1)-dimensional ho-
mology classes are represented by closed oriented hypersurfaces (see Proposition 1.7.16
in [8]), a 1-dimensional cohomology class thus corresponds to a (n − 1)-dimensional
hypersurface. Specifically, the 1-dimensional cohomology class v is the dual of [Sv],
where Sv is the hypersurface corresponding to v.

The cohomology class v is realized by intersection number number with Sv. It
follows that, when v is primitive, the homology class [Sv] is also primitive. It is
known that such a homology class can be realized by a connected closed oriented
hypersurface. To simplify our discourse, we will say that v represents Sv. In Tn a
connected closed oriented hypersurface is homologous to a canonical (flat) essential
oriented (n − 1)-torus. Hence, in the case n = 3, the vertices of Finegold’s torus
complex are in 1-1 correspondence with the vertices of S0(Tn) and thus coincide with
the vertices of S(Tn).

Non isotopic essential tori in T3 necessarily meet, hence S0(T3) consists of isolated
vertices. Recall that the mapping class group of T3 is GL(3,Z). Two vertices span an
edge in S1(T3) if and only if they are represented by tori, Ta, Tb, that can be isotoped
to meet in a single component. This happens if and only if there is an element of
SL(3,Z) that takes the two vectors a,b representing the two tori to two coordinate
vectors, say (1, 0, 0) and (0, 1, 0). The first two columns, a,b, of A−1 are the vectors
representing Ta, Tb. Since A−1 ∈ SL(3,Z), the two vertices a,b span an edge in
Finegold’s torus complex. Thus the 1-skeleton of Finegold’s torus complex coincides
with the 1-skeleton of S1(T3).

Recall that the graph distance between vertices in a complex is the least number
of edges required in an edge path between the two vertices. This provides a metric
on the set of vertices. Among other things, Finegold establishes the following:

Theorem 6. The diameter of C(T3) is 2.

The proof is elementary. We include it here.

Proof: Let T be an essential torus in T3. Then the vertex [T ] corresponds to
a primitive, nonzero, integral vector (a, b, c). The Euclidean algorithm furnishes
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numbers (x, y) such that ay − bx = gcd(a, b). Note that, while the pairs of num-
bers satisfying this equation are not unique, the pair (x, y) furnished by the Eu-
clidean algorithm is unique and gcd(x, y) = 1. In particular, since (a, b, c) is prim-
itive, gcd(gcd(a, b), c) = 1, so there are relatively prime numbers α, β such that
αgcd(a, b) + βc = 1. Furthermore, since gcd(x, y) = 1, there are relatively prime
numbers γ, δ such that γx+ δy = 1. This shows the following:∣∣∣∣∣∣

a x −βδ
b y βγ
c 0 α

∣∣∣∣∣∣ = ayα− bxα + c(xβγ + yβδ) = αgcd(a, b) + βc = 1

It follows that (x, y, 0) represents a torus T ′ that intersects T in a single simple
closed curve, i.e., there is an edge ((a, b, c), (x, y, 0)). In turn,∣∣∣∣∣∣

δ x 0
−γ y 0
0 0 1

∣∣∣∣∣∣ = 1

Hence there is also an edge ((x, y, 0), (0, 0, 1)). Therefore [T ] is at most distance
2 from the vertex (0, 0, 1).

Given two distinct tori Ta, Tb in T3, we apply a coordinate transformation that
transforms, say, the vector representing Tb into (0, 0, 1), before embarking on the
above computation. It follows that [Ta], [Tb] are within distance two.

Intuitively speaking, this proof confirms that, given any torus, T , intersecting
the “horizontal” coordinate torus in any number of simple closed curves, there is a
“vertical” torus, T ′, that intersects both T and the “horizontal” coordinate torus in
a single simple closed curve.

Corollary 7. The diameter of Finegold’s torus complex is 2 as is the diameter of
S1(T3).

Corollary 8. The complex S1(T3) is connected. Hence S(T3) = S1(T3).

Note that the 2-skeleton of Finegold’s torus complex is a subset of the 2-skeleton
of S(T3). However, it does not coincide with the 2-skeleton of S(T3). Rather, it is a
strict subset. For instance, the triple of vertices represented by the following triple of
vectors spans a 2-simplex in S(T3), but not in Finegold’s torus complex:10

0

 ,

01
0

 ,

11
2


She also proves the following, more technical result, see [1, Section 4.1]:

Theorem 9. For n = 2, 3, Finegold’s torus complex is simply connected.

Theorem 10. The surface complex of the 3-torus is simply connected.
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Proof: The 1-skeleton of S(T3) coincides with the 1-skeleton of Finegold’s unori-
ented torus complex for n = 3 and the 2-skeleton of S(T3) contains the 2-skeleton of
Finegold’s unoriented torus complex for n = 3. Hence S(T3) is simply connected.

We observe that S(T3) is locally infinite. Indeed, consider a torus T represented
by (0, 0, 1). Thus, for every pair (p, q) of coprime integers, the torus represented by
(r, s, 0), where ps+ qr = ±1, meets T in a single essential simple closed curve.

Links of edges are also infinite. Indeed, given tori Tz and Ty represented by (0, 0, 1)
and (0, 1, 0), together with a torus Tr, represented by (1, r, 0), for any r, will represent
the vertices of a 2-simplex.

Lemma 3. The dimension of S(T3) is at least 6.

Proof: The 7-tuple of vertices represented by the following vectors spans a 6-simplex:10
0

 ,

01
0

 ,

00
1

 ,

11
0

 ,

10
1

 ,

01
1

 ,

11
1

 ,

12
0



4 Products
Some of the geometric insights concerning S(T3) extend to product manifolds. Let F
be a connected closed orientable surface and M = F × S1 the corresponding product
manifold. To understand the surface complex of M , we must understand how and
when surfaces meet. The following theorem reduces this task to considering surfaces
that meet at most once:

Theorem 11. Let F be a connected closed orientable surface. If M = F × S1, then
S1(M) is connected. In particular, S(M) = S1(M).

Proof: Recall that H2(M) =< a1, b1, . . . , ag, bg, η >. The generator η is represented by
F×{point}. We will show that the component of S1(M) containing vη = [F×{point}]
contains all vertices of S0(M). A vertical surface is isotopic to γ × S1, for γ a simple
closed curve in F . Thus its intersection

(γ × S1) ∩ (F × {point}) = γ × {point}

is connected. Hence the vertex [α× S1] spans an edge with vη.
Let S be any horizontal surface. Since [S] = mc + nη, for some primitive class

c ∈< a1, b1, . . . , ag, bg, >, where m,n are relatively prime integers, Theorem 1 tells
us that S is isotopic to the double curve sum of m parallel copies of γ × S1 (for an
embedded curve γ in F such that [γ] = c) and n parallel copies of F × {point}. We
may assume (by deliberate choice of generators of H2(M)) that m,n ≥ 0.
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Choose an embedded curve γ′ in F that meets γ exactly once transversely. Since
(γ′ × S1)∩ S is homologous to m[(γ ∩ γ′)× S1] + n[γ′ × {point}] and is an embedded
multi-curve, it is, in fact, the torus link representing this homology class. Since m,n
are relatively prime, it is a torus knot, in particular, it is connected. (This can be
seen explicitly by restricting the double curve sum that produces S to the vertical
torus γ′ × S1.)

The vertex corresponding to S thus lies in the same component of S1(M) as the
vertex corresponding to γ′×S1. Since γ′×S1 ∩F consists of a single component, the
vertex corresponding to γ′ × S1 lies in the same component of S1(M) as vη.

In fact, the proof above shows more:

Corollary 12. If M = F × S1, then S(M) has diameter at most 4.

Proof: A vertical surface meets F ×{point} in exactly one component. It follows that
vertices represented by vertical surfaces are distance one from vη. The proof above
shows that the distance between v and any other horizontal surface is at most 2.

5 Seifert fibered spaces
At the outset, we consider the subcomplex S0(M) of the surface complex of a Seifert
fibered space. As it turns out, the vertical surfaces span an interesting subcomplex
of S0(M). The theorem below echos an analogous theorem concerning the Kakimizu
complex of Seifert fibered spaces. (See [13].)

Theorem 13. Let M be a totally orientable Seifert fibered space with orientable base
orbifold Q. Then the components of S0(M) consist of isolated vertices represented
by isotopy classes of horizontal surfaces in M (if any) along with a complex that is
naturally isomorphic to the curve complex of Q̂.

To prove Theorem 13, we need the following lemma:

Lemma 4. ([13, Lemma 39]) Let M be a closed totally orientable Seifert fibered space
with base orbifold Q. Let F and F ′ be connected oriented essential vertical surfaces
in M and denote p(F ) by b and p(F ′) by b′. If F and F ′ are isotopic, then b and b′

are isotopic in Q̂.

Proof: (Theorem 13) By Lemma 1 isotopy classes of any horizontal surfaces in M will
correspond to isolated vertices. By Lemma 2 the isolated vertices corresponding to
horizontal surfaces, if any, are distinct from vertices corresponding to vertical surfaces.
By Lemma 4, two vertical surfaces are isotopic (disjoint) if and only if their projections
onto the base orbifold are isotopic (disjoint) in Q̂. Theorem 13 now follows.

Proof: (Theorem 1) Since there are no horizontal surfaces, Theorem 1 follows from
Theorem 13.
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Theorem 14. If M = F × S1, then S(M) contains a subcomplex isomorphic to the
cone on the curve complex of F .

Proof: The isotopy classes of vertical surfaces span a subcomplex C isomorphic to
the curve complex of F . The surface F × {point} meets each vertical surface in a
single component, hence corresponds to a vertex that spans an edge with each of the
vertices of C.

Proof: (Theorem 2) By Theorem 13, the components of S0(M) consist of isolated
vertices represented by isotopy classes of horizontal surfaces in M (if any) along with
a complex isomorphic to the curve complex of Q̂.

Since H2(M) is Z, there is, up to sign, a single primitive 2-dimensional homology
class 1. By Theorem 1, it follows that there is a unique unoriented isotopy class of
horizontal surfaces representing 1. Denote this surface by F and the vertex repre-
senting it by vη. Thus S0(M) consist of the single isolated vertex vη along with a
complex isomorphic to the curve complex of Q̂.

The map p restricts to an orbifold covering p|F : F → Q that is unramified away
from the (preimages) of cone points. Denote the covering degree of this map by d.
Given a vertical torus T , p restricts to a regular covering of degree d on F ∩ T . Thus
this intersection consists of at most d components. Since F ∩ T is a torus link, the
specific number, dT , of such components will be a divisor of d. Set

dmin = min{dT | T an essential vertical torus in M}.

A vertex in the subcomplex of S0(M) isomorphic to the curve complex of Q̂ spans
an edge with vη if and only if it is represented by a vertical torus that meets F in
exactly dmin components. Since there is at least one such vertex, by definition of
dmin, Sdmin

(M) is connected. In particular, S(M) = Sdmin
(M).

In the special case where there are at most 5 exceptional fibers with identical
invariants, there is exactly one essential vertical torus up to homeomorphism (though
not up to isotopy). This means that every vertical torus meets the horizontal surface
in the same number, dmin, of components. Therefore Sdmin

(M), and hence also S(M),
is the cone on the subcomplex isomorphic to the curve complex of Q̂.

Proof: (Theorem 3) By Theorem 13, the components of S0(M) consist of isolated
vertices represented by isotopy classes of horizontal surfaces in M (if any) along with
a complex isomorphic to the curve complex of Q̂.

We need to show that Sd(M) is connected. Denote a surface realizing η by F .
The map p restricts to a covering p|F : F → Q that is unramified away from the
(preimages) of cone points. Note that this restricted map must have minimal covering
degree. We denote this degree by d. It is known that d is the least common multiple
of α1, . . . , αk.

We will show that the component of Sd(M) containing vη = [F ] contains all
vertices of S0(M). Define dmin as in the proof of Theorem 2. As in the proof of
Theorem 2, a vertex in the subcomplex of S0(M) isomorphic to the curve complex of
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Q̂ spans an edge with vη if and only if it is represented by a vertical torus that meets
F in exactly dmin components. Since there is at least one such vertex, by definition
of dmin, the component of vη in Sdmin

(M) contains this subcomplex.
Recall that H2(M) =< a1, b1, . . . , ag, bg, η >. Let S be any horizontal surface.

Since [S] = mc + nη, for some primitive class c ∈< a1, b1, . . . , ag, bg, >, where m,n
are relatively prime integers, Theorem 5 again tells us that S is isotopic to the double
curve sum of m parallel copies of γ × S1 (for an embedded curve γ in F such that
[γ] = c) and n parallel copies of F × {point}. We may assume (by deliberate choice
of generators of H2(M)) that m,n ≥ 0.

In the case that m = 0 (or if c is homologically trivial), then we must have
n = 1 for S to be connected, hence S is isotopic to F . Otherwise m 6= 0 and c is
homologically nontrivial, hence we can choose an embedded curve γ′ in Q as in the
proof of Theorem 11 that meets γ exactly once transversely and γ′ × S1 will be a
vertical torus intersecting S in 1 component and F in at most d coherently oriented
components. The vertex corresponding to S thus lies in the same component of Sd(M)
as the vertex corresponding to γ′ × S1 and as vη. Thus Sd(M) is connected, hence,
by definition, S(M) = Sd(M).
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