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Abstract

The bridge number of a knot arose as one of the first numerical knot in-
variants. This chapter considers bridge number from a historical perspective,
compares it to other knot invariants and reflects on related concepts.

1 Introduction
In the 1950s Horst Schubert set out to prove that a given knot has at most a finite
number of companion knots. Companion knots are discussed in conjunction with
satellite knots elsewhere in this volume. Schubert established this finiteness result
with the help of a knot invariant devised for this purpose: The bridge number. See
[24].

Given a diagram of a knot K, a subarc that includes an overcrossing is called
a bridge. The number of bridges in a knot diagram is called the bridge number of
the diagram. The minimum, over all diagrams of K, of the bridge numbers of the
diagrams, is called the bridge number of K and denoted by b(K).

Figure 1: A diagram of the trefoil with two bridges

In early investigations of the bridge number of a knot, the idea of a knot lying in
the plane, with a certain number of bridges venturing out of the plane, informed the
discussion. In the 1980s Morse theoretic considerations and the notion of a height
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function on both R3 and S3 shifted our perspective. A height function on S3 is a
Morse function with exactly two critical points: a maximum and a minimum. On R3

it is a Morse function with no critical points. More concretely, it is projection onto,
say, the z-axis.

From this perspective it makes sense to consider the number of relative maxima
of the knot K with respect to a height function. We think of the plane used in a
knot diagram as the xy-plane and our height function as projection onto z. Given a
diagram of a knot K with b bridges, each subarc of the diagram that is a bridge can
be converted into an arc with interior above the plane and exactly one maximum.
Subarcs of the diagram that are not bridges can be concatenated and converted into
arcs with interior below the plane and exactly one minimum. In this manner we
construct a representative of K with exactly b local maxima. As we traverse K, we
alternate between traversing arcs above the plane and arcs below the plane. It follows
that the representative of K also has exactly b local minima.

Conversely, given a representative of K with exactly b local maxima and b local
minima, we can, by raising maxima and lowering minima, if necessary, find a hori-
zontal plane P that divides the representative of K into 2b arcs, b of which lie above
P and have exactly one local maximum and no other critical points and b of which lie
below P and have exactly one local minimum. By isotoping the arcs that lie below
P into P and viewing P from above, we construct a diagram of K with b bridges. It
follows that the bridge number of a knot equals the smallest possible number of local
maxima for a representative of K.

Figure 2: A representation of the trefoil with two relative maxima

A plane such as P , that lies above all local minima of K and below all local
maxima of K is called a bridge surface. When we think of K ⊂ S3, then a height
function on S3 decomposes S3 into level spheres together with one minimum and one
maximum. A level sphere that lies above all local minima of the knot K and below
all local maxima of K is called a bridge sphere.
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2 Bridge numbers of torus knots
One interesting family of knots to consider in the context of bridge number consists
of torus knots. A torus knot is an isotopy class of knots that are embedded in an
unknotted torus T in S3. The unknotted torus in S3 is characterized by the existence
of two embedded curves called the meridian and longitude which intersect transversely
in one point and bound disks in the complement of T . See Figure 3.

meridian

longitude

Figure 3: A meridian/longitude pair

An invigorating exercise shows that there is a 1-1 correspondence between the set
of isotopy classes of torus knots and pairs (p, q) of relatively prime integers. Given a
torus knot K and orientations on K,T , the meridian and the longitude, we take p to
be the oriented intersection number of the meridian with K and q to be the oriented
intersection number of the longitude with K. The trefoil is an example of a torus
knot, see Figure 4.

Figure 4: The torus knot T (3, 2) is also known as the trefoil

We consider torus knots not just up to isotopy in T but also as knots in S3. A
torus knot will be the unknot in S3 if and only if p = ±1 or q = ±1. Knots in S3

are considered up to symmetry and homeomorphism. Changing relevant orientations
changes p to −p or q to −q. Interchanging the roles of meridian and longitude
exchanges p and q. Thus we need consider only pairs of integers (p, q) such that
0 ≤ q < p along with (p, q) = (1, 1). Given (p, q) with 0 ≤ q < p or (p, q) = (1, 1), we
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denote the corresponding torus knot by T (p, q). In [24], Schubert proved the following
theorem:

Theorem 1. (Schubert 1954) The bridge number of T (p, q) equals q as long as q > 0.

Recall that T (p, q) is the unknot if q ≤ 1. Of course, the unknot can be isotoped
to lie entirely in a level sphere. However, counting relative maxima only makes sense
for simple closed curves that are in general position with respect to a given height
function. The unknot therefore, has bridge number 1. Conversely, the only knot
with bridge number 1 is the unknot. Notice that this is consistent with the fact that
the bridge number of T (p, 1) is 1 for every p since T (p, 1) is the unknot for every p.
The only knot for which q = 0 is T (1, 0), which is also the unknot, but rather than
having bridge number 0, it has bridge number 1, necessitating the hypothesis q > 0
in Schubert’s theorem.

By considering Figure 4, we see that the bridge number of T (3, 2) is less than or
equal to 2. More generally, by drawing an analogous diagram for T (p, q), we see that
the bridge number of T (p, q) is at most q. To see that it cannot be strictly less than
q requires more work and this work was carried out by Schubert in [24].

Indeed, given a height function, a representative of T (p, q) that realizes bridge
number will necessarily lie on an unknotted torus T . However, T could be positioned
in an unusual way, folding in on itself, for instance. What Schubert accomplished in
[24] was to isotope T into standard position without increasing the bridge number
of the representative of T (p, q). For a short Morse-theoretic rendering of Schubert’s
proof, see [27]. Figures 5 and 6 illustrate some of the challenges involved in isotoping
T into standard position.

inessential saddle

Figure 5: An inessential saddle in T
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essential saddle

tube folds in

Figure 6: An essential and nested saddle in T

Similar reasoning applies in the setting of satellite knots and provides the theorem
below:

Theorem 2. (Schubert 1954) Let K be a satellite knot with companion J and pattern
with wrapping number k. Then b(K) ≥ k ·b(J). If K is a cabled knot, i.e., the pattern
is a torus knot with wrapping number q, then b(K) = q · b(J).

3 Bridge number versus genus
The genus of a knot K is the smallest possible genus for a Seifert surface of K. The
following theorem is due to Herbert Seifert, see [29]:

Theorem 3. The genus of T (p, q) is (p−1)(q−1)
2

.

Recall that b(T (p, q)), where p > q ≥ 0, is q. Since p can be arbitrarily large, we
can have knots with bridge number q and arbitrarily large genus.

Conversely, the doubling construction, exhibited in the case of the trefoil in Figure
7, can be performed on any knot, not just the trefoil, with a knot of high bridge
number replacing the trefoil. This provides knots with genus 1 and, by Theorem 2,
arbitrarily high bridge number.

We conclude that bridge number and genus are incompatible in the sense that
they measure different types of complexities of a knot.

4 Bridge number versus hyperbolic volume
A knot K is hyperbolic if its complement supports a complete finite volume hyperbolic
structure. For a hyperbolic knot K, the volume of K, denoted by volume(K), is the
hyperbolic volume of S3 −K.

A twist is a succession of crossings of two strands of a knot over each other that
is maximal in the sense that adjacent crossings involve other strands of the knot. See
Figure 8.
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Figure 7: The double of a trefoil

Figure 9 schematically exhibits a family of 2-bridge knot diagrams. The boxes la-
beled with the numbers t1, . . . , tn represent twists with the given number of crossings.
The numbers t1, . . . , tn can be chosen so that the knot diagram is alternating. The
twist number of a knot diagram D, denoted by t(D), is the minimal number of twists
in the diagram D. The twist number for the diagrams of the family of 2-bridge knots
represented in Figure 9 is arbitrarily high. See [28].

In [26], Schubert shows that 2-bridge knots are prime. Furthermore, Allen Hatcher
and William Thurston show in [10] that 2-bridge knots are simple, i.e., there are no
essential tori in the complements of 2-bridge knots. Some 2-bridge knots will be torus
knots, but those with more than one twist will not be torus knots. It follows that
the complements of 2-bridge knots that are not torus knots support complete finite
volume hyperbolic structures. For details see [10].

Theorem 4. (Lackenby) Let D be a prime alternating diagram of a hyperbolic link
K in S3. Then v3(t(D)−2)/2 ≤ volume(K) < v3(16t(D)−16), where v3(≈ 1.01494)
is the volume of a regular hyperbolic ideal 3-simplex.

Corollary 5. (S) There are 2-bridge knots of arbitrarily large volume.

More generally, Jessica Purcell and Alexander Zupan prove, among other things,
the following, see [22]:

Theorem 6. (Purcell-Zupan) For any natural number b, there exists a sequence of
knots {Kn} such that b(Kn) = b but volume(Kn) → ∞ as n → ∞.

They also prove a partial converse:
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Figure 8: A twist is a succession of crossings of two strands over each other
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Figure 9: Schematic of a 2-bridge knot where boxes represent twists

Theorem 7. (Purcell-Zupan) There is a constant V > 0 and a sequence of knots
{Kn} such that volume(Kn) < V for all n but b(Kn) → ∞ as n → ∞.

We conclude as they do, that bridge number and volume are incompatible in the
sense that they measure different types of complexities of a knot.
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5 Bridge number versus rank and meridional rank
Recall that a bridge sphere is a level sphere of a height function that lies above all
local minima and below all local maxima of a knot K. Thus a bridge sphere S
separates S3 into two 3-balls, B1 and B2, each containing a collection of subarcs of K.
If the height function realizes the bridge number b of K, then it has exactly b local
maxima and b local minima. Denote the subarcs of K in Bi by ai1, . . . , a

i
b. Within Bi,

the twists lying above (respectively, below) the bridge surface can be “untwisted” to
reveal that ai1, . . . , a

i
b are unknotted in Bi, meaning that there are pairwise disjoint

disks Di
1, . . . , D

i
b such that ∂Di

j is partitioned into two subarcs, one lying in ∂Bi and
the other equal to aij.

The disks Di
1, . . . , D

i
b cut Bi into a 3-ball B̂i. Thus the complement of K in

Bi can be constructed from the 3-ball B̂i by identifying the remnants of the disks
Di

1, . . . , D
i
b in the boundary of B̂i. This tells us that Bi − η(K), for η(K) an open

regular neighborhood of K, retracts to a wedge of b circles and hence its fundamental
group is the free group on b generators.

To compute the fundamental group of the complement of K we choose a basepoint
x in the bridge sphere. The bridge sphere retracts to a wedge of 2b circles and hence
its fundamental group is the free group on 2b generators. The generators of the bridge
sphere pair up to coincide in π1(Bi −K). It follows that b is an upper bound for the
rank, i.e., the minimal number of generators needed to generate π1(S3 −K):

rank(K) := rank(π1(S3 −K)) ≤ b(K)

On the other hand, recall that the bridge number of T (p, q) is q. However, regard-
less of p, q, the complement of T (p, q) is the union of two solid tori along an annulus.
It follows that rank(T (p, q)) = 2. Thus

rank(T (p, q)) < b(K) for q > 2

Moreover,
rank(T (p, q))− b(K)

is arbitrarily large.
An interesting variation on the rank arises if we restrict our presentations of

π1(S3 −K) by requiring each generator to be freely homotopic to the meridian. The
minimum number of generators required in such a presentation of π1(S3−K) is called
the meridional rank of K. The above argument shows that

meridional rank(K) ≤ b(K)

Equality holds for several classes of knots, e.g., generalized Montesinos links and
iterated torus knots. See [2], [4], [5], [15] and [23]. Whether or not equality holds is
currently unknown.

8



6 Recognizing and computing
In [31], Robin Wilson proved that, subject to certain technical conditions, every bridge
sphere is isotopic to a meridional almost normal sphere. We will not be interested
in a precise definition of meridional almost normal spheres here, suffice it to say that
there is an algorithm to detect meridional almost normal spheres. The converse is
not true: A meridional almost normal sphere in a knot complement need not be a
bridge sphere.

In [11], William Jaco and Jeffrey Tollefson exhibit an algorithm to determine
whether or not a given 3-manifold is a 3-ball minus a collection of unknotted arcs.
Since meridional almost normal spheres can be detected algorithmically, it is tempt-
ing to think that applying Jaco and Tollefson’s algorithm to the two components
of the complement of the meridional almost normal spheres in a knot complement
should provide an algorithm to detect bridge spheres and thereby the bridge number
of the knot. However, in toroidal knot complements, i.e., for satellite knots, this
method breaks down in the sense that the process need not terminate due to the pos-
sible existence of infinitely many meridional almost normal spheres of a given Euler
characteristic.

An alternative to the strategy outlined above for computing bridge numbers of
knots rests on a result of William Thurston. He proved that for any prime knot
K, one of the following holds: 1) K is a torus knot: 2) K is a satellite knot; 3)
K is a hyperbolic knot. This trichotomy result proved to be a special case of the
geometrization of 3-manifolds. See [19], [20], [21]. In [13], Greg Kuperberg proved a
computational analogue of geometrization of 3-manifolds. Kuperberg’s work provides
an algorithm to determine whether or not a given knot is a torus knot, a satellite
knot or a hyperbolic knot. For torus knots, Schubert’s theorem tells us the bridge
number and for hyperbolic knots Alex Coward exhibits an algorithm to recognize the
bridge number, see [3].

Coward’s argument continues a line of investigation begun by Wolfgang Haken in
the 1960s to solve recognition problems in low-dimensional topology. However, rather
than merely using normal or almost normal surface theory, Coward uses partially flat
angled ideal triangulations as described by Marc Lackenby in [14]. Coward’s argument
also breaks down for knots that are not hyperbolic, again because of the presence of
tori. The problem of algorithmically computing bridge number is hence still open.

7 Generalized bridge number
One can consider the number of relative maxima of the knot K not just with respect
to a height function on S3 but with respect to any self-indexing Morse function on S3.
A level surface of minimal Euler characteristic of such a Morse function is a bridge
surface for K if it lies above all relative minima and below all relative maxima of
K. The g-bridge number of K is the least number of relative maxima K will exhibit
with respect to a Morse function with bridge surfaces of genus g. Additivity in the
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sense of Theorem 2 fails. For more on properties of the generalized bridge number,
see Helmut Doll’s investigation, [7].

8 Bridge distance
For any compact connected orientable surface Σ, the curve complex of Σ is defined
as follows:

• Vertices of C(Σ) correspond to isotopy classes of essential simple closed curves
in Σ;

• Edges correspond to pairs of vertices admitting disjoint representatives;

• C(Σ) is a flag complex;

• The distance between two vertices is the least number of edges in an edge path
between the two vertices.

We will be interested in bridge spheres of knots. Let S be a bridge sphere for
K and set Σ = S − η(K). If Σ is a four times punctured sphere (in the case where
K a 2-bridge knot) the definition above yields a complex that is disconnected. By
convention, the definition of the edges for this curve complex is adjusted (requiring
two points of intersection rather than requiring disjointness), in order to guarantee
connectedness.

The bridge sphere S separates S3 into balls B1 and B2. Denote by Di the collection
of isotopy classes of essential disks in Bi − η(K) with boundary in S − η(K). Denote
the collection of boundaries of disks in Di by ∂i. The bridge distance of S, denoted
by d(S), is given by

d(S) = min{d(c1, c2) | ci ∈ ∂i}

The bridge distance of K, denoted by d(K), is the greatest possible bridge distance
of a bridge sphere of K that meets K in exactly 2b(K) points. To understand the
subtleties concerning how this gives us a well-defined integer, see [30]. For more on
the topic of bridge distance, see [12] and [32]. For a natural generalization of bridge
distance, see [16].

9 Bridge number versus distortion
In [8], Mikhail Gromov studied embeddings of manifolds and defined a notion called
distortion. In the specialized setting of knots we have the following: Given a knot K
in S3, a smooth representative γ of K and two points p, q ∈ γ, the distance between p
and q can be measured in two ways: 1) As the distance between p and q in S3, which
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we denote by ds(p, q); 2) As the length of the (shorter) subarc of γ from p to q, which
we denote by dγ(p, q). The distortion of a knot K, denoted by δ(K), is then given by:

δ(γ) = sup
p,q∈γ

dγ(p, q)

ds(p, q)

and
δ(K) = inf

γ∈K
δ(γ)

In [6], Elizabeth Denne and John Sullivan proved that the distortion of a nontrivial
knot is bounded below by 5π

3
. Having observed that the distortion of a knot remains

constant under connected sum, Gromov asked in [8] whether there is a universal upper
bound on the distortion of a knot. The answer to this question is “no”. In [18], John
Pardon, building on work of Makoto Ozawa, see [17], used the bridge number as a
tool to prove that torus knots provide a family with arbitrarily high distortion. See
also [9].

Theorem 8. (Pardon)
δ(T (p, q)) ≥ 1

160
min(p, q)

Recent work announced by Ryan Blair, Marion Campisi, Scott Taylor and Maggy
Tomova suggests that the distortion of a knot is far more closely related to bridge
number than other invariants. See [1].
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