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Abstract

Let M be a totally orientable graph manifold with characteristic subman-

ifold T and let M = V ∪S W be a Heegaard splitting. We prove that S is

standard. In particular, S can be isotoped so that for each vertex manifold N

of M , S ∩ N is either horizontal, pseudohorizontal, vertical or pseudovertical.

1 Introduction

The subject of this investigation is the structure of Heegaard splittings of graph man-
ifolds. This investigation continues the work begun in [20], [21], [13] and [22]. Since
the publication of those papers, new techniques have been added to the repertoire
of those interested in describing the structure of Heegaard splittings. These include
the idea of untelescoping a weakly reducible Heegaard splitting into a generalized
strongly irreducible Heegaard splitting due to M. Scharlemann and A. Thompson.
They also include the Rubinstein-Scharlemann graphic, as employed by D. Cooper
and M. Scharlemann in [6]. These insights have not left the investigation here unaf-
fected. We hope that their role here is a tribute to proper affinage1. (The structural
theorem given here has been promised for rather a long time.) A similar theorem was
announced by J.H.Rubinstein.

The main theorem is the following, for defintions see sections 2 and 3:

Theorem 1.1. Let M be a totally orientable graph manifold. If M = V ∪S W is an
irreducible Heegaard splitting, then S is standard.

More specifically, S can be isotoped so that for each vertex manifold N of M ,
S ∩ N is either horizontal, pseudohorizontal or vertical and such that for each edge
manifold (torus) × I ⊂ E , S ∩ ((torus) × I) is characterized by one of the following:

1) After isotopy, S ∩ ((torus) × I) is obtained from a collection of incompressible
annuli by ambient 1-surgery along a collection of arcs each of which is isotopic into
(torus) × {point}.

2) There is a pair of simple closed curves c, c′ ⊂ (torus) such that c∩ c′ consists of a
single point p ∈ (torus) and V ∩((torus)×I) is a collar of (c×{0})∪(p×I)∪(c′×{1}).

1This is a French noun describing the maturing process of a cheese.
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The graph manifolds considered here are totally orientable, that is, they are ori-
entable 3-manifolds and for each vertex manifold the underlying surface of the orbit
space is orientable. It follows from [10, VI.34] that an incompressible surface can
be isotoped to be either horizontal or vertical in each vertex manifold of a totally
orientable graph manifold. In conjunction with the notion of untelescoping a weakly
reducible Heegaard splitting into a strongly irreducible generalized Heegaard splitting,
this observation reduces the investigation at hand to the investigation of strongly irre-
ducible Heegaard splittings of generalized graph manifolds (for definitions, see below).

In the investigation of strongly irreducible Heegaard splittings of generalized graph
manifolds, the nice properties of strongly irreducible Heegaard splittings often reduce
this investigation to a study of the behaviour of the Heegaard splittings near the char-
acteristic submanifolds. In this context, a theorem of D. Cooper and M. Scharlemann
completes the description of this behaviour, see Proposition 7.15 and Proposition 7.23.
This theorem may be found in [6, Theorem 4.2].

The theorem here is purely structural in the sense that it describes the various
ways in which a Heegaard splitting may be constructed. In particular, it enables
a computation of Heegaard genus, i.e., the smallest possible genus of a Heegaard
splitting, for totally orientable graph manifolds. To compute this genus, one need
merely consider the finitely many possible constructions, compute the corresponding
Euler characteristics, and find the extremal value. This line of thought is pursued
in [24], where the genus of a certain class of totally orientable graph manifolds is
compared to the rank, i.e., the least number of generators, of the fundamental group
of these manifolds.

The theorem leaves open the question of classification. There will be some, though
probably not too many, cases in which the various constructions are isotopic. More
interestingly, there may be larger scale isotopies. I.e., there may be two Heegaard
splittings of a graph manifold that are isotopic but not via an isotopy fixing their
intersection with the decomposing tori. Clearly, this leaves much room for further
investigation.

The global strategy is as follows: By Theorem 3.10, a Heegaard splitting is the
amalgamation of the strongly irreducible Heegaard splittings arising in any of its weak
reductions. Thus, one begins with a Heegaard splitting of a graph manifold. One then
considers a weak reduction of this Heegaard splitting. Cutting along the incompress-
ible surfaces in the weak reduction yields generalized graph manifolds with strongly
irreducible Heegaard splittings. One analyzes the possible strongly irreducible Hee-
gaard splittings of generalized graph manifolds. Finally, one considers all possibilities
arising in the amalgamation of strongly irreducible Heegaard splittings of generalized
graph manifolds.

I wish to thank the many colleagues who have reminded me that a complete report
on this investigation is past due. Among these are Ian Agol, Hugh Howards, Yoav
Moriah, Marty Scharlemann, Yo’av Rieck, Eric Sedgwick and Richard Weidmann. I
also wish to thank the MPIM-Bonn where part of this work was done. This work was
supported in part by the grant NSF-DMS 0203680.
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2 Totally orientable graph manifolds

For standard definitions pertaining to knot theory see for instance [4], [11] or [15].
For 3-manifolds see [9] or [10]. Note that the terminology for graph manifolds has
not been standardized.

Definition 2.1. A Seifert manifold is a compact 3-manifold that admits a foliation
by circles.

For a more concrete definition, see for instance [10]. The fact that the simple
definition here is in fact equivalent to more concrete definitions follows from [7].

Definition 2.2. The circles in the foliation of a Seifert fibered space M are called
fibers. The natural projection that sends each fiber to a point is denoted by p : M → Q.
The quotient space Q is called the base orbifold of M . A fiber f is called an exceptional
fiber if nearby fibers wind around f more than once. Otherwise, f is called a regular
fiber. The image under p of a regular fiber is called a regular point and the image
under p of an exceptional fiber is called an exceptional point.

The base orbifold is in fact a surface. This follows from standard facts about
foliations in conjunction with [7]. It also follows that there will be only finitely many
exceptional fibers.

Definition 2.3. For Y a submanifold of X, we denote an open regular neighborhood
of Y in X by η(Y, X), or simply by η(Y ), if there is no ambiguity concerning the
ambient manifold. Similarly, we denote a closed regular neighborhood by N(Y, X), or
simply by N(Y ), if there is no ambiguity concerning the ambient manifold.

Definition 2.4. A surface S in a Seifert fibered space M is vertical if it consists of
fibers. It is horizontal if it intersects all fibers transversely. It is pseudohorizontal if
there is a fiber f ⊂ M such that S ∩ (M\η(f)) is horizontal and S ∩N(f) is a collar
of f .

It follows that a horizontal surface in a Seifert fibered space M orbifold covers the
base orbifold of M .

Definition 2.5. A Seifert fibered space is totally orientable if it is orientable as a
3-manifold and has an orientable base orbifold.

We are now ready to define graph manifolds.

Definition 2.6. A graph manifold is a 3-manifold M modelled on a finite graph Γ
as follows:

1) Each vertex v of Γ corresponds to a Seifert fibered space, denoted by Mv and called
a vertex manifold;

2) Each edge e of Γ corresponds to a 3-manifold homeomorphic to (torus) × S1,
denoted by Me and called an edge manifold;

3) If an edge e is incident to a vertex v, then this incidence is realized by an iden-
tification of a boundary component of Me with a boundary component of Mv via a
homeomorphism.
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A graph manifold is totally orientable if each vertex manifold is totally orientable.

The union of edge manifolds in M is also called the characteristic submanifold
of M . It is denoted by E . The image of a boundary component of the characteristic
submanifold of M is a torus called a decomposing torus. It is denoted by T .

Figure 1: A model graph for a graph manifold

A decomposing torus is, of course, also the image of a boundary component of a
vertex manifold. But the converse is not always true.

Remark 2.7. We have placed no restrictions on the homeomorphism that identifies
a boundary component of an edge manifold with a boundary component of a vertex
manifold. Thus according to this definition, there will be Seifert fibered spaces that
admit a description as a graph manifold with non empty characteristic submanifold.
From the point of view of the investigation here, this is often a useful way to think of
such a Seifert fibered space. See [26].

Definition 2.8. A boundary component of a vertex manifold Mv of a graph manifold
M that is also a boundary component of M is called an exterior boundary component
of Mv. We denote the union of exterior boundary components of Mv by ∂EMv.

3 Untelescoping and amalgamation

We here give the basic definitions concerning Heegaard splittings, strongly irreducible
Heegaard splittings, untelescopings and amalgamations. Theorem 3.10 below is cru-
cial to the global strategy employed in our investigation.

Definition 3.1. A compression body is a 3-manifold W obtained from a connected
closed orientable surface S by attaching 2-handles to S × {0} ⊂ S × I and capping
off any resulting 2-sphere boundary components. We denote S × {1} by ∂+W and
∂W\∂+W by ∂−W . Dually, a compression body is a connected orientable 3-manifold
obtained from a (not necessarily connected) closed orientable surface ∂−W × I or a
3 − ball by attaching 1-handles.

In the case where ∂−W = ∅ (i.e., in the case where a 3− ball was used in the dual
construction of W ), we also call W a handlebody. If W = ∂−W × I, we say that W
is a trivial compression body.

Definition 3.2. A spine of a compression body W is a 1-complex X such that W
collapses to ∂−W ∪ X.

Definition 3.3. A set of defining disks for a compression body W is a set of disks
{D1, . . . , Dn} properly imbedded in W with ∂Di ⊂ ∂+W for i = 1, . . . , n such that the
result of cutting W along D1 ∪ · · · ∪ Dn is homeomorphic to ∂−W × I or to a 3-ball
in the case that W is a handlebody.
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Definition 3.4. A Heegaard splitting of a 3-manifold M is a decomposition M =
V ∪S W in which V , W are compression bodies, V ∩ W = ∂+V = ∂+W = S and
M = V ∪ W . We call S the splitting surface or Heegaard surface.

The notion of strong irreducibility of a Heegaard splitting was introduced by A.
Casson and C. McA. Gordon in [5] and has proven extremely useful.

Definition 3.5. A Heegaard splitting M = V ∪S W is strongly irreducible if for any
pair of essential disks D ⊂ V and E ⊂ W , ∂D ∩ ∂E 6= ∅.

Recall also the following related definitions:

Definition 3.6. A Heegaard splitting M = V ∪S W is reducible if there exists a pair
of essential disks D ⊂ V and E ⊂ W such that ∂D = ∂E. If M = V ∪S W is not
reducible, then it is irreducible.

A Heegaard splitting M = V ∪S W is stabilized if there exists a pair of essential
disks D ⊂ V and E ⊂ W such that |∂D ∩ ∂E| = 1.

Though all compact 3-manifolds admit Heegaard splittings, many do not admit
strongly irreducible Heegaard splitting. This fact prompted M. Scharlemann and A.
Thompson to introduce the following notion of generalized Heegaard splittings.

Definition 3.7. A generalized Heegaard splitting of a compact orientable 3-manifold
M is a decomposition M = (V1∪S1

W1)∪F1
(V2∪S2

W2)∪F2
· · ·∪Fm−1

(Vm∪Sm
Wm) such

that each of the Vi and Wi is a union of compression bodies with ∂+Vi = Si = ∂+Wi

and ∂−Wi = Fi = ∂−Vi+1.

We say that a generalized Heegaard splitting is strongly irreducible if each Heegaard
splitting of a component of Mi = Vi ∪Si

Wi is strongly irreducible and each Fi is
incompressible in M . We will denote ∪iFi by F and ∪iSi by S. The surfaces in F
are called the thin levels and the surfaces in S the thick levels.

Let M = V ∪SW be an irreducible Heegaard splitting. We may think of M as being
obtained from ∂−V ×I by attaching all 1-handles in V (dual definition of compression
body) followed by all 2-handles in W (standard definition of compression body), fol-
lowed, perhaps, by 3-handles. An untelescoping of M = V ∪S W is a rearrangement of
the order in which the 1-handles of V and the 2-handles of W are attached yielding a
generalized Heegaard splitting. A weak reduction of M = V ∪S W is an untelescoping
that is strongly irreducible.

The Main Theorem in [18] implies the following:

Theorem 3.8. Let M be an irreducible 3-manifold. Any Heegaard splitting M =
V ∪S W has a weak reduction.

Definition 3.9. Let N, L be 3-manifolds with R a closed subsurface of ∂N , and S
a closed subsurface of ∂L, such that R is homeomorphic to S via a homeomorphism
h. Further, let (U1, U2), (V1, V2) be Heegaard splittings of N, L such that N(R) ⊂
U1, N(S) ⊂ V1. Then, for some R′ ⊂ ∂N\R and S ′ ⊂ ∂L\S, U1 = N(R ∪ R′) ∪ (1 −
handles) and V1 = N(S ∪S ′)∪ (1− handles). Here N(R) is homeomorphic to R× I
via a homeomorphism f and N(S) is homeomorphic to S × I via a homeomorphism
g. Let ∼ be the equivalence relation on N ∪ L generated by
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(1) x ∼ y if x, yεη(R) and p1 · f(x) = p1 · f(y),

(2) x ∼ y if x, yεη(S) and p1 · g(x) = p1 · g(y),

(3) x ∼ y if xεR, yεS and h(x) = y,

where p1 is projection onto the first coordinate. Perform isotopies so that for
D an attaching disk for a 1-handle in U1, D

′ an attaching disk for a 1-handle in
V1, [D] ∩ [D′] = ∅. Set M = (N ∪ L)/ ∼, W1 = (U1 ∪ V2)/ ∼, and W2 = (U2 ∪
V1)/ ∼. In particular, (N(R) ∪ N(S)/ ∼) ∼= R, S. Then W1 = V2 ∪ N(R′) ∪
(1 − handles), where the 1-handles are attached to ∂+V2 and connect ∂N(R′) to
∂+V2, and hence W1 is a compression body. Analogously, W2 is a compression
body. So (W1, W2) is a Heegaard splitting of M . The splitting (W1, W2) is called
the amalgamation of (U1, U2) and (V1, V2) along R, S via h.

Theorem 3.8 together with [20, Proposition 2.8] implies the following:

Theorem 3.10. Suppose M = V ∪S W is an irreducible Heegaard splitting and M =
(V1∪S1

W1)∪F1
(V2∪S2

W2)∪F2
· · ·∪Fm−1

(Vm∪Sm
Wm) a weak reduction of M = V ∪SW .

Then the amalgamation of M = (V1∪S1
W1)∪F1

(V2∪S2
W2)∪F2

· · ·∪Fm−1
(Vm∪Sm

Wm)
along F1 ∪ · · · ∪ Fm−1 is M = V ∪S W .

One of the nice properties of strongly irreducible Heegaard splittings is apparent
in the following lemma which is a deep fact and is proven, for instance, in [23, Lemma
6].

Lemma 3.11. Suppose M = V ∪S W is a strongly irreducible Heegaard splitting and
P ⊂ M an essential incompressible surface. Then S can be isotoped so that S ∩ P
consists only of curves essential in both S and P .

4 Incompressible surfaces and generalized graph

manifolds

In the arguments that follow, we employ the ideas of untelescoping and amalgamation.
In this section, we describe the incompressible surfaces that arise in a weak reduction
of a Heegaard splitting. We then describe the 3-manifolds that result from cutting
a graph manifold along such incompressible surfaces. We will call these 3-manifolds
generalized graph manifolds. Later, we will consider the strongly irreducible Heegaard
splittings on these generalized graph manifolds.

Remark 4.1. An edge manifold of a totally orientable graph manifold M is homeo-
morphic to (torus) × I. There are infinitely many distinct foliations of (torus) × I
as an annulus bundle over the circle. The incompressible surfaces in (torus) × I are
tori isotopic to (torus) × {point}, annuli isotopic to the annular fibers in the foli-
ations of (torus) × I as an annulus bundle over the circle and annuli parallel into
∂((torus) × I).

Lemma 4.2. Let F be an incompressible surface in a totally orientable graph manifold
M . Then F may be isotoped so that in each edge manifold it consists of incompressible
tori and essential annuli and in each vertex manifold it is either horizontal or vertical.
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Proof: Let T be the collection of decomposing tori for M . Since F and T are
incompressible, F may be isotoped so that F ∩ T consists only of curves essential
in both F and T . We may assume that this has been done in such a way that the
number of components in F ∩ T is minimal. Let N be a component of M\T , then
F ∩N is incompressible. Furthermore, no component of F ∩N is an annulus parallel
into T .

Suppose F ∩N is boundary compressible in N . Let D̂ be a boundary compressing
disk for F ∩N . Then ∂D̂ = a∪ b, with a ⊂ ∂N and b ⊂ F . Since F ∩T consists only
of curves essential in both F and T , the component A of ∂N\(F ∩∂N) that contains
a is an annulus. Let B(D̂) be a bicollar of D̂. Then ∂B(D̂) has two components,
D̂0, D̂1. Consider the disk D = (A\(A∩B(D̂))∪ D̂0 ∪ D̂1. Since F is incompressible,
D must be parallel to a disk in F , but this implies that the number of components
of F ∩ T is not minimal, a contradiction. Thus, F ∩ N is boundary incompressible
in N .

If N is an edge manifold, then F ∩ N is as required by Remark 4.1. If N is a
vertex manifold, then [10, VI.34] allows three possibilities for F ∩ N : 1) F ∩ N is
vertical; 2) F ∩ N is horizontal; or 3) F ∩ N is the boundary of a twisted I-bundle
over a horizontal surface F̂ N in N . For a boundary incompressible surface in N this
latter possibility would imply that there is a nonorientable horizontal surface F̂ N in
C. In particular, F̂ N would be a cover of the base orbifold. But this is impossible.
Hence F ∩ N is either horizontal or vertical. Hence F ∩ N is as required.

The following definition describes the 3-manifolds that result when a totally ori-
entable graph manifold is cut along incompressible surfaces.

Definition 4.3. A generalized graph manifold is a 3-manifold M modelled on a finite
graph Γ as follows:

1) Each vertex v of Γ corresponds either to a Seifert fibered space or to a 3-manifold
homeomorphic to (compact surface) × [0, 1]. This manifold is denoted by Mv and
called a vertex manifold.

2) Each edge e of Γ corresponds either to a 3-manifold homeomorphic to (torus)× I
or to a 3-manifold homeomorphic to (annulus) × I. This manifold is denoted by Me

and called an edge manifold.

3) If the edge manifold Me is homeomorphic to (torus) × I and e is incident to a
vertex v, then this incidence is realized by an identification of a boundary component
of Me with a boundary component of Mv. In particular, Mv must be Seifert fibered.

4) If the edge manifold Me is homeomorphic to (annulus) × I and e is incident
to a vertex v, then this incidence is realized by an identification of a component of
(∂(annulus))× I, with a subannulus of ∂Mv. If Mv is Seifert fibered, then this suban-
nulus of ∂Mv consists of fibers of Mv. If Mv is homeomorphic to (compact surface)×
I, then this subannulus is a component of (∂(compact surface)) × I.

5) If a vertex manifold Mv is homeomorphic to (compact surface) × I, then the
valence of v equals the number of components of (∂(compact surface)) × I. I.e.,
each component of (∂(compact surface)) × I is identified with a subannulus of the
boundary of an edge manifold.

A generalized graph manifold is totally orientable if each vertex manifold that is
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Seifert fibered is totally orientable and each vertex manifold that is not Seifert fibered
is homeomorphic to (compact orientable surface) × I.

The union of edge manifolds in M is also called the characteristic submanifold of
M . It is denoted by E . The image of a torus or annulus, respectively, along which
an indentification took place is called a decomposing torus or decomposing annulus,
respectively. The union of decomposing tori and annuli is denoted by T .

Consider the case in which an edge manifold Me = (torus) × [0, 1] of a graph
manifold is cut along an incompressible torus T = (torus) × {point}. When Me

is cut along T , the remnants of Me are (torus) × [0, 1
2
] and (torus) × [ 1

2
, 1]. Each

of these remnants forms a collar of a vertex manifold. A foliation of (torus) by
circles may be chosen in such a way that the Seifert fibration of the vertex manifold
extends across the remnant. We may thus ignore these remnants, as we do in the
above definition of generalized graph manifolds. This facilitates the discussion of
strongly irreducible Heegaard splittings of generalized graph manifolds. Later, when
considering amalgamations of strongly irreducible Heegaard splittings of generalized
graph manifolds, we will have to reconsider these remnants.

Definition 4.4. A portion of the boundary of a vertex manifold Mv of a generalized
graph manifold M that is contained in ∂M is called an exterior boundary component
of Mv. We denote the union of exterior boundary components of Mv by ∂EMv.

5 Examples of Heegaard splittings

In this section we describe some examples of Heegaard splittings for graph manifolds
and generalized graph manifolds. The following definition facilitates describing the
structure of certain surfaces.

Definition 5.1. Let F be a surface in a 3-manifold M and α an arc with inte-
rior in M\F and endpoints on F . Let C(α) be a collar of α in M . The boundary
of C(α) consists of an annulus A together with two disks D1, D2, which we may
assume to lie in F . We call the process of replacing F by (F\(D1 ∪ D2)) ∪ A
performing ambient 1-surgery on F along α.

The process of ambient 1-surgery on a surface along an arc is sometimes informally
referred to as “attaching a tube”.

Example 5.2. Let Q be a closed orientable surface. The standard Heegaard splitting
of Q × S

1 may be constructed in more than one way. In particular, consider a small
disk D ⊂ Q and a collection Γ of arcs that cut Q\D into a disk. Let S be the result of
performing ambient 1-surgery on ∂D × S

1 along Γ× {point}. Then S is the splitting
surface of a Heegaard splitting Q × S

1 = V ∪S W (for details, [20]). See Figure 2.
One of the handlebodies is ((shaded disk) × S

1) ∪ N(dashed arcs).

The same Heegaard splitting of Q×S
1 may be obtained in another way: Partition

S
1 into two intervals I1, I2 that meet in their endpoints. Consider two distinct points

p, q ∈ Q. Then the surface obtained by performing ambient 1-surgery on Q× (I1 ∩ I2)
along (p × I1) ∪ (q × I2) is isotopic to S above.
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Figure 2: Schematic for Heegaard splitting of Q × S
1

One does not usually consider Q × S
1 as a graph manifold with non empty char-

acteristic submanifold. But we may do so, somewhat artificially, by choosing an
essential circle c in Q, and declaring a collar of c × S1 to be the characteristic sub-
manifold. From this point of view, Q × S

1 is a graph manifold modelled on a graph
with a single edge and either one vertex, in the case that c is non separating, or two
vertices, in the case that c is separating.

When we think of Q× S
1 as a graph manifold, we may choose p, q on c. Then we

see that S is horizontal in the vertex manifold(s) and has the required structure in the
edge manifold.

The fact that this Heegaard splitting can be constructed either from a vertical
torus or from horizontal surfaces via ambient 1-surgery is likely to be a very special
feature. But there are no general techniques for detecting the sort of global isotopies
that allow this to happen.

The Heegaard splitting described turns out to be the only irreducible Heegaard
splitting for a manifold of the form (closed orientable surface)× S

1. This fact is the
main theorem of [20]. The construction can be generalized to Seifert fibered spaces to
provide the canonical Heegaard splittings for totally orientable Seifert fibered spaces,
see [1] and [13]. The Heegaard splittings arising from this construction have been
termed vertical. This terminology has created some confusion, because the splitting
surface of a vertical Heegaard splitting is not vertical as a surface. Here we will
continually focus on the splitting surface. In particular, we will want to distinguish
between surfaces that are vertical and surfaces that are the splitting surface of a
vertical Heegaard splitting. For this reason, we will augment the existing terminology
and refer to the splitting surface of a vertical Heegaard splitting as “pseudovertical”.

We recall the definition of a vertical Heegaard splitting for a Seifert fibered space.
Because the structure of Heegaard splittings for totally orientable Seifert fibered
spaces has been completely described by in [13], we may restrict our attention to
Seifert fibered spaces with non empty boundary in the definition below.

Definition 5.3. Let M be a Seifert fibered space with ∂M 6= ∅. Denote the base
orbifold of M by O. Denote the exceptional fibers of M by f1, . . . , fn and the corres-
ponding exceptional points in O by e1, . . . , en. Denote the boundary components of M
by B1, . . . , Bm and the corresponding boundary components of O by b1, . . . , bm,

Partition f1, . . . , fn into two subsets: f1, . . . , fi, the fibers that will lie in V and
fi+1, . . . , fn, the fibers that will lie in W . Then partition B1, . . . , Bm into two sub-
sets: B1, . . . , Bj, the boundary components that will lie in V and Bj+1, . . . , Bm, the
boundary components that will lie in W .
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Figure 3: Schematic for a vertical Heegaard splitting of a Seifert fibered space

We may assume that j ≥ 1, for otherwise we may interchange the roles of V and
W in the construction below. Let Γ be a collection of arcs in O each with at least one
endpoint on b1 such that O\Γ is a regular neighborhood of ei+1∪· · ·∪en∪bj+1∪· · ·∪bm

or of a point, if this set is empty. See Figure 3.

Set V = N(f1 ∪ · · · ∪ fi ∪ B1 ∪ · · · ∪ Bj ∪ Γ) and set W = closure(M\V ). Set
S = ∂+V = ∂+W . Then M = V ∪S W is a Heegaard splitting. (For details, see
[21] or [13].) A Heegaard splitting of a Seifert fibered space with non empty boundary
constructed in this manner is called a vertical Heegaard splitting. A pseudovertical
surface is a surface that is the splitting surface of a vertical Heegaard splitting.

A little more work is required to extend this notion to the setting of graph mani-
folds. Here we consider the intersection of a Heegaard splitting of a generalized graph
manifold with a vertex manifold that is a Seifert fibered space. Denote the Heegaard
splitting by M = V ∪S W and the vertex manifold by Mv. Here S ∩ Mv is not
necessarily connected. Furthemore, S ∩ Mv has boundary. A concrete description
of all possible such surfaces would be quite extensive. For this reason, we give the
following, purely structural, definition:

Definition 5.4. Let M = V ∪S W be a Heegaard splitting of a generalized graph
manifold with non empty characteristic submanifold. Let Mv be a Seifert fibered vertex
manifold of M . We say that S ∩ Mv is pseudovertical if the following hold:

1) There is a collection of vertical annuli and tori A ⊂ Mv.

2) There is a collection of arcs Γ in the interior of Mv such that each endpoint of
each arc in Γ lies in A and such that Γ projects to a collection of disjoint imbedded
arcs.

3) S ∩ Mv is obtained from A by ambient 1-surgery along Γ.

The assumption that M = V ∪SW is a Heegaard splitting places strong restrictions
on S. If S ∩ Mv is pseudovertical, then S ∩ (∂Mv\∂EMv) consists of vertical curves.
Thus V ∩ (∂Mv\∂EMv) and W ∩ (∂Mv\∂EMv) consist of annuli. Each such annulus
is either a spanning annulus in V or W , or it has both boundary components in S.

Consider the result of cutting a compression body V along an annulus A with ∂A ⊂
∂+V . If the annulus is inessential, then the effect is nil. If the annulus is essential,
then the result is again a, possibly disconnected, compression body, see [23, Lemma 2].
If the annulus is a spanning annulus, then the result is not quite a compression body,
but it is a compact 3-manifold of the form ((compact surface) × I) ∪ (1 − handles).
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The only way this can happen, given the structure of S ∩Mv, is if the components of
V ∩Mv and W ∩Mv are constructed from vertical solid tori and perhaps components
homeomorphic to (annulus) × S

1 by attaching “horizontal” 1-handles. For more
concrete computations, see [24].

It is a non trivial fact that for Seifert fibered spaces the two definitions of pseu-
dovertical surfaces coincide. This follows from [20, Proposition 2.10] via Lemma 7.1
(an adaptation of the central argument in [21]) along with Lemma 7.3. For an illus-
tration, see the final remarks in the example below.

Example 5.5. Let M be a Seifert fibered space with base orbifold a disk and with
two exceptional fibers f1, f2. Let T be a boundary parallel torus and let α be an arc
connecting T to itself that projects to an imbedded arc that runs between the two
exceptional points. Let S be the result of performing ambient 1-surgery on T along α.
Then S is the splitting surface of a Heegaard splitting of M = V ∪S W (see [13]).

Now consider two copies M1, M2 of M with Heegaard splittings Mi = Vi∪Si
Wi. We

may assume that ∂M1 ⊂ V1 and ∂M2 ⊂ W2. Now identify ∂M1 and ∂M2 to obtain
a 3-manifold M . Amalgamate M1 and M2 along ∂M1, ∂M2 to obtain a Heegaard
splitting M = V ∪S W . The result is schematically indicated in Figure 4. The circle
corresponds to a vertical torus. The splitting surface of the Heegaard splitting is
obtained by performing ambient 1-surgery on this torus along arcs in M corresponding
to the dashed arcs.

Figure 4: Schematic for Heegaard splitting after amalgamation

The manifold M obtained when ∂M1 and ∂M2 are identified is a graph manifold
modelled on a graph with two vertices and one edge connecting the two vertices. The
vertex manifolds are slightly shrunken versions of M1 and M2. The edge manifold is
a collar of the image of ∂M1 and ∂M2 in M . Figure 5 indicates that, after a small
isotopy, S is pseudovertical in each of the two vertex manifolds and is incompressible
in the edge manifold.

If the homeomorphism that identifies ∂M1 with ∂M2 is fiberpreserving, then M is
in fact a Seifert fibered space. In this case S is isotopic to the surface indicated in
Figure 6. This surface is obtained by performing ambient 1-surgery along two arcs
corresponding to the dashed arcs on the two vertical tori corresponding to the two
solid circles.

The above construction can be generalized to arbitrary graph manifolds. The
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Figure 5: Schematic for Heegaard splitting of a graph manifold

Figure 6: Schematic for Heegaard splitting of a Seifert fibered space

resulting Heegaard splittings can be considered the canonical Heegaard splittings of
graph manifolds.

The following two examples illustrate the more peculiar Heegaard splittings that
arise under special circumstances.

Example 5.6. Let N be a Seifert fibered space with base orbifold the sphere and
with four exceptional fibers f1, . . . , f4 with carefully chosen invariants: 1

2
, 1

2
, 1

2
, l

2l+1
.

Here N\η(f4) is a Seifert fibered manifold with boundary and hence fibers over the
circle. More specifically, it fibers as a once punctured torus bundle over the circle.
By partitioning the circle into two intervals I1, I2 that meet in their endpoints, we
obtain a decomposition N\η(f4) = V ′ ∪S′ W ′ with V ′ = (once punctured torus)× I1,
W ′ = (once punctured torus) × I2 and S ′ = two once punctured tori.

Note that this decomposition is not a Heegaard splitting in the sense used here as
S ′ is not closed. Now the carefully chosen invariants guarantee that the boundary of
a meridian disk of N(f4) meets ∂V ′ in a single arc. In particular, V = V ′ ∪N(f4) is
also a handlebody (of genus two). Setting W = W ′, this defines a Heegaard splitting
N = V ∪S W . The splitting surface of this Heegaard splitting is a horizontal surface
away from N(f4). And after a small isotopy, S ∩ N(f4) is a collar of f4. Thus S is
pseudohorizontal.

Example 5.7. Let Q be a once punctured torus. Set Mi = Q × S
1 for i = 1, 2.

Partition S
1 into two intervals I1, I2 meeting in their endpoints. Set Vi = Q×I1 ⊂ Mi

12



and Wi = Q × I2 ⊂ Mi. Let Ti = ∂Mi and ci = ∂Q × {point} ⊂ Ti. Identify T1 and
T2 via a homeomorphism so that |c1 ∩ c2| = 1. Then V1 and V2 meet in a (square)
disk, hence V = V1 ∪ V2 is a handlebody. Similarly, W = W1 ∪ W2 is a handlebody.
Set S = ∂V = ∂W , then M = V ∪S W is a Heegaard splitting of M = M1 ∪T1=T2

M2.

Here M is a graph manifold modelled on a graph with two vertices and one edge
connecting the two vertices. Its characteristic submanifold is a collar of T1 = T2.
In the vertex manifolds, S is horizontal. In the edge manifold, S has a very specific
structure.

Definition 5.8. Let M be a generalized graph manifold with characteristic subman-
ifold E . Let M = V ∪S W be a Heegaard splitting. We say that M = V ∪S W is
standard if S can be isotoped so that for each vertex manifold Mv of M , S ∩ Mv is
either horizontal, pseudohorizontal, vertical or pseudovertical and such that for each
edge manifold Me of M , S ∩ Me is characterized by one of the following:

1) Me = (torus)×I or Me = (annulus)×I and, after isotopy, S∩Me is obtained from
a collection of incompressible annuli by ambient 1-surgery along a collection of arcs
each of which is isotopic into (torus)×{point} or (annulus)×{point}, respectively.

2) Me = (torus) × I and there is a pair of simple closed curves c, c′ ⊂ (torus) such
that c ∩ c′ consists of a single point p ∈ (torus) and V ∩ ((torus) × I) is a collar of
(c × {0}) ∪ (p × I) ∪ (c′ × {1}).

6 The active component

In this section we consider a generalized graph manifold W . We show that if M =
V ∪S W is a strongly irreducible Heegaard splitting, then S may be isotoped so that
it is incompressible away from a single vertex or edge manifold of M .

Lemma 6.1. Let M be a generalized graph manifold with characteristic submanifold
T . Let M = V ∪SW be a strongly irreducible Heegaard splitting. Let DV be a collection
of defining disks for V and DW a collection of defining disks for W . There is a vertex
or edge manifold N of M so that, after isotopy, each outermost disk component of
both DV \(T ∩ DV ) and of DW\(T ∩ DW ) lies in N . Moreover, for each vertex or
edge manifold Ñ 6= N , S ∩ Ñ is incompressible.

Proof: Isotope S so that T ∩S consists only of curves essential in both T and S.
Furthermore, assume that the isotopy has been chosen so that |T ∩S| is minimal
subject to this condition. Suppose that D′ is an outermost subdisk of DV \(T ∩ D).
Let N be the vertex or edge manifold of M containing D′. Then either D′ is a disk
in the interior of V or D′ meets an annular component A of V ∩ ∂N . In case of the
latter, ∂D′ meets A in a single arc, a. Let D′′ be the disk obtained by cutting A along
a, adding two copies of D′ and isotoping the result to be a properly imbedded disk in
V . The assumption that |T ∩S| be minimal guarantees that D′′ is an essential disk
in V . Thus in both cases, there is an essential disk properly imbedded in V that lies
in the interior of N , we refer to this disk as D.

Similarly, consider an outermost subdisk of DW\(T ∩ DW ). The above argument
shows that in a vertex or edge manifold N ′ of M , there is an essential disk E properly
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imbedded in W . Since M = V ∪S W is strongly irreducible, D must meet E, hence
the vertex or edge manifold N ′ must coincide with the vertex or edge manifold N .

It follows that for each vertex or edge manifold Ñ 6= N , S ∩ Ñ is incompressible.

Definition 6.2. If M is a generalized graph manifold, with a strongly irreducible
Heegaard splitting M = V ∪S W , then the vertex or edge manifold N as in Lemma
6.1 is called the active component of M = V ∪S W .

7 What happens in the active component?

The possibilities for the active component depend on the type of the active component.
There are five possibilities. We discuss each in turn.

7.1 Seifert fibered vertex manifold with exterior boundary

We first consider the case in which the active component of M = V ∪S W is a vertex
manifold Mv that is a Seifert fibered space and that has exterior boundary. There
are two cases, that in which the characteristic submanifold of M is non empty and
that in which it is empty, i.e., M is Seifert fibered with non empty boundary.

Lemma 7.1. Under these circumstances each exceptional fiber of Mv is a core of
either V or W .

Proof: This is [21, Lemma 4.1], the central argument in [21].

The isotopy performed in [21, Lemma 4.1] takes place within a small regular
neighborhood of a saturated annulus. In particular, the isotopy can here be performed
entirely within Mv. The only requirements on this saturated annulus are that one
boundary component lie on the splitting surface of the Heegaard splitting and the
other wrap around the exceptional fiber. Thus, more generally, i.e., even when Mv

does not have exterior boundary:

Lemma 7.2. Suppose that there is an exceptional fiber f in Mv and an annulus A
such that:

1) One component of ∂A wraps at least twice around f ; and

2) A is embedded away from ∂A ∩ f ; and

3) ∂A\f lies in S.

Then f is a core of either V or W .

Proof: In fact, in the central argument in [21], the existence of a boundary component
is used exclusively to produce such an annulus.

This more general lemma will be used in the next subsection. A consequence of
Lemma 7.1 is that we can make use of the following lemma.
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Lemma 7.3. Suppose that f is an exceptional fiber of Mv and that f is also a core
of V . Then M\η(f) = (V \η(f)) ∪S W is a Heegaard splitting. Furthermore, S ∩
(Mv\η(f)) is vertical or pseudovertical, respectively, if and only if S ∩ Mv is vertical
or pseudovertical, respectively. The same holds if f is a core of W .

Proof: Since f is a core of V , V \η(f) is still a compression body. Thus M\η(f) =
(V \η(f))∪S W is a Heegaard splitting. Conversely, if M\η(f) = (V \η(f))∪S W is a
Heegaard splitting, then (V \η(f))∪N(f) is a compression body. Hence M = V ∪S W
is a Heegaard splitting.

Now by the definition of vertical and pseudovertical, respectively, S ∩ (Mv\η(f))
is vertical or pseudovertical, respectively, if and only if S ∩ Mv is vertical or pseu-
dovertical, respectively. Compare Figures 5 and 7.

Figure 7: Schematic for vertical Heegaard splittings of graph manifold with boundary

Two cases must be considered, that in which the characteristic submanifold of M
is non empty and that in which it is empty, i.e., M is Seifert fibered with non empty
boundary.

Proposition 7.4. Suppose that M is a generalized graph manifold with non empty
characteristic submanifold. Suppose that M = V ∪S W is a Heegaard splitting. Sup-
pose that the active component of M = V ∪S W is a vertex manifold Mv that is a
Seifert fibered space and that has exterior boundary. Then we may isotope the decom-
posing tori, thereby redefining Mv and the edge manifolds for which e is incident to
v slightly, so that after this isotopy, S ∩ Mv is a vertical surface and so that an edge
manifold becomes the active component.

Proof: The proof is by induction on the number of exceptional fibers in Mv. Suppose
first that Mv contains no exceptional fibers. Denote the exterior boundary of Mv by
∂EMv. Let A be a collection of disjoint essential vertical annuli in Mv that cut Mv

into a regular neighborhood of ∂Mv\∂EMv. After an isotopy, S ∩A consists of closed
curves essential in both S and A and in the minimal possible number of such curves.
In particular, after a small isotopy, this intersection consists of regular fibers of Mv.

Now isotope S so that S ∩ N(A) consists of vertical incompressible annuli. Set
M̃v = N(∂EMv) ∪ N(A). Isotope S so that S ∩ M̃v consists of S ∩ N(A) together
with annuli in N(∂EMv)\N(A) that join two components of S ∩ N(A). Isotope any
annuli in S ∩ (Mv\M̃v) that are parallel into ∂M̃v into M̃v. Set ∂EM̃v = ∂EMv.
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Figure 8: Figure 7 after isotopy

Figure 9: Irregularly dashed arcs indicate new decomposing tori

Let T̃ be a component of ∂M̃v\∂EM̃v. Then T̃ is parallel to a decomposing torus
or annulus T . We replace T by T̃ . We may do so via an isotopy. We do this for
all components of ∂M̃v\∂EM̃v. After this process, the conclusions of the proposition
hold.

To prove the inductive step, suppose that f is an exceptional fiber of Mv. Then
by Lemma 7.1, f is a core of either V or W , say of V . The inductive hypothesis in
conjunction with Lemma 7.3 then proves the theorem.

For the remaining case, recall the main theorem of [21] stated in the terminology
used here.

Theorem 7.5. Suppose M is a totally orientable Seifert fibered space with non empty
boundary. Suppose M = V ∪S W is a Heegaard splitting. Then S is pseudovertical.

Proof: This is the main theorem of [21].

7.2 Seifert fibered vertex manifold without exterior bound-

ary

Next we consider the case in which the active component of M = V ∪S W is a vertex
manifold Mv that is a Seifert fibered space and that has no exterior boundary. Part
of the strategy is somewhat reminiscent of the strategy used in the preceding case.
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However, the situation here is more complicated and a more refined strategy must be
used. The refined strategy involves a generalization of Lemma 3.11 to a “spine” of
the vertex manifold.

Definition 7.6. Let Qv be the base orbifold of Mv. A spine for Qv is a 1-complex
Γ1 with exactly one vertex v that cuts Qv into a regular neighborhood of ∂Qv ∪
(exceptional points). A 2-complex of the form Γ2 = p−1(Γ1) is called a spine of
Mv. We denote the 1-manifold p−1(v) by γ.

The following lemma generalizes Lemma 3.11. Though we will only be interested
in this lemma in the case that N is a vertex manifold of a graph manifold, we state
it in very general terms. It applies to a larger class of 3-manifolds than just graph
manifolds.

Lemma 7.7. Let M = V ∪S W be a strongly irreducible Heegaard splitting. Let N
be a totally orientable Seifert fibered submanifold of M that doesn’t meet ∂M . Let Γ2

be a spine of N . Then S may be isotoped so that the following hold:

1) S ∩ Γ2 consists of simple closed curves and simple closed curves wedged together
at points in γ.

2) No closed curve in S ∩ Γ2 bounds a disk in Γ2\S.

Proof: The first part of the assertion follows by general position. To prove the second
assertion, let X be a spine of V and Y a spine of W . Then M\(∂−V ∪X ∪∂−W ∪Y )
is homeomorphic to S × (0, 1). X can’t be disjoint from Γ2. Thus for t near 0,
(S× t)∩Γ2 contains simple closed curves that bound essential disks in V . Y can’t be
disjoint from Γ2 either. Thus for t near 1, (S × t) ∩ Γ2 contains simple closed curves
that bound essential disks in W .

As t increases, (S × t) ∩ Γ2 changes continuously. Since M = V ∪S W is strongly
irreducible, there can be no t such that (S × t) ∩ Γ2 contains simple closed curves
that bound essential disks in V and simple closed curves that bound essential disks in
W . Thus, there is a t0, such that (S × t0) ∩ Γ2 contains no simple closed curves that
bound essential disks in V or W . Any remaining disk components in (S × t0) ∩ Γ2

must be inessential in V or W and can hence be removed via isotopy. The lemma
follows.

Before launching into the two main portions of the argument, we prove an auxiliary
lemma. This lemma is a weak version of a counterpart to Theorem 3.3 in [17].

Figure 10: Schematic for a Heegaard splitting intersecting a solid torus
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Lemma 7.8. Suppose M = V ∪S W is a strongly irreducible Heegaard splitting of a 3-
manifold M . Suppose U ⊂ M is a solid torus such that S intersects ∂U in meridians.
Further suppose that ∂(M\interior(U)) is incompressible in M\interior(U). Then
S ∩ U consists of meridian disks of U and components that are obtained by ambient
1-surgery on pairs of meridian disks along a single arc that joins the two meridian
disks.

Proof: Let s be a component of S ∩ ∂U . A collar of s in S is an annulus A. Lemma
2.6 in [19] states: “Suppose S gives a Heegaard splitting of a 3-manifold M into
compression bodies V and W . Suppose that F ⊂ S is a compact subsurface so that
every component of ∂F is essential in S. Suppose each component of ∂F bounds
a disk in M disjoint from interior(F ). Either ∂F bounds a collection of disks in a
single compression body or M = V ∪S W is weakly reducible.”

Here M = V ∪S W is strongly irreducible. It follows that either s bounds a disk
in S or s bounds a disk in a single compression body, say V . Here ∂(M\interior(U))
is incompressible in M\interior(U). It follows that in case of the former, s bounds
a meridian disk of U in S ∩ U and that in case of the latter, a meridian disk of U
bounded by s lies entirely in V .

Thus either s bounds a meridian disk in S ∩ U or bounds a meridian disk in
the surface obtained by compressing S ∩ U along D. It follows that S ∩ U may be
reconstructed from meridian disks by ambient 1-surgery along a collection of arcs such
that each meridian disk meets at most one endpoint of one of the arcs. In particular,
between two meridian disks there is at most one arc.

Lemma 7.9. Suppose that the active component of M = V ∪S W is a vertex manifold
Mv that is a Seifert fibered space with boundary but no exterior boundary. Then one
of the following holds:

1) We may isotope the decomposing tori, thereby redefining Mv and the edge manifolds
for which e is incident to v slightly, so that after this isotopy, S ∩ Mv is either a
horizontal or vertical incompressible surface and so that an edge manifold becomes
the active component.

Or:

2) S may be isotoped within Mv so that a fiber f of Mv lies in S.

Proof: Let Γ2 be a spine of Mv and isotope S within Mv so that the conclusions of
Lemma 7.7 hold. Three cases need to be considered:

Case 1: A simple closed curve in S ∩ Γ2 can be isotoped to be vertical.

Then S may be isotoped in Mv so that it contains a regular fiber of Mv.

Case 2: No simple closed curve in S ∩ Γ2 can be isotoped to be vertical and in each
solid torus component U of Mv\η(Γ2), S ∩ ∂U consists of meridians.

In this case, after a small isotopy, S∩N(Γ2) is a horizontal incompressible surface.
Furthermore, let U be a component of Mv\η(Γ2). By Lemma 7.8 S ∩ U consists of
meridian disks possibly together with other components that are obtained by ambient
1-surgery on pairs of meridian disks along a single arc that joins the two meridian
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disks. Isotope each such arc out of U , through N(Γ2), avoiding γ, to lie in a component
of N(∂Mv). Then S∩U consists of meridians for each solid torus component of Mv\Γ

2

and all ambient 1-surgeries occur in N(∂Mv).

Let M̃v be the union of N(Γ2) with the solid tori containing the exceptional fibers
of Mv. Then M̃v is a shrunk version of Mv. Note that S ∩ M̃v is a horizontal
incompressible surface. Let T̃ be a component of ∂M̃v. Then T̃ is parallel to a
decomposing torus T . We replace T by T̃ . We may do so via an isotopy. We do this
for all components of ∂M̃v. After this process, the conclusions of the lemma hold.

Case 3: No simple closed curve in S ∩Γ2 can be isotoped to be vertical and there is a
solid torus component U of Mv\η(Γ2) such that S∩∂U does not consist of meridians.

The argument in this case is given, for instance, in Proposition 1.1 of [2]. For
completeness we povide a sketch of an argument more in line with the ideas used here.
In this case there is a possibly singular annulus A between a component of S ∩ ∂U
and the exceptional fiber f in U . If A is not singular, then A describes an isotopy of
S after which f lies in S. If A is singular, then A satisfies the hypotheses of Lemma
7.2. Thus f is a core of either V or W . I.e., S is the splitting surface for a Heegaard
splitting of M\η(f). But then Proposition 7.4 applies to Mv\η(f) and we may isotope
the decomposing tori, thereby redefining Mv and the edge manifolds for which e is
incident to v slightly, so that after this isotopy, S ∩ Mv is a vertical incompressible
surface and so that an edge manifold becomes the active component.

Lemma 7.10. Suppose that the active component of M = V ∪SW is a vertex manifold
Mv that is a Seifert fibered space with boundary but no exterior boundary. Suppose
further that a fiber f of Mv lies in S. Then one of the following holds:

1) We may isotope the decomposing tori, thereby redefining the active component Mv

and the edge manifolds for which e is incident to v slightly, so that after this isotopy,
S ∩Mv is a vertical incompressible surface and so that an edge manifold becomes the
active component.

Or:

2) S ∩ Mv is pseudohorizontal.

Proof: Consider a small regular neighborhood N(f) of f such that S∩N(f) is a collar
A of f . Compress S as much as possible in Mv\η(f) to obtain an incompressible
surface S∗ ⊂ M\η(f). By Haken’s Theorem, each compressing disk can be chosen
to lie entirely on one side of S. Since M = V ∪S W is strongly irreducible, all
compressions must have been performed to one side of S. It follows that S∗ lies
either in V or in W . There are three options for S∗ ∩ Mv:

Case 1: S∗ ∩ (Mv\η(f)) contains an annulus that is parallel into ∂N(f).

Note that S∩N(f) is also parallel into ∂N(f). Thus S∩Mv = (S∗∩(Mv\η(f)))∪
(S ∩ N(f)) contains a torus bounding a solid torus in either V or W . Furthermore,
f lies on the boundary of this solid torus and meets a meridian disk once. After a
small isotopy, f is a core of the solid torus. Thus f is a core of either V or W . But
then Proposition 7.4 applies to Mv\η(f) and we may isotope the decomposing tori,
thereby redefining Mv and the edge manifolds for which e is incident to v slightly, so
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that after this isotopy, S ∩ Mv is vertical and so that an edge manifold becomes the
active component.

Case 2: S∗ ∩ (Mv\η(f)) is vertical.

If S∗ ∩ (Mv\η(f)) is not boundary parallel, then it is essential and can’t be con-
tained in V or W . This is a contradiction, hence this case does not occur.

Case 3: S∗ ∩ (Mv\η(f)) is horizontal.

Then (S∗ ∩ (Mv\η(f)))∪ (S ∩N(f)) is pseudohorizontal, but we must show that
in fact S ∩ Mv = (S∗ ∩ (Mv\η(f))) ∪ (S ∩ N(f)).

Since ∂A has two components there are two, necessarily parallel, components
of S∗ ∩ (Mv\η(f)). Moreover, since A is parallel into ∂U in both directions, each
component of Mv\S

∗ is homeomorphic to (punctured surface) × (0, 1).

Suppose now that S∗ lies in, say, V . Denote the component of M\S∗ that meets
W by Ŵ . Then S defines a Heegaard splitting of Ŵ . Let D be a set of disks in the
interior of Mv that cut Ŵ ∩ Mv into a collar of the annuli Ŵ ∩ ∂Mv. By Haken’s
Theorem, each such disk can be isotoped to intersect S in a single circle. We may
assume that after this isotopy, D still lies in the interior of Mv.

Here S may be reconstructed by performing ambient 1-surgery on S∗ along arcs in
Ŵ . But this collection of arcs is disjoint from D. Thus all such arcs may be isotoped
into edge manifolds Me such that e is incident to v. Note that an edge manifold that
contains such an arc becomes the active component. Also note that after this isotopy,
the portion of S remaining in Mv is pseudohorizontal.

If a surface is pseudohorizontal, then it is boundary compressible. In particular,
it lives in the active component. Hence the existence of such arcs contradicts Lemma
6.1. Thus S ∩ Mv = (S∗ ∩ (Mv\η(f))) ∪ (S ∩ N(f)).

7.3 Vertex manifold not Seifert fibered

Next we consider the case in which the active component of M = V ∪S W is a vertex
manifold Mv that is homeomorphic to (compact orientable surface)×I. The strategy
here is an adaptation of the argument in the preceeding case. Though the setup here
is much simpler.

Definition 7.11. Let Q be a compact surface with non empty boundary. A spine of
Q is a 1-complex Γ1 with exactly one vertex v that cuts Q into a regular neighborhood
of ∂Q. A 2-complex of the form Γ2 = Γ1 × I is called a spine of Q × I. We denote
the 1-manifold v × I by γ.

The following lemma is another generalization of Lemma 3.11. We will only be
interested in this lemma in the case that N is a vertex manifold of a graph manifold,
but again we state it in very general terms. It too applies to a larger class of 3-
manifolds than just generalized graph manifolds.

Lemma 7.12. Let M = V ∪S W be a strongly irreducible Heegaard splitting. Sup-
pose N is a submanifold of M homeomorphic to (compact surface) × I such that
(compact surface) × ∂I ⊂ ∂M . Let Γ2 be a spine of N . Then S may be isotoped so
that the following hold:
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1) S ∩ Γ2 consists of simple closed curves and simple closed curves wedged together
at points in γ.

2) No closed curve in S ∩ Γ2 bounds a disk in Γ2\S.

The proof of this lemma is identical to the proof of Lemma 7.7.

Lemma 7.13. Suppose that the active component of M = V ∪SW is a vertex manifold
Mv that is homeomorphic to (compact orientable surface)× I. Then we may isotope
the decomposing annuli, thereby redefining the active component Mv and the edge
manifolds for which e is incident to v slightly, so that after this isotopy, S ∩ Mv is
a horizontal incompressible surface and so that an edge manifold becomes the active
component.

Proof: Let Γ2 be a spine of Mv and isotope S within Mv so that the conclusions of
Lemma 7.12 hold. Then S ∩ Γ2 consists of horizontal curves. Here S ∩ N(Γ2) is a
bicollar of S ∩ Γ2 and hence a horizontal incompressible surface.

Let M̃v be N(Γ2). Let Ã be a component of ∂M̃v\∂Mv. Then Ã is parallel to
a decomposing annulus A. We replace A by Ã. We may do so via an isotopy. We
do this for all components of ∂M̃v\∂Mv. After this process, the conclusions of the
lemma hold.

7.4 Edge manifold homeomorphic to (annulus) × I

Now we consider the case in which the active component of M = V ∪S W is an edge
manifold Me homeomorphic to (annulus) × I. This case turns out to be a direct
application of the following theorem of Marty Scharlemann:

Theorem 7.14. Suppose M = V ∪SW is a strongly irreducible Heegaard splitting and
U ⊂ M is a solid torus such that S intersects ∂U in parallel essential non meridional
curves. Then S intersects U in a collection of boundary parallel annuli and possibly
one other component, obtained from one or two annuli by ambient 1-surgery along an
arc parallel to a subarc of ∂U . If the latter sort of component is in U , then S\U is
incompressible in M\U .

Proof: This is Theorem 3.3 in [17].

The following proposition is stated in general terms. Our interest in this theorem
will be the case in which A× I is an edge manifold. Since A× I is a solid torus, this
proposition follows directly from Scharlemann’s Theorem (Theorem 7.14).

Proposition 7.15. Suppose A × I is an imbedding of (annulus) × I in the interior
of M with A × {point} essential in M . Further suppose that M = V ∪S W is a
strongly irreducible Heegaard splitting. If both components of S ∩ (A × ∂I) consist of
curves essential in both S and (A × ∂I), then S ∩ (A × I) is isotopic to a collection
of incompressible annuli and possibly one other component, obtained from two annuli
by ambient 1-surgery along an arc parallel to a subarc of A × {point}.

The following definition clarifies the statement of Proposition 7.15.
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Definition 7.16. Let A be an annulus and let N = A × I. A spanning annulus for
N is an annulus of the form c × I, for c an essential curve in A. Similarly, let T be
a torus and N = T × I. A spanning annulus for N is an annulus of the form c × I,
for c an essential curve in T .

Each of the incompressible annuli mentioned in Proposition 7.15 is either a span-
ning annulus or is parallel into A× ∂I. In Figure 11 we see two isotopic possibilities.
Note that the tube we see on the left hand side is actually “dual” to the tube we see
on the right hand side.

The tube on the left hand side could (after straightening out the picture) be seen
as ambient 1-surgery along an arc parallel to a subarc of {point}× I (a vertical arc).
In this case the the tube on the right hand side would be seen as ambient 1-surgery
along an arc parallel to a subarc of A × {point} (a horizontal arc).

Figure 11: Two isotopic possibilities

7.5 Edge manifold homeomorphic to (torus) × I

Next we consider the case in which the active component of M = V ∪S W is an
edge manifold Me homeomorphic to (torus)× I. The theorem proven here applies in
very general contexts. The techniques used are those developed by Rubinstein and
Scharlemann in [16].

The use of these techniques is inspired by Cooper and Scharlemann’s application
of the central argument in [16] to the setting of Heegaard splittings of solvmanifolds
in [6, Theorem 4.2]. The arguments in this section are identical to the argument in [6,
Theorem 4.2]. We weaken one of the hypotheses slightly. In addition, in the setting
here, there are no constraints on S ∩ (T × ∂I). In [6] a constraint arises due to the
fact that in a solvmanifold the two components of T × ∂I are identified. This means
that some scenarios that arise in the argument for [6, Theorem 4.2] can be ruled out
there. But they can’t be ruled out here. Thus our conclusions are slightly different.

The argument is rather lengthy. The reader is referred to [6] for a sketch and to
[16] for details.

We recall some fundamentals concerning the Rubinstein-Scharlemann graphic.
Let ΣV be a spine of V and ΣW a spine of W . Then M\(∂−V ∪ ΣV ∪ ∂−W ∪ ΣW ) is
homeomorphic to S × I. This product foliation is called a sweepout. If S intersects
a product submanifold N = Q × I of M then to each point (s, t) in I × I we may
associate Ss = S × {s} and Qt = Q × {t}. We are interested in Ss ∩ Qt.
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After a small isotopy, we may assume that the spines and the sweepout are in
general position with respect to the foliation of Q× I. There is then a 1-dimensional
complex Γ in I × I called the Rubinstein-Scharlemann graphic. See Figure 12. At
a point (s, t) away from Γ, Ss and Qt are in general position. On an edge of Γ the
surfaces Ss and Qt have a single point of tangency. At a vertex of Γ there are either
two points of tangency or a “birth-death” singularity.

Figure 12: The Rubinstein-Scharlemann graphic

For (s, t) in a region of (I × I)\Γ, Ss ∩Qt is topologically rigid. If there is a curve
c in Ss ∩Qt that is essential in Ss but bounds a disk in Qt that lies in V near c, then
we label the region V . Similarly, if there is a curve c′ in Ss ∩ Qt that is essential in
Ss but bounds a disk in Qt that lies in W near c, then we label the region W .

We summarize some of the insights from [16]:

Remark 7.17. If a region R is labelled V , then for (s, t) ∈ R the curve c in Ss ∩ Qt

that is essential in Ss and bounds a disk in Qt that lies in V near c also bounds a disk
that lies entirely in V . The equivalent statement holds for the label W . (This is [16,
Lemma 4.3].)

This fact has the following immediate consequences.

Remark 7.18. If a region is labelled both V and W , then M = V ∪S W is weakly
reducible. (This is [16, Corollary 4.4].)

Remark 7.19. If for some s ∈ (0, 1) and some t0, t1 ∈ (0, 1) there is a region labelled
V containing (s0, t0) and a region labelled W containing (s0, t1), then M = V ∪S W
is weakly reducible.

Remark 7.19 is not explicitly stated in [16] but follows immediately from the
definitions and Remark 7.17. Indeed, the labelling in the region containing (s0, t0)
gives an essential disk to one side of Ss0

and the labelling in the region containing
(s0, t1) gives an essential disk to the other side of Ss0

. The boundaries of these disks
are contained in Qt0 and Qt1 respectively. As Qt0 and Qt1 are disjoint, the boundaries
of these disks are disjoint. Hence M = V ∪S W is weakly reducible.

More subtle facts are the following:

Remark 7.20. The labels V and W cannot both appear in regions adjacent along an
edge. (This is [16, Corollary 5.5].)
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Notice that for small s, Ss∩(Q×I) is the boundary of a small regular neighborhood
of ΣV ∩ (Q × I). If the leaves of the foliation of Q × I are essential, then ΣV can’t
miss any such leaf. Similarly for ΣW . Thus we have the following:

Remark 7.21. If the leaves of the foliation of Q × I are essential in M , then every
region of (I × I)\Γ abutting the left edge of I × I is labelled V . Every region of
(I × I)\Γ abutting the right edge of I × I is labelled W .

As a warm up in the application of these principles, we prove the following lemma:

Lemma 7.22. Suppose that N = Q × I is a product submanifold of M . Suppose
further that M = V ∪S W is a strongly irreducible Heegaard splitting. Let Γ be the
Rubinstein-Scharlemann graphic and suppose there is a vertex (s0, t0) of Γ with the
following properties:

1) Four regions meet at (s0, t0).

2) One region is labelled V and one region is labelled W .

Then the following hold:

A) The other two regions abutting (s0, t0) are unlabelled.

B) The regions labelled V and W lie opposite each other.

C) The graph G = Ss0
∩Qt0 in Qt0 contains a connected subgraph G̃ with two vertices

v1, v2, each of valence 4.

D) If an edge e of G has both ends on the same vertex v then e ∪ v is an essential
circle in Qt0 .

E) G̃ is not contractible in Qt0 .

Proof: Observations A and B follow directly from Remark 7.20. Recall that each
edge signifies a tangency between Ss0

and Qt0 . If the tangency corresponds to a
maximum or minimum, then the labelling of adjacent regions does not change as the
edge is traversed. So here the tangencies corresponding to edges must arise from
saddle singularities.

It follows that Ss0
∩ Qt0 consists of a graph G in Qt0 that has two valence four

vertices. In the four regions abutting (s0, t0) the valence four vertices break apart in
four possible combinations. See Figure 13.

Suppose the two valence four vertices of G lie on distinct components G̃1, G̃2 of G.
As G̃1, G̃2 break apart as in Figure 13, the curves arising from G̃1 remain disjoint from
the curves arising from G̃2. Furthermore, the curves arising from G̃1 are identical in
the regions North and East and in the regions West and South. The curves arising
from G̃2 are identical in the regions North and West and in the regions East and
South. It follows that one of the components, say G̃1, must give rise to the labelling
V and the other component, say G̃2, must give rise to the labelling W . But then two
adjacent regions, say the regions North and East, are labelled V . A contradiction.
Thus C holds.

Denote the vertices by v1 and v2. Suppose that e has both ends on v1 and that
v1 ∪ e is inessential. Then there will be two adjacent regions, say the regions North
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North

South

West

East

Figure 13: How Ss meets Tt in the four regions North, East, West and South meeting
(s0, t0)

and East, in which this monogon gives rise to a simple closed curve. Since one of
the regions, say North, is labelled, say V , this simple closed curve must give rise to
a labelling V . But then it gives rise to this labelling in both the region North and in
the region East. A contradiction. Hence D holds.

Finally, suppose G̃ is contractible in Qt0 . By D, each edge has endpoints on
distinct vertices. Thus G̃ is as in Figure 14. Hence in the regions North, East, West
and South of (I×I)\Γ we see components of intersection of Ss∩Qt in Qt as in Figure
15.

Figure 14: G̃ is contractible

Figure 15: The regions North, East, West and South

The curves of intersection pictured are the ones giving rise to the labellings. Note
that if the circles pictured in East and West give rise to labellings, then they give rise
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to the same labelling. Hence these regions must both be unlabelled. It follows that
North and South are the labelled regions. If the larger circle pictured in North gives
rise to a labelling, then this labelling coincides with the labelling arising from the
circle(s) pictured in South. But this is impossible. Thus the smaller circle pictured
in North gives rise to the labelling. We may assume that it gives rise to the label V .

Let (s, t) ∈ North. Denote the annulus cut out by the two circles in North by Ã.
Denote the disk cut out by the inner circle by D̃. By Remark 7.17 we may assume
that D̃ ⊂ V . Denote the outer component of ∂Ã by c and the inner component by
c′. Since c′ gives rise to a labelling, c′ is essential in Ss. Since c does not give rise
to a labelling, c is inessential in Ss. Let D ⊂ Ss be the disk bounded by c. We may
assume that this disk is disjoint from c∪c′. After a small isotopy, Ã∪D is an essential
disk in W . But here ∂(Ã ∪ D) = ∂D̃. So M = V ∪S W is reducible. But this is
impossible. Thus G̃ is not contractible in Qt0 . Hence E holds.

The following proposition gives the required information concerning the intersec-
tion of a strongly irreducible Heegaard splitting with an edge manifold homeomorphic
to (torus) × I when this edge manifold is the active component.

Proposition 7.23. Suppose T × I is an imbedding of (torus) × I in the interior of
M with T × {t} essential in M . Further suppose that M = V ∪S W is a strongly
irreducible Heegaard splitting. If S ∩ (T × ∂I) consist of curves essential in both S
and (T × ∂I), then S ∩ (T × I) is characterized by one of the following:

1) S ∩ (T × I) is isotopic to a collection of incompressible annuli and possibly one
other component, obtained from two such annuli by ambient 1-surgery along an arc
parallel to a subarc of T × {point}.

2) There is a pair of simple closed curves c, c′ ⊂ T such that c∩ c′ consists of a single
point p ∈ T and V ∩ (T × I) is a collar of (c × {0}) ∪ (p × I) ∪ (c′ × {1}).

Proof: Consider the regions of (I × I)\Γ abutting I ×{0}. Since S ∩ (T × ∂I) consist
of curves essential in both S and (T × ∂I) there must be an unlabelled such region.
We call this region R0. Similarly, there must be an unlabelled region, which we call
R1, that abuts I × {1}. Because of the conditions on S ∩ (T × ∂I) we may assume
that for (s, t) in R0 or R1, Ss ∩ Tt consists of curves essential in both Ss and Tt. We
are interested in monotone paths from R0 to R1.

Our argument breaks into two cases: Either there is a path in I × I from R0 to
R1 that avoids labelled regions or there is no such path.

Case 1: There is a path beginning in R0 and ending in R1 that traverses only unla-
belled regions and edges between such regions. See Figure 16.

It follows from Remark 7.19 that there is a monotone path α beginning in R0 and
ending in R1 that traverses only unlabelled regions and edges between such regions.

Consider the effect of traversing an edge e from one unlabelled region of (I × I)\Γ
to another. Since compression bodies do not contain essential surfaces, Ss ∩ Tt must
contain curves essential in Ss. For (s, t) in an unlabelled region, such curves must also
be essential in Tt. We may thus refer to curves inessential in both Ss and Tt simply
as inessential and to curves essential in both Ss and Tt simply as essential.
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Figure 16: A monotone path through unlabelled regions

As α crosses e, the components of intersection of Ss ∩ Tt change in the same way
that level curves change, as we rise from being below to being above a maximum,
minimum or saddle point. If the point of tangency corresponding to e corresponds
to a maximum or minimum, then an inessential curve appears or disappears. If the
point of tangency corresponds to a saddle singularity, then either one curve is banded
to itself or two curves are banded together. Note that Ss ∩ Tt is separating in Tt,
hence the essential curves come in pairs parallel in Tt. Thus if a curve is banded to
itself, then any resulting essential curves are parallel, in Tt, to other essential curves.
If two essential curves are banded to each other, then an inessential curve results, but
essential curves must remain. In both cases, the slope, in Tt, of the essential curves
is unaffected, as t increases.

Since α is monotone, we obtain a function f : I → I by requiring f(t) to be the
value s such that (s, t) is in the image of α. We may now isotope S ∩ (T × I) by
isotoping S ∩ (T ×{t}) to Sf(t) ∩ Tt for each t ∈ I. Thus α describes an isotopy of S.
We will assume in the following that this isotopy has been performed. The preceding
paragraph tells us how S ∩ (T × {t}) changes as t increases. We must reconstruct
S ∩ (T × I) from these level sets.

As α traverses an unlabelled region, the curves of intersection S∩Tt sweep out an-
nuli. As α crosses an edge corresponding to a tangency corresponding to a maximum
or minimum an inessential curve appears or disappears. If such a curve appears, this
indicates the appearance of a disk. If such a curve disappears, this indicates that an
inessential curve is capped off by a disk. Note that since there are no disks for t = 0
or for t = 1, these disks merely cap off inessential curves. Converserly, inessential
curves are always capped off by such disks.

Suppose that α crosses an edge corresponding to a tangency corresponding to a
saddle point at (s0, t0). If an inessential curve is banded to itself, then there are two
possibilities:

1) Two inessential curves result. These curves are nested in Tt0+ε. However, one
of these inessential curves lies in the subdisk of S bounded by the other. Hence
the appearance of the new inessential curve does not indicate the appearance of
another disk. The appearance of the new inessential curve mereley indicates a saddle
singularity, with respect to projection onto t, in the imbedding of a single disk. Thus
we may ignore this phenomenon.

2) Two essential curves result. Since the inessential curve bounds a disk in S, the
components of S ∩ Tt affected piece together to form an annulus that is parallel into
Tt0+ε.
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If an essential curve is banded to itself, then either one essential curve or one
inessential and one essential curve result. But the first possibility can’t occur here,
because here S∩Tt is separating for all t. Thus one inessential and one essential curve
result. The inessential curve bounds a disk in S. Hence the appearance of the new
inessential curve mereley indicates a saddle singularity, with respect to projection
onto t, in the imbedding of an essential annulus. Thus we may again ignore this
phenomenon.

Finally, suppose that a pair of essential curves disappears as two essential curves
are banded to each other to produce an inessential curve. The inessential curve
bounds a disk in S. Thus the components of S ∩ Tt affected piece together to form
an annulus that is parallel into Tt0−ε.

Since there are no inessential curves for t = 0 or t = 1, we see that, after further
isotopies, S ∩ (T × I) consists of spanning annuli and annuli parallel into T × ∂I.

Case 2: There is no path beginning in R0 and ending in R1 that traverses only
unlabelled regions and edges between such regions. See Figure 17.

Figure 17: A monotone path through unlabelled regions

In this case the regions of (I × I)\Γ labelled V extending from the left edge of
I × I must meet the regions of (I × I)\Γ labelled W extending from the right edge of
I × I. By Remark 7.20 this can only happen at a vertex. Thus Lemma 7.22 applies.

We consider G̃ as in C) of Lemma 7.22. Denote the vertices by v1, v2 and the
edges by e1, e2, e3, e4. Suppose first that one edge, say e1 has both ends on v1. Then
since G̃ is connected, and since v1 and v2 have valence four, there must be exactly
two edges e2, e3, each with one end on v1 and one end on v2. It follows that e4 must
have both ends on v2. By Lemma 7.22 both v1 ∪ e1 and v2 ∪ e4 are essential. Since
these curves lie on a torus, they are parallel. The other possibility is that all edges
have one end on v1 and one end on v2.

Subcase 2.1: e1 has both ends on v1, e4 has both ends on v4 and e2 and e3 are parallel.

Here G̃ is as in Figure 18:

This implies that as v0 is crossed going from one unlabelled region to another,
S ∩ Tt changes as in Figure 19:

But this corresponds to the addition of a 1-handle. The core of the 1-handle can
be isotoped into Tt0 . Since there are essential disks for both V and W cut out by G̃,
S\(T × [t0 − ε, t0 + ε]) is incompressible in M\(T × [t0 − ε, t0 + ε]). In particular, we
may assume that S ∩ (T × {t0 − ε, t0 + ε}) consists of curves essential in S and in
Tt0±ε. This implies that S ∩ (T × [t0 − ε, t0 + ε]) is as described in option 1).
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Figure 18: G̃ contains a bigon

Figure 19: Adding a 1-handle

To see that option 1) holds for all of S ∩ (T × I), note that S ∩ ((T × I)\(T ×
[t0 − ε, t0 + ε])) consists of incompressible annuli. Spanning annuli merely extend
components of S∩(T × [t0−ε, t0 +ε]). Annuli parallel into Tt0±ε create annuli parallel
into T × ∂I unless they meet the compressible component of S ∩ (T × [t0 − ε, t0 + ε]).

The question is thus merely whether the ends of the compressible component of
S ∩ (T × [t0 − ε, t0 + ε]) meet spanning annuli or annuli parallel into Tt0±ε. There are
a number of possibilities. But all possibilities are either as described in option 1) or
lead to a contradiction, by implying that S is stabilized. Some options are pictured
in in Figure 20, Figure 21, Figure 22.

Figure 20: Compressible component meets annulus parallel into Tt0±ε

Subcase 2.2: e1 has both ends on v1, e4 has both ends on v4 and e2 and e3 are not
parallel.

Here G̃ is as in Figure 23.

This implies that as v0 is crossed going from one unlabelled region to another,
S ∩ Tt changes as in Figure 24:

Thus S∩T ×[t0−ε, t0+ε] consists of spanning annuli together with one component
that is obtained as follows: an annulus that is parallel into Tt0±ε is tubed to a spanning
annulus. This is precisely the type of compressible component that arises in Case 2.1
if an annulus parallel into Tt0−ε is attached to one end of the compressible component
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Figure 21: Another stabilized possibility

Figure 22: Two isotopic possibilities

and one end of a spanning annulus. Thus as in Case 2.1, all unstabilized configurations
involving S ∩ T × [t0 − ε, t0 + ε] are as described in option 1).

Subcase 2.3: All edges have one end on v1 and the other on v2.

Note that S is separating. This induces a bicoloring of Tt0\S. Such a bicoloring
is not possible if two edges are parallel. This forces G̃ to be as in Figure 25:

This implies that as v0 is crossed going from one unlabelled region to another,
S ∩ Tt changes as in Figure 26:

In particular, S ∩ T × [t0 − ε, t0 + ε] is as in option 2). Again, S ∩ ((T × I)\(T ×
[t0 − ε, t0 + ε])) consists of incompressible annuli. If an end of S ∩ T × [t0 − ε, t0 + ε]
meets an annulus that is not isotopic to a spanning annulus, then both ends meet
this annulus. But this would imply that S ∩ (T × I) is disconnected. Hence the ends
of S ∩ T × [t0 − ε, t0 + ε] meet spanning annuli and S ∩ (T × I) is as in option 2). See
Figure 26.

Figure 23: G̃ contains a triangle (dashed arc included along with G̃ to indicate that
a bicoloring, as required, is possible)
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Figure 24: Adding an “essential” 1-handle

Figure 25: G̃ contains a square

8 Fitting the pieces together

We here prove the main theorem. As it turns out, the hard work is already done. It
remains to fit the results together.

In the following, we will assume that the characteristic submanifolds of our graph
manifolds and generalized graph manifolds are non empty. Graph manifolds with
empty characteristic submanifolds are Seifert fibered spaces. The corresponding re-
sult for Seifert fibered spaces was obtained by Y. Moriah and the author in [13]
together with [21] and [22]. Generalized graph manifolds with empty characteris-
tic submanifolds are either Seifert fibered spaces or product manifolds of the form
(surface) × I. The corresponding result for such manifolds was obtained by M.
Scharlemann and A. Thomspon in [19].

Theorem 8.1. Suppose M is a totally orientable generalized graph manifold. If
M = V ∪S W is a strongly irreducible Heegaard splitting, then M = V ∪S W is
standard.

More specifically, let E be the characteristic submanifold of M . Then S can be
isotoped so that for each vertex manifold Mv of M , S ∩ Mv is either horizontal,
pseudohorizontal, vertical or pseudovertical and such that for each edge manifold
Me = (annulus) × I, or Me = (torus) × I respectively, S ∩ Me is characterized
by one of the following:

Figure 26: Another way of adding a 1-handle
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1) After isotopy, S ∩ Me is obtained from a collection of incompressible annuli by
ambient 1-surgery along arcs each of which is parallel into (annulus) × {point}, or
(torus) × {point}, respectively.

2) Me = (torus) × I and there is a pair of simple closed curves c, c′ ⊂ (torus) such
that c ∩ c′ consists of a single point p ∈ (torus) and V ∩ ((torus) × I) is a collar of
(c × {0}) ∪ (p × I) ∪ (c′ × {1}).

Proof: If E = ∅, then S is either pseudohorizontal or pseudovertical, by the main
theorems of [19], [13], [21] and [22]. Thus we may assume in what follows that E 6= ∅.

Let T be the collection of decomposing annuli and tori. Let N be a component
of M\T . By Lemma 6.1, S ∩ N is incompressible unless N is the active component.
Thus if N is not the active component, then S ∩ N is as required. Specifically, if
N is a vertex manifold, S ∩ N is either horizontal or vertical. And if N is an edge
manifold, then S ∩ N consists of incompressible annuli.

If N is the active component, we must consider the possibilities: If N is a vertex
manifold that is Seifert fibered and has non empty external boundary then Proposition
7.4 applies. If N is a vertex manifold that is a product, then Lemma 7.13 applies. Thus
in these two cases, we may rechoose the decomposing annuli or tori so that an edge
manifold becomes the active component. Similarly, if N is vertex manifold that is a
Seifert fibered space with no external boundary, then either S∩N is pseudohorizontal,
or we may rechoose the decomposing tori so that an edge manifold becomes the active
component.

Finally, if N is an edge manifold, then S ∩ N is as required by Proposition 7.15
and Proposition 7.23.

Now the main theorem follows from Theorem 8.1 along with the constructions of
untelescoping and amalgamation. Recall Theorem 3.10 which states that, given an
irreducible Heegaard splitting, the amalgamation of the weak reduction of this Hee-
gaard splitting yields the original Heegaard splitting. To prove the main theorem,
we must hence merely consider the result of amalgamating strongly irreducible Hee-
gaard splittings of generalized graph manifolds. Therebey, we reconstruct all possible
Heegaard splittings of a graph manifold.

Proof: (of Theorem 1.1) If E = ∅, then S is either pseudohorizontal or pseudovertical,
by the main theorems of [13], [21] and [22]. Thus we may assume in what follows
that E 6= ∅.

Consider the irreducible Heegaard splitting M = V ∪S W . Let M = (V1 ∪S1

W1) ∪F1
· · · ∪Fn−1

(Vn ∪Sn
Wn) be a weak reduction of M = V ∪S W . Denote the

decomposing tori by T . By Lemma 4.2, ∪iFi can be isotoped, so that for each vertex
manifold Mv of M , Fi ∩ Mv is either horizontal or vertical and so that for each edge
manifold Me, Fi∩Me is incompressible. If we assume that the number of components
of intersection of ∪iFi with the decomposing tori is minimal, then ∪iFi intersects an
edge manifold (torus) × I either in annuli of the form (essential curves) × I or in
tori of the form (torus) × {point}.

Consider the result of cutting M along ∪iFi. When we cut along a component
of ∪iFi of the form (torus) × {point} in an edge manifold we obtain a collar on a
boundary component of an adjacent Seifert fibered vertex manifold. Recall that we

32



may ignore this collar by choosing a foliation of this collar by circles that is compatible
with the fibration of the Seifert fibered vertex manifold.

Thus a 3-manifold Mi = Vi ∪Si
Wi cut out from M by Fi−1 ∪ Fi is a totally

orientable generalized graph manifold. Furthermore, Mi = Vi ∪Si
Wi is a strongly

irreducible Heegaard splitting of this totally orientable generalized graph manifold.
By Theorem 8.1, Mi = Vi ∪Si

Wi is standard.

Let Nv be a vertex manifold of M . We consider the result of the amalgamation
of the standard Heegaard splittings of the Mi while restricting our attention to Nv.
There are two possibilities:

Case 1) For each i, Mi ∩ Nv is either empty or a Seifert fibered space.

Suppose first that here Nv ⊂ Mi0 for some i0. Then Nv is a vertex manifold
of Mi0 . Thus by Theorem 8.1, Si0 ∩ Nv is horizontal, pseudohorizontal, vertical or
pseudovertical. Since Nv ⊂ Mi0 , S ∩ Nv = Si0 ∩ Nv, i.e., S ∩ Nv is unaffected by the
process of amalgamation. Thus S ∩ Nv is horizontal, pseudohorizontal or vertical.

If it is not the case that Nv ⊂ Mi0 for some i0, then set N i
v = Mi∩Nv and observe

that N i
v is a vertex manifold of Mi with non empty exterior boundary. Thus, by

Proposition 7.4 and Theorem 7.5, for all i, Si ∩ N i
v is vertical or pseudovertical.

During amalgamation of Heegaard splittings, vertical surfaces are either unaffected
or identified. But they remain vertical, see Figure 27.
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Figure 27: Local picture of amalgamation of vertical Heegaard splittings

To consider what happens to pseudovertical surfaces, recall that a pseudovertical
surface is obtained by performing ambient 1-surgery on vertical surfaces along arcs
with certain properties. Hence the result of amalgamating pseudovertical surfaces
can be obtained by first amalgamating the vertical surfaces and then performing the
ambient 1-surgeries. One must merely ensure that the endpoints of the arcs along
which the ambient 1-surgeries are to take place do not coincide. See Figure 28.
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Figure 28: Local picture of amalgamation of pseudovertical Heegaard splittings
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Thus S ∩ Nv is vertical or pseudovertical.

Case 2) For each i, Mi∩Nv is either empty or homeomorphic to (compact surface)×I.

Again, set N i
v = Mi ∩ Nv. By Lemma 7.13, S ∩ N i

v is horizontal for all i. Dur-
ing amalgamation of Heegaard splittings, horizontal surfaces are either unaffected or
identified. But they remain horizontal. Thus S ∩ Nv is horizontal. See Figure 29.
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Figure 29: Local picture of amalgamation of horizontal Heegaard splittings

Let Ne be an edge manifold of M . We consider the result of the amalgamation of
the standard Heegaard splittings of the Mi while restricting our attention to Ne.

If Ne ⊂ Mi0 for some i0, then S ∩ Ne = Si0 ∩ Ne. Here Si0 ∩ Ne is as required.
Thus S ∩ Ne is as required.

Suppose it is not the case that Ne ⊂ Mi0 for some i0. Again, set N i
e = Mi ∩ Ne.

There are two cases:

Case 1) Each N i
e is either empty or is an edge manifold of Mi homeomorphic to

(annulus) × I.

In this case, by Proposition 7.15, for all i, Si ∩ N i
e is isotopic to a collection of

incompressible annuli and possibly one other component, obtained from two such
annuli by ambient 1-surgery along an arc parallel to a subarc of A × {point}. The
amalgamation of Heegaard splittings creates a surface in Ne that is obtained from a
collection of incompressible annuli by ambient 1-surgery along arcs each of which is
parallel to a subarc of (torus) × {point}. See Figure 30 and Figure 31. Thus S ∩ Ne

is as required.

1-surgery
arc for ambient

1-surgery
arc for ambient

incompressible
annulus

1-surgery
arc for ambient

incompressible
annulus

1-surgery
arc for ambient

annulus
incompressible

boundary

Figure 30: Local picture of amalgamation of Heegaard splittings
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Figure 31: Local picture of amalgamation of Heegaard splittings

Case 2) Two N i
e are collars of external boundary components of Seifert fibered vertex

manifolds.

In this case, if all other N i
e are empty, consider the effect of amalgamation in

Example 5.5. See Figure 4. Then after an isotopy as in Figure 5, S ∩ Ne consists of
incompressible annuli. Hence S ∩ Ne is as required.

Denote the two N i
e that are collars of external boundary components of Seifert

fibered vertex manifolds by N 1
e and N2

e . Furthermore, denote the Seifert fibered
vertex manifolds of which N 1

e and N2
e are collars by M 1 and M2, respectively. Here,

possibly, M1 = M2.

Now note that there might also be N i
e homeomorphic to (torus) × I. The main

theorem in [19] states that there are two irreducible Heegaard splittings for (torus)×I.
One, called type I, has a splitting surface isotopic to (torus) × {point}. The other,
called type II, has a splitting surface obtained from two parallel such surfaces by
ambient 1-surgery along an arc that is parallel into {point} × I.

If Mi0 is homeomorphic to (torus)× I and Mi0 = Vi0 ∪Si0
Wi0 is a type I Heegaard

splitting, then amalgalgamating Mi0 = Vi0 ∪Si0
Wi0 and Mi1 = Vi1 ∪Si1

Wi1 just gives
us back Mi1 = Vi1 ∪Si1

Wi1 . Thus, we will assume in what follows that none of the
N i

e’s has a type I Heegaard splitting. But note that since we may choose the foliation
of the N i

e’s as we wish, in particular, we may choose it to match up with one of the
adjacent Seifert fibrations, we may still proceed as before. See Figures 32 and 33.

Thus S ∩ Ne is as required.

There are conditions that can ensure that, in fact, there can be no N i
e homeomor-

phic to (torus)×I with Heegaard splittings of type II. But the argument is extremely
tricky and goes beyond what is required here. To show this we would have to consider
the weak reduction M = (V1∪S1

W1)∪F1
· · ·∪Fn−1

(Vn∪Sn
Wn) more carefully. Given a

component F j
i of some Fi, there may or may not be a 1-handle in Vi+1 that attaches

to a collar of F j
i . If tbere is no such 1-handle, then, since F j

i is incompressible, a
parallel copy of F j

i , which we denote by F j
i+1, survives in Fi+1.

Suppose now that N i
e is adjacent to, say, N 1

e . Then in the Heegaard of M 1, there
is no torus parallel to the component of ∂M 1 that meets a component of ∂N 1

e . There
is, instead, a modified version of this torus, due to the existence of a 1-handle as in
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Figure 32: Amalgamating to obtain an edge manifold

Figure 33: Isotoping the amalgamation into place

the preceeding paragraph. The relevant 1-handle may, however, be rather elusive. It
can be isotoped into M 1. Because S ∩ M 1 is vertical after this isotopy, it can then
be shown that, under certain extra assumptions, the existence of N i

e provides a pair
of reducing disks.
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[4] G. Burde; H. Zieschang: Knots, de Gruyter Studies in Mathematics, 5. Walter
de Gruyter & Co., Berlin, 1985

[5] A. Casson and C. Gordon: Reducing Heegaard splittings, Topology and its Ap-
plications 27 (1987) 275-283

36



[6] D. Cooper; M. Scharlemann: The structure of a solvmanifold’s Heegaard split-
tings Proceedings of 6th Gkova Geometry-Topology Conference. Turkish J. Math.
23 (1999), no. 1, 1–18. Or http://arxiv.org/pdf/math.GT/9803157.pdf

[7] D. B. A. Epstein: Periodic flows on 3-manifolds Ann. Math. 95 (1972) 68-82

[8] D. Gabai: Foliations and the topology of 3-manifolds III, J. Differential Geom.
26 (1987) 479-536

[9] J. Hempel: 3-manifolds, Annals of Mathematics Studies, Princeton University
Press, Study 86, Princeton, NJ, 1976

[10] W. Jaco: Lectures on Three-Manifold Topology, Regional conference series in
mathematics; no. 43

[11] Lickorish, W. B. Raymond: An introduction to knot theory. Graduate Texts in
Mathematics, 175. Springer-Verlag, New York, 1997.

[12] J. Milnor: Lectures on the h-cobordism theorem, notes by L. Siebenmann and L.
Sondow, Princeton Mathematical Notes (Princeton University Press, 1965).

[13] Y. Moriah and J. Schultens: Irreducible Heegaard splittings of Seifert fibered
spaces are horizontal or vertical, Topology, 37 (5) 1089–1112

[14] J. Nielsen: Abbildungsklassen endlicher Ordnung, Acta Mathematica 75, (1943)
23-115

[15] Rolfsen, Dale, Knots and links, Corrected reprint of the 1976 original. Mathe-
matics Lecture Series, 7. Publish or Perish, Inc., Houston, TX, 1990.

[16] Rubinstein, J. Hyam; Scharlemann, Martin Comparing Heegaard splittings of
non-Haken 3-manifolds Topology 35 (1996), no. 4, 1005–1026.

[17] M. Scharlemann: Local detection of strongly irreducible Heegaard splittings Topol-
ogy and its Applications 90 (1998) 135–147

[18] M. Scharlemann, A. Thompson: Thin position for 3-manifolds AMS Contempo-
rary Math. 164 (1994) 231–238

[19] M. Scharlemann, A. Thompson, Heegaard splittings of (surface)×I are standard,
Math. Ann. 295 (1993), 549-564

[20] J. Schultens, The Classification of Heegaard splittings for (closed orientable
surface) × S1, London Math. Soc. (3) 67 (1993) 425-448

[21] J. Schultens, Heegaard splittings of Seifert fibered spaces with boundary, Trans.
Amer. Math. Soc. 347 (1995), no. 7, 2533–2552.

[22] J. Schultens, Weakly reducible Heegaard splittings of Seifert manifolds are verti-
cal, Topology Appl. 100 (2000), no. 2-3, 219–222.

[23] J. Schultens, Additivity of Tunnel Number for Small Knots, Comment. Math.
Helv. 75 (2000), no. 3, 353–367.

37



[24] J. Schultens, R. Weidmann, On the geometric and algebraic rank of graph man-
ifolds, preprint

[25] Thurston, William P. Edited by Silvio Levy. Three-dimensional geometry and
topology. Vol. 1 Princeton Mathematical Series, 35. Princeton University Press,
Princeton, NJ, 1997. x+311 pp. ISBN: 0-691-08304-5

[26] R. Weidmann, ??? to appear in Arch. Math.

38


