
ON THE GEOMETRIC AND THE ALGEBRAIC RANK OF

GRAPH MANIFOLDS

JENNIFER SCHULTENS AND RICHARD WEIDMANN

Abstract. For any n ∈ N we construct graph manifolds of genus 4n that have
3n-generated fundamental group.

1. introduction

A Heegaard surface of an orientable closed 3-manifold M is an embedded ori-
entable surface S such that M − S consists of 2 handlebodies V1 and V2. This
decomposition of M is called a Heegaard splitting and denoted by M = V1 ∪S V2.
We say that the splitting is of genus g if S is of genus g. It is not difficult to see
that any orientable closed 3-manifold admits a Heegaard splitting. If M admits a
Heegaard splitting of genus g but no Heegaard splitting of smaller genus then we
say that M has Heegaard genus g and write g(M) = g.

Clearly any curve in a handlebody can be homotoped to its boundary. It follows
that for any Heegaard splitting M = V1 ∪S V2 every curve in M can be homotoped
into V1. Thus the map induced by the inclusion of V1 into M maps a generating
set of π1(V1) to a generating set of π1(M). As π1(V1) is generated by g elements
it follows that π1(M) is also generated by g elements. Thus g(M) ≥ r(M) where
r(M) denotes the minimal number of generators of π1(M). Sometimes we will refer
to g(M) as the geometric rank and to r(M) as the algebraic rank of M .

F. Waldhausen [12] asked whether the converse inequality also holds, i.e., whether
g(M) = r(M). A positive answer would have implied the Poincaré conjecture. First
counterexamples however were found by M. Boileau and H. Zieschang [1]. These
examples were Seifert fibered manifolds with g(M) = 3 and r(M) = 2. The work
of Y. Moriah and J. Schultens [4] further shows that this class extends to higher
genus examples, i.e. Seifert manifolds with g(M) = n + 1 and r(M) = n. In [13]
a class of graph manifolds was found for which g(M) = 3 and r(M) = 2. The
original Boileau-Zieschang examples can be interpreted as a special case of these
graph manifolds.

We here show how the phenomenon observed in [13] generalizes and how it can
occur multiple times within a single graph manifold. This yields graph manifolds
where the difference between the algebraic and the geometric rank is arbitrarily
high.
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2. Formulation of the main results

Let M be a closed graph manifold. We will always assume that M comes
equipped with its characteristic tori T = TM and a fixed Seifert fibration on every
component of M − T . Recall that the Seifert fibrations are unique up to isotopy
except for components homeomorphic to Q, the Seifert space with base orbifold
the disk with two cone points of order 2. The space Q can also be fibered as the
orientable circle bundle over the Möbius band. We will refer to the components of
M − T as the Seifert pieces of M . Recall that the Seifert pieces of M are up to iso-
topy precisely the maximal Seifert submanifolds of M . We will mostly work with
totally orientable graph manifolds, i.e. orientable graph manifolds whose Seifert
pieces have orientable base orbifold. This makes the Seifert fibrations unique up to
isotopy on all Seifert pieces.

Let N be a Seifert piece of M . Denote the fiber of N by f . Let T1, . . . , Tn be
the boundary components of N and let γi ⊂ Ti be the curve corresponding to the
fiber of the Seifert piece Li where Li is the Seifert piece reached by travelling from
N transversely through Ti. Note that we possibly have N = Li. The maximality
of the Seifert piece N guarantees that for all i the intersection number of f with γi

does not vanish.

We then define N̂ to be the manifold N(γ1, . . . , γn) obtained from N by per-
forming a Dehn filling with slope γi at each boundary component Ti. It is clear
that the Seifert fibration of N can be extended to a Seifert fibration of N̂ as f has
non-trivial intersection number with all γi.

In the following we will denote the base orbifold of a Seifert piece N by O(N).
We will denote an orbifold by its topological type with a list of the orders of cone
points, where ∞ stands for a boundary component. We will denote the disc by D,
the sphere by S2, the annulus by A, the orientable surface of genus g by Fg and
the projective plane by P 2.

Theorem 1. Let M be a closed graph manifold consisting of two Seifert pieces N1

and N2 glued along T , where O(N1) = Fg(r,∞), O(N2) = D(p, q) with (p, q) = 1
and min(p, q) ≤ 2g +1 such that the intersection number of the fibers of N1 and N2

equals 1.
Then π1(M) is generated by 2g+1 elements. Furthermore M admits a Heegaard

splitting of genus 2g + 1 if and only if one of the following holds:

(1) N2 is the exterior of a s-bridge knot with s ≤ 2g + 1 and the fiber of N1 is

identified with the meridian of N2, i.e. N̂2 = S3.

(2) N̂1 admits a horizontal Heegaard splitting of genus 2g.

We will further see that all manifolds of this type admit a Heegaard splitting
of genus 2g + 2. Furthermore, most of these manifolds do not admit a Heegaard
splitting of genus 2g + 1 as for any given pair of such manifolds N1 and N2 there
are at most three glueing maps that yield a graph manifold of genus 2g + 1. It is
also possible to show that π1(M) cannot be generated by less than 2g +1 elements,
the argument however is complicated.

A careful analysis of the above examples shows that the phenomenon is of a local
nature, it can therefore be reproduced multiple times within a graph manifold with
a more complex underlying graph. This yields the following:
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Figure 1. A graph manifold with 5-generated fundamental group

Theorem 2. For any n ∈ N there exists a graph manifold Mn with 3n-generated

fundamental group that has Heegaard genus 4n.

This paper is organized as follows. In Section 3 we review the structure theorem
for Heegaard splittings of totally orientable graph manifolds as proven in [9]. Then
we study in more detail how Heegaard surfaces can intersect the Seifert pieces that
are the building blocks of our examples. In Section 5 and Section 6 we will then
give the proofs of Theorem 1 and Theorem 2. We conclude by describing a class
orientable Seifert manifolds with 2n-generated fundamental group which we believe
to be of Heegaard genus 3n. These manifolds are however not totally orientable.

3. Heegaard splittings of totally orientable graph manifolds

A graph manifold M is totally orientable if every Seifert piece N of M fibers
over an orientable base space and if M itself is orientable. In [9] it is shown that
the Heegaard splittings of totally orientable graph manifolds have a structure that
can be completely described. To do so, one considers a decomposition of M into
edge manifolds and vertex manifolds. The edge manifolds are the submanifolds of
the form T × I , where T is one of the characteristic tori, T , of M . The vertex
manifolds are the components of the complement of the edge manifolds. Note that
each vertex manifold is homeomorphic to a component of M − T .

Heegaard splittings themselves are rather unwieldy. Instead we work with the
surfaces arising in what is called a “strongly irreducible untelescoping” of a Hee-
gaard splitting. We use the terms pseudohorizontal, horizontal, pseudovertical and
vertical to describe the possible structure for the restriction of such a surface to
the vertex manifolds. The restriction of such a surface to the edge manifolds takes
three possible forms. It too plays a nontrivial role in the structure of the Heegaard
splitting of a graph manifold.

A 2-sided surface F in a 3-manifold M is said to be weakly reducible if there are
disjoint essential curves a, b in F that bound disks Da, Db whose interior is disjoint
from F and such that near their boundary Da, Db lie on opposite sides of F . A
2-sided surface F in a 3-manifold M is said to be strongly irreducible if it is not
weakly reducible.

Heegaard splittings correspond to handle decompositions. Given a 3-manifold
M and a decomposition M = V ∪S W into two handlebodies, one handlebody, say
V , provides the 0-handles and 1-handles and the other, W , provides the 2-handles
and 3-handles. Without loss of generality, there is only one 0-handle and one 3-
handle. Corresponding to M = V ∪S W we then have a handle decomposition in
which all 1-handles are attached before any of the 2-handles. An untelescoping of
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a Heegaard splitting is a rearrangement of the order in which the 1-handles and
2-handles are attached. In the handle decomposition obtained we first attach the
0-handle, then some 1-handles, then some 2-handles, then some 1-handles, then
some 2-handles, etc and finally, the 3-handle. We specify an untelescoping by a
collection of surfaces S1, F1, S2, F2, . . . , Fn−1, Sn. These surfaces are obtained as
follows: S1 is the boundary of the submanifold of M obtained by attaching the
0-handle and the first batch of 1-handles. F1 is the boundary of the submanifold
of M obtained by attaching the 0-handle, the first batch of 1-handles and the
first batch of 2-handles. S2 is the boundary of the submanifold of M obtained by
attaching the 0-handle, the first batch of 1-handles, the first batch of 2-handles
and the second batch of 1-handles. F2 is the boundary of the submanifold of M
obtained by attaching the 0-handle, the first batch of 1-handles, the first batch of
2-handles, the second batch of 1-handles and the second batch of 2-handles. Etc.
An untelescoping S1, F1, S2, F2, . . . , Sn is said to be strongly irreducible if each Si

is a strongly irreducible surface in M and each Fi is an incompressible surface in
M . Note that a Heegaard splitting can be considered a trivial untelescoping S. If
it is strongly irreducible, then it is its own strongly irreducible untelescoping.

For the discussion here it will be useful to note the following: 1) Each of the Si

and each of the Fi is separating; 2) Each pair Si and Fi cobound a submanifold
homeomorphic to Si×I with 2-handles attached to Si×{1}. In particular, χ(Si) <
χ(Fi). Similarly for Fi and Si+1. The following theorem summarizes the discussion
in [7], [8] and [6, Lemma 2].

Theorem 3. Let M be a 3-manifold and M = V ∪S W a Heegaard splitting.

Then M = V ∪S W has a strongly irreducible untelescoping S1, F1, S2, F2, . . . , Sn.

Furthermore,

−χ(S) =

n∑

i=1

(χ(Fi−1) − χ(Si)).

A surface in a Seifert fibered space is horizontal if it is everywhere transverse
to the fibration. It is pseudohorizontal if it is horizontal away from a fiber e and
intersects a regular neighborhood N(e) of e in an annulus that is a bicollar of e. Note
that in [4] the Heegaard splittings of a Seifert fibered space with pseudohorizontal
splitting surface are called horizontal Heegaard splittings.

Let F be a surface in a 3-manifold M and α an arc with interior in M\F and
endpoints on F . Let C(α) be a collar of α in M . The boundary of C(α) consists
of an annulus A together with two disks D1, D2, which we may assume to lie in
F . We call the process of replacing F by (F\(D1 ∪ D2)) ∪ A performing ambient

1-surgery on F along α.
A surface S in a Seifert fibered space is vertical if it consists of regular fibers.

It is pseudovertical if there is a vertical surface V and a collection of arcs Γ with
interior disjoint from V that projects to an embedded collection of arcs such that
S is obtained from V by ambient 1-surgery along Γ.

The definition of a standard Heegaard splitting for a graph manifold is rather
lengthy. Let M be a graph manifold. A strongly irreducible untelescoping S1, F1, S2,
F2, . . . , Sn of a Heegaard splitting M = V ∪S W is standard if it is as follows: 1)
Each Fi intersects each vertex manifold either in a horizontal or in a vertical sur-
face (or ∅); 2) Each Fi is either a torus entirely contained in an edge manifold or
intersects an edge manifold in spanning annuli (or ∅); 3) Each Si intersects each
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vertex manifold in either a horizontal, pseudohorizontal, vertical or pseudovertical
surface (or ∅); 4) Each Si intersects each edge manifold Me = (torus) × [0, 1] in
one of three possible ways: a) Si ∩ Me consists of incompressible annuli (or ∅); or
b) Si ∩ Me can be obtained from a collection of incompressible annuli by ambient
1-surgery along an arc that is isotopic to an embedded arc in the boundary of the
edge manifold; or c) there is a pair of simple closed curves c, c′ ⊂ (torus) such that
c ∩ c′ consists of a single point p and Si ∩ Me is the portion of the boundary of a
collar of c × {0} ∪ p × [0, 1] ∪ c′ × {1} that lies in the interior of Me. Furthermore,
each edge manifold must be met by at least one of the Si.

Recall that for each i, Fi and Si are separating. Thus if Fi or Si intersects an
edge manifold Me in spanning annuli, then it must do so in an even number of
spanning annuli. It is a non trivial fact that if S1, F1, S2, F2, . . . , Sn meets Me in
spanning annuli, then between any two components of Fi ∩ Me there must be two
components of either Si ∩ Me or Si+1 ∩ Me.

The Heegaard splitting M = V ∪S W is standard if every strongly irreducible
untelescoping S1, F1, S2, F2, . . . , Sn of M = V ∪S W , (∪iFi)∪(∪iSi) can be isotoped
to be standard.

The main theorem in [9] is the following:

Theorem 4. Let M = V ∪S W be an irreducible Heegaard splitting of a totally

orientable graph manifold. Then M = V ∪S W is standard.

This theorem has many consequences some of which will be used in the following.
We assume that M is a totally orientable graph manifold, M = V ∪S W a Heegaard
splitting and S1, F1, . . . , Fn−1, Sn a strongly irreducible untelescoping of M = V ∪S

W that is standard. Then:

Fact 1: For N a vertex or edge manifold of M ,
∑

i

(χ(Fi−1 ∩ N) − χ(Si ∩ N)) ≥ 0.

Fact 2: Suppose e is an edge that abuts v. And suppose Ne, Nv, respectively, are
the edge and vertex manifolds corresponding to e, v, respectively. Further suppose
that ((∪iFi) ∪ (∪iSi)) ∩ Nv is vertical and pseudovertical and a component S̃ of
(∪iSi)∩Ne is as in c). Then any annuli in ((∪iFi)∪(∪iSi))∩Ne that are parallel into
∂Nv can be isotoped to lie entirely in Nv. After this isotopy, ((∪iFi)∪ (∪iSi))∩Nv

is still vertical and pseudovertical.

Fact 3: Suppose e is an edge that abuts v. And suppose Ne, Nv, respectively, are
the edge and vertex manifolds corresponding to e, v, respectively. Further suppose
that ((∪iFi)∪(∪iSi))∩Nv is horizontal. Then (∪iFi)∩Ne does not contain a torus.

Fact 4: Suppose Nv is a vertex manifold and that a component S̃ of (∪iSi)) ∩ Nv

is pseudohorizontal. Then (((∪iFi) ∪ (∪iSi)) ∩ Nv) = S̃.

Consider the following: Suppose that M is a closed totally orientable graph
manifold and that S1, F1, S2, F2, . . . , Sn is a strongly irreducible untelescoping of
a Heegaard splitting M = V ∪S W . Suppose further that S1, F1, S2, F2, . . . , Sn

has been isotoped to be standard. This implies in particular that for any vertex
manifold N , (∪iFi) ∪ (∪iSi) meets ∂N in parallel simple closed curves. Thus to
any vertex manifold N of M we associate the manifold NS, which is the manifold
obtained from N by performing a Dehn filling at every component of ∂N along a
slope represented by the curves ((∪iFi) ∪ (∪iSi)) ∩ ∂N . Here NS is not canonical.
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It depends on a specific (not necessarily unique) positioning of an (not necessarily
unique) untelescoping. But we merely introduce this notation to discuss conse-
quences of the existence of certain setups. Note that NS is a Seifert manifold if
N contains a horizontal or pseudohorizontal component of ((∪iFi) ∪ (∪iSi)) ∩ N ,
as ((∪iFi) ∪ (∪iSi)) ∩ ∂N then consist of curves that have non-trivial intersection
number with the fibre of N . We have the following observation:

Lemma 5. Suppose that for some i, Si ∩ N is pseudohorizontal. Then the Seifert

manifold NS has a Heegaard surface S ′ such that S′∩N = Si∩N . The corresponding

Heegaard splitting is a horizontal Heegaard splitting of NS. If Si ∩N is planar then

S′ is homeomorphic to S2.

Proof. Recall Fact 4 above, it tells us that if Si ∩ N is pseudohorizontal, then
((∪iFi) ∪ (∪iSi)) ∩ N consists of a single component which we denote by S̃.

We may extend S̃ to a Heegaard surface of NS by gluing meridional discs of the
glued in solid tori to the boundary components of S̃. The corresponding Heegaard
splitting for NS is horizontal. If S̃ is planar then all boundary components get
capped off which results in S2. The assertion follows. �

4. Some lemmata

The following lemmata will enable us to compute the Heegaard genus of certain
graph manifolds in the next section. We start by discussing the possible pseudohor-
izontal surfaces in the relevant Seifert manifolds. Some proofs rely on the theory of
2-dimensional orbifolds and their covering theory as discussed in [11]. These lem-
mata will be used in our discussion of Heegaard splittings and their untelescopings.
But many of these results are more general. We do not necessarily require S to be
the splitting surface of a Heegaard splitting or to be a surface in an untelescoping.
Lemma 13 concerns vertical and pseudovertical surfaces.

Lemma 6. Let M be a graph manifold and N be a Seifert piece with O(N) =
D(p, q) and (p, q) = 1. Suppose S ∩N is a planar surface that is pseudohorizontal.

Then the following hold:

(1) NS is homeomorphic to S3.

(2) S ∩ ∂N contains exactly 2p or 2q components.

It should be noted that NS being homeomorphic to S3 is equivalent to N being the

exterior of an r-bridge knot with meridian µ parallel to ∂N ∩S where r = min(p, q).

Proof. Possibly after exchanging p and q we can assume that S is horizontal in the
space N̄ obtained from N after removing a regular neighborhood of the exceptional
fiber corresponding to the cone point of order q or by removing a neighborhood of
a regular fiber. Clearly N̄ is a Seifert space with O(N̄ ) = A(p) or O(N̄ ) = A(p, q).
Let T1 be the boundary component of N̄ that bounds the drilled out solid torus
and T2 be the boundary of N . Let S̄ be a component of S ∩ N̄ . Clearly S̄ is planar
as it is a subsurface of a planar surface.

As we assume that S is pseudohorizontal in N it follows that S̄∩T1 consists of a
single loop α. Let γ be one component of S̄ ∩ T2 and let g be an element of π1(N̄)
corresponding to γ. Recall that all other components of S̄ ∩ T2 are parallel to γ.
Let n be the intersection number of γ with the fiber.
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As S̄ is horizontal in N̄ it follows that there exists a finite sheeted orbifold
covering p : S̄ → O(N̄), in particular p∗(π1(S̄)) is of finite index in π1(O(N̄ )). We
distinguish the cases O(N̄) = A(p) and O(N̄ ) = A(p, q).

Case 1: O(N̄ ) = A(p). We have π1(A(p)) = 〈x, y|xp〉 where the generator y
corresponds to the boundary curve corresponding to T2. This implies in particular
that p∗(g) is conjugate to yn.

As S̄ is planar this implies that π1(S̄) is generated by homotopy classes that
correspond to the components of S̄ ∩ T2, i.e. p∗(π1(S̄)) is generated by conjugates
of the element yn. Let N(yn) be the normal closure of y in π1(A(p)). Clearly
π1(A(p))/N(yn) ∼= Zn ∗ Zp is infinite unless n = 1. As p∗(π1(S̄)) ⊂ N(yn) this
implies that n = 1 as otherwise p∗(π1(S̄)) is contained in a subgroup of infinite
index in π1(A(p)) and is therefore of infinite index itself. Thus we can assume that
n = 1 and that p∗(π1(S̄)) ⊂ N(y).

Note first that the orbifold covering space S̃ corresponding to N(y) is a orbifold
without cone points and is homeomorphic to the (p + 1)-punctured sphere. Denote
the corresponding covering map by p̃.

p̃ 4-��
��

��
����

��

��
�� ��

��q

Figure 2. The 4-sheeted covering of A(4) by a 5-punctured sphere

As p∗(π1(S̄)) ⊂ N(y) it follows that there exists a covering p′ : S̄ → S̃ such that
p = p̃ ◦ p′.

Claim p′ is a homeomorphism. As for both S̄ and S̃ all but one boundary com-

ponent map onto a curve corresponding to the element y it follows that p′ is a
homeomorphism when restricted to any of these boundary components. In par-
ticular p′ extends to a covering p′# : S̄# → S̃# where S̄# and S̃# are the spaces

obtained from S̄ and S̃ by gluing discs to these boundary components. As S̄#

and S̃# are discs it follows that the obtained map is a homeomorphism. Thus the
original p′ was a homeomorphism which proves the claim.

The second assertion is now immediate as S ∩ N̄ is obtained from 2 copies of S̄
and identifying two boundary components. All resulting boundary components lie
in T2. The first assertion follows from Lemma 5.

Case 2: O(N̄ ) = A(p, q). We have π1(A(p, q)) = 〈x, y, z|yp, zq〉 where the
generator x corresponds to the boundary curve corresponding to T2. We see as
in the first case that p∗(O(N̄ )) lies in the kernel of the map φ : π1(A(p, q)) →
π1(A(p, q))/N(xn). As π1(A(p, q))/N(yn) ∼= Zn ∗ Zp ∗ Zq is infinite for all n ∈ N

this implies that p∗(O(N̄ )) is of infinite index in π1(A(p, q)) which contradicts our
assumption. �
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Lemma 7. Let M be a graph manifold and let N be a Seifert piece with O(N) =
Fg(p,∞) or O(N) = Fg(p,∞,∞). Suppose that S ∩ N is pseudohorizontal and

χ(S ∩ N) > −8g or χ(S ∩ N) > −8g − 4, respectively. Then the following hold

(1) S ∩ T has two components for every component T of ∂N .

(2) S ∩ N extends to the splitting surface of a horizontal Heegaard surface of

genus 2g of NS.

Proof. We only deal with the case O(N) = Fg(p,∞) the other case is analogous.
Suppose that S ∩ N is pseudohorizontal with respect to the exceptional fiber or

a regular fiber and let N̄ be the space obtained by drilling out the neighborhood
of this fiber. Let S̄ be a component of N̄ ∩ S. Recall that S ∩ N is obtained from
two copies of S̄ by identifying them along a boundary component. In particular we
have that χ(S ∩ N) = 2χ(S̄).

Now S̄ is a finite sheeted covering of O(N̄ ) where O(N̄ ) = Fg(∞,∞) or O(N̄) =
Fg(p,∞,∞) depending on what kind of fiber was drilled out. Suppose that the
covering is n-sheeted. Note that in the case O(N̄ ) = Fg(p,∞,∞) it must hold that
n ≥ p as otherwise the covering space must be a orbifold with singularities. Thus
we have

χ(S ∩ N) = 2χ(S̄) = 2nχ(O(N̄)).

As χ(O(N̄ )) = −2g or χ(O(N̄)) = −2g − 1 + 1/p it follows immediately from
the hypothesis on the Euler characteristic that n = 1. Thus O(N̄ ) = Fg(∞,∞),
i.e. the exceptional fiber was drilled out. Assertion (1) is now immediate and (2)
follows from the proof of Lemma 5. �

It will be important that many Seifert manifolds do not admit a pseudohorizontal
surface of small genus indiscriminately of what graph manifold they belong to.

Lemma 8. Let N be a Seifert manifold with O(N) = Fg(p,∞) such that the

exceptional fiber has invariant (α, β) with 1 ≤ β < α. Then the following hold:

(1) If α = 2 then there exist two slopes γ on ∂N such that N(γ) admits a

horizontal Heegaard splitting of genus 2g.
(2) If α 6= 2 and β ∈ {1, α − 1} then exists one slope γ on ∂N such that N(γ)

admits a horizontal Heegaard splitting of genus 2g.
(3) In all other cases N(γ) has no Heegaard splitting of genus 2g if γ 6= f .

Proof. If γ is the fiber then N(γ) is not a Seifert manifold. In particular N(γ)
admits no horizontal Heegaard splitting as those are only defined for Seifert mani-
folds. If the intersection number m of γ with the fiber is greater than 1 then M(γ)
is a Seifert space with base orbifold Fg(p, m) which has no Heegaard splitting of
genus 2g by (i) of Proposition 1.4 of [1]. Suppose now that m = 1. Let e ∈ Z be
the Euler class of the Seifert space. By (iii) of Proposition 1.4 of [1] it follows that
N(γ) admits no Heegaard splitting of genus 2g unless β − eα = ±1. It is clear
that there exists two values for e such that the equation holds if β = 1 and α = 2,
that there exists one solution if β ∈ {1, α − 1} and none otherwise. The corre-
sponding Heegaard splittings are constructed in Section 1.10 of [1]. This proves the
assertion. �

Lemma 9. Let N be a Seifert manifold with O(N) = D(p, q) and (p, q) = 1. Then

N contains no compact planar horizontal surface.
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Proof. Suppose that S is a compact planar horizontal surface in N . Then there
exists a finite sheeted orbifold covering p : S → D(p, q). As all components of ∂S
are parallel on ∂N it follows that there exists a number n ∈ N such the restriction of
p to any component of ∂S is a n-sheeted covering. This implies that we can extend
p to a orbifold covering p : S2 → S2(p, q, n) by gluing a disc to any component
of ∂S and a disc with a cone point of order n to D(p, q). If n = 1 this yields a
contradiction as S2(p, q, 1) = S2(p, q) is a bad orbifold which admits no covering
by a manifold. If n 6= 1, then S2(p, q, n) must be a spherical orbifold with universal
cover the sphere. Moreover, NS is a Seifert manifold with O(NS) = S(p, q, n). As
such it is irreducible. This yields a contradiction, as S ⊂ N extends to a horizontal,
hence incompressible, sphere in NS . �

Lemma 10. Let M be a graph manifold and let N be a Seifert piece with O(N) =
Fg(p,∞) or O(N) = Fg(p,∞,∞). If S ∩N is horizontal, then χ(S ∩N) ≤ −4g+1
or χ(S ∩ N) ≤ −4g − p + 1, respectively.

Proof. Suppose that S is a horizontal incompressible surface in N that covers reg-
ular points of Fg(p,∞) k times. Note that here k ≥ p ≥ 2. By the Riemann-
Hurwitz formula, χ(S) = k(−2g + 1

p
) ≤ p(−2g + 1

p
) = −2pg + 1 ≤ −4g + 1 or

χ(S) = k(−2g − 1 + 1
p
) ≤ p(−2g − 1 + 1

p
) = −2pg − p + 1 ≤ −4g − p + 1, respec-

tively. �

Lemma 11. Let M be a graph manifold and let N be a Seifert piece with O(N) =
Fg(p,∞) or O(N) = Fg(p,∞,∞). Let M = V ∪S W be a Heegaard splitting and

S1, F1, . . . , Fn−1, Sn an untelescoping. If S1, F1, . . . , Fn−1, Sn meets N in such a

way that Fi ∩ N, Si ∩ N are horizontal for each i, then
∑

i

(χ(Fi−1 ∩ N) − χ(Si ∩ N)) ≥ 8g − 2

or ∑

i

(χ(Fi−1 ∩ N) − χ(Si ∩ N)) ≥ 8g + 2p − 2,

respectively.

Proof. Note that since the surfaces S1 ∩ N, F1 ∩ N, . . . , Fn−1 ∩ N, Sn ∩ N are dis-
joint and horizontal, they must be parallel. Recall that for each i, Fi∩N and Si∩N
is separating. A connected horizontal incompressible surface is non separating, thus
each Fi ∩N and each Si ∩N consists of an even number of parallel horizontal sur-
faces. Further note that between any two components of Fi ∩N there must be two
components of Si ∩ N or of Si+1 ∩ N . In other words, unless ∪iFi ∩ N = ∅, there
will be twice as many components of ∪iSi ∩ N as of ∪iFi ∩ N . The lemma then
follows from Lemma 10. �

Lemma 12. Let N be a Seifert manifold with O(N) = D(p, q) with (p, q) = 1 and

S be a properly embedded surface.

(1) If S ∩ N is horizontal, then there is an l ≥ 1 such that |S ∩ N | ≤ l,
χ(S ∩ N) ≤ l · p · q · (−1 + 1

p
+ 1

q
) and genus(S ∩ N) ≥ 1.

(2) If S∩N is pseudohorizontal, then χ(S∩N) ≤ −2 min(p, q)+2. Furthermore,

either S ∩ N is as in Lemma 6, or genus(S ∩ N) ≥ 2.
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Proof. (1) Clearly S ∩ N is a finite sheeted cover of D(p, q). The degree of this
covering musts be a positive multiple of p · q, say l · p · q. It is clear that S ∩ N
has at most l components. The second assertion follows from the Riemann-Hurwitz
formula as χ(D(p, q)) = −1 + 1

q
+ 1

q
. The last assertion holds as by Lemma 9, S is

non-planar, so genus(S ∩ N) ≥ 1.

(2) Suppose first that S ∩ N is pseudohorizontal with respect to the fiber e. Let
N ′ = N − η(e) and S′ be a component of S ∩ N ′. Recall that S′ is horizontal by
the definition of a pseudohorizonal surface.

If e is a regular fiber then S ′ must cover A(p, q) at least pq times, i.e. we
have χ(S′) ≤ pq(−2 + 1

p
+ 1

q
) = −2pq + p + q and therefore χ(S) = 2χ(S ′) ≤

−4pq + 2p + 2q ≤ −2 min(p, q) + 2. The remaining assertion follows from the proof
of Lemma 6 which implies that S ′ cannot be planar.

Thus we can assume that e is an exceptional fiber. Suppose that e is the ex-
ceptional fiber of index q and let N ′ = N − η(e). Suppose that H ′ is a horizontal
incompressible surface in N ′ that covers regular points k times. Clearly k ≥ p.
Then χ(H ′) = k(−1 + 1

p
) ≤ p(−1 + 1

p
) = −p + 1. Thus if S ∩ N is pseudohori-

zontal with respect to e, then χ(S ∩ N) ≤ 2χ(H ′) ≤ −2p + 2. The first assertion
now follows as this argument is symmetric in p and q; the last comment follows
immediately from Lemma 6. �

Lemma 13. Let M be a graph manifold and let N be a vertex manifold. Let

M = V ∪S W be a Heegaard splitting and S1, F1, . . . , Fn−1, Sn an untelescoping.

Suppose that Fi ∩ N is vertical for each i and Si ∩ N is vertical or pseudovertical

for each i. Then

∑

i

(χ(Fi−1 ∩ N) − χ(Si ∩ N)) ≥ −2χ(H) + 2s +
∑

i

(|Fi−1 ∩ ∂N | − |Si ∩ ∂N |)

Where H is the underlying surface of O(N) and s the number of exceptional

fiberes.

Moreover, if If O(N) = Fg(p,∞) and (∪iSi) ∩ ∂N 6= ∅, then

∑

i

(χ(Fi−1 ∩ N) − χ(Si ∩ N)) ≥ 4g + 2 +
∑

i

(|Fi−1 ∩ ∂N | − |Si ∩ ∂N |).

If O(N) = Fg(p,∞,∞), denote the components of ∂N by ∂N1 and ∂N2. If

(∪iSi) ∩ ∂Nj 6= ∅ for j = 1, 2, then

∑

i

(χ(Fi−1 ∩ N) − χ(Si ∩ N)) ≥ 4g + 4 +
∑

i

(|Fi−1 ∩ ∂N | − |Si ∩ ∂N |).

Proof. We denote O(N) by F so long as we need not distinguish between the cases.
Since Fi∩N is vertical, Fi∩N consists of saturated annuli and tori. Since Si∩N is
vertical or pseudovertical, Si∩N is obtained from saturated annuli Ai

1, . . . , A
i
ni

and

tori T i
1, . . . , T

i
ki

(some of them parallel to components of Fi−1 ∩ N) by performing

ambient 1-surgery along arcs βi
1, . . . , β

i
mi

that project to disjoint imbedded arcs

bi
1, . . . , b

i
mi

disjoint from the projection of Ai
1, . . . , A

i
ni

and T i
1, . . . , T

i
ki

except at
their endpoints.
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For the purposes of the computation in this lemma, we may amalgamate ((∪iFi)∪
(∪iSi)) ∩ N . Though it may not be possible to amalgamate (∪iFi) ∪ (∪iSi) with-
out destroying its simultaneous structure on all vertex and edge manifolds, it is
possible to perform an amalgamation without destroying the structure in a given
vertex manifold. Said differently, a partial amalgamation in a given vertex mani-
fold extends to a partial amalgamation in the graph manifold (though nothing can
be said, for instance, about the structure of the resulting non strongly irreducible
untelescoping of M = V ∪S W in edge manifolds adjacent to the given vertex man-
ifold). Here the result of such an amalagamation with respect to N is a surface S̃

such that S̃ ∩N is pseudovertical. (For details on amalgamation involving vertical
and pseudovertical surfaces see [10, Proposition 2.10], though note the difference in
terminology.)

Since S̃∩N is pseudovertical, it is obtained from saturated annuli A1, . . . , Añ and
tori T1, . . . , Tk̃ by performing ambient 1-surgery along arcs β1, . . . , βm̃ that project
to disjoint imbedded arcs b1, . . . , bm̃. These arcs are disjoint from the projections
a1, . . . , añ of A1, . . . , Añ and t1, . . . , tk̃ of T1, . . . , Tk̃ except at their endpoints. Here
each bj corresponds either to bi

l or to an arc dual to bi
l for some l, i, and conversely.

Furthermore,

−χ(S̃ ∩ N) = 2m̃ = 2
∑

i,j

mi
j =

∑

i

(χ(Fi−1 ∩ N) − χ(Si ∩ N))

and

|S̃ ∩ ∂N | = 2ñ =
∑

i

(|Si ∩ ∂N | − |Fi−1 ∩ ∂N |)

Recall that S̃ cuts a submanifold of M that contains N into two compression
bodies. Thus the (not necessarily connected) submanifolds into which S̃ ∩ N cuts
N can be analyzed from two perspectives: On the one hand, they result from
cutting compression bodies along essential annuli. On the other hand, they contain
Seifert fibered submanifolds of N ; specifically, the Seifert fibered submanifolds of
N that project to the appropriate components of the complement of the graph
Γ = (∪jaj)∪ (∪iti)∪ (∪lbl)∪ ∂F in F . This is impossible unless the Seifert fibered
spaces in question are fibered over a disk with at most one cone point (i.e., solid
tori) or fibered over an annulus with no cone point. Each such solid torus or

(annulus)×S1 must meet S̃. Furthermore, exactly one of the boundary components
of any such (annulus)× S1 must lie in ∂N .

We denote the set of vertices of Γ by V Γ and the set of edges by EΓ. We may
assume that each vertex of Γ is either of valence two or of valence three. Each
vertex on a circular component (corresponding either to a boundary component
without attached bi or to some ti without attached bi) is of valence two and each
endpoint of an arc aj and each endpoint of an arc bl is a vertex of valence three.
Then #V Γ = 2ñ + 2m̃ + k and #EΓ = 3ñ + 3m̃ + k where k is the number of
circular components of Γ.

Denote the underlying surface of F by H . Now Γ induces a decomposition of H
into 0-cells, 1-cells, 2-cells and annuli. Denote the union of the 2-cells and annuli
by DΓ. Note that each such annulus must be cobounded by a component of ∂H .
Let l be the number of annuli.
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This implies that

χ(H) = #V Γ − (#EΓ) + (#DΓ − l)

Combining these insights we obtain the following:
∑

i

(χ(Fi−1 ∩ N) − χ(Si ∩ N)) +
∑

i

(|Si ∩ ∂N | − |Fi−1 ∩ ∂N |) =

2m̃ + 2ñ =

−4ñ − 4m̃ + 6ñ + 6m̃ − 2(#DΓ − l) + 2(#DΓ − l) =

−2χ(H) + 2(#DΓ − l)

Thus we have ∑

i

(χ(Fi−1 ∩ N) − χ(Si ∩ N)) ≥

−2χ(H) + 2(#DΓ − l) +
∑

i

(|Fi−1 ∩ ∂N | − |Si ∩ ∂N |)

Hence
∑

i

(χ(Fi−1 ∩ N) − χ(Si ∩ N)) ≥ −2χ(H) + 2s +
∑

i

(|Fi−1 ∩ ∂N | − |Si ∩ ∂N |)

as every cone point must lie in a disk component. Now note that S̃ induces a
bicoloring on the components of the complement of Γ in F according to which side
of S̃ the Seifert fibered space that projects to that component lies. Thus #DΓ ≥ 2.

In the cases F = Fg(p,∞, ) or F = Fg(p,∞,∞), #DΓ − l ≥ 1 because there
must be a disk containing the cone point. Furthermore, if l > 0, then the result of
cutting H along Γ yields annuli cobounded by boundary components of ∂H . This
is impossible if F = Fg(p,∞) and (∪iSi) ∩ ∂N 6= ∅ or if F = Fg(p,∞,∞) and
(∪iSi) ∩ ∂Nj 6= ∅, for j = 1, 2, where N1 and N2 are the boundary components of
N . Thus the additional formulas hold. �

Lemma 14. Let M be a graph manifold and N a Seifert fibered submanifold with

O(N) = D(p, q). Let M = V ∪S W be a Heegaard splitting and S1, F1, . . . , Fn−1, Sn

and untelescoping. If Fi ∩ N is vertical for each i and Si ∩ N is vertical or pseu-

dovertical for each i, then

∑

i

(χ(Fi−1 ∩ N) − χ(Si ∩ N)) ≥ 2 +
∑

i

(|Fi−1 ∩ ∂N | − |Si ∩ ∂N |)).

Proof. The argument is analogous to that in Lemma 13, with one minor difference:
Here DΓ must contain at least two 2-cells containing one cone point. Thus DΓ−l ≥
2 in any case. �

5. The proof of Theorem 1

In order to give the proof of Theorem 1 we will first show that the fundamental
groups can in fact be generated by 2g+1 elements and then that only the manifolds
listed admit a Heegaard splitting of genus 2g + 1.

Lemma 15. The manifolds described in Theorem 1 have 2g + 1-generated funda-

mental groups.
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Proof. We first recall the presentations of the fundamental groups of N1 and N2:

π1(N1) = 〈a1, b1, . . . , ag, bg, s, t, f1 | R 〉 with

R = {[a1, f1], . . . , [ag, f1], [b1, f1], . . . , [bg, f1], [s, f1], [t, f1],

sr = fβ
1 , [a1, b1] · . . . · [ag, bg]st = fe

1}

and

π1(N2) = 〈x, y, f2 | [x, f2], [y, f2], x
p = fβ1

2 , yq = fβ2

2 〉.

As the manifold M is obtained from the manifold N1 and N2 by identifying their
boundary it follows from van Kampen’s theorem that

π1(M) = π1(N1) ∗C π1(N2) with C ∼= Z
2.

Note that f1 = xyf l
2 for some l ∈ Z as we assume that the intersection number

between f1 and f2 is 1. A simple calculation (see [5]) shows that n = min(p, q)
conjugates of f1 generate a subgroup of π1(N2) that maps surjectively onto the
orbifold group π1(D(p, q)). We do however need something slightly stronger:

Claim: We can choose elements h2, . . . , hn ∈ π1(N2) such that

U = 〈f1, h2f1h
−1
2 , . . . , hnf1h

−1
n 〉

maps surjectively onto the base group and that additionally hi ∈ U for 2 ≤ i ≤ n.

Choose ki such that 〈f1, k2f1k
−1
2 , . . . , knf1k

−1
n 〉 maps surjectively. For any ki

choose hi ∈ U and zi ∈ Z such that ki = hif
zi

2 . Clearly such hi and zi exist as we
assume that U maps surjectively one π1(D(p, q)) and as the kernel is generated by
f2. As f1 and f2 commute it follows that kif1k

−1
i = hif

zi

2 f1f
−zi

2 h−1
i = hif1h

−1
i .

This clearly implies that U = 〈f1, h2f1h
−1
2 , . . . , hnf1h

−1
n 〉. The claim follows.

Note that U is a subgroup of finite index in π1(N2) and that we can choose the
elements hi such that π1(N2) = U if and only if N2 is the exterior of a torus knot
with meridian f1. It is however always true that π1(N2) = 〈U, C〉 as f2 ∈ C.

Note further that the subgroup 〈s, f1〉 of π1(N1) is generated by a single element
g0 which corresponds to the core of the solid torus corresponding to the exceptional
fiber of N1. It follows that gk

0 = f1 for some k ∈ Z. In order to prove the lemma
we describe elements g1, . . . , g2g ∈ π1(M) such that π1(M) = 〈g0, . . . , g2g〉.

Recall that by assumption n + 1 ≤ 2g. Put hi = 1 for n + 1 ≤ i ≤ 2g. We define

• gi = hiai for 1 ≤ i ≤ g
• gi = hibi−g for g + 1 ≤ i ≤ 2g

Claim: U ⊂ 〈g0, . . . , g2g〉.

To see this it clearly suffices to show that f1 and the elements hif1h
−1
i lie in

〈g0, . . . , g2g〉 for 1 ≤ i ≤ 2g. Clearly f1 ∈ 〈g0, . . . , g2g〉 as f1 = gk
0 . Furthermore

hif1h
−1
i ∈ 〈g0, . . . , g2g〉 for 1 ≤ i ≤ g as gig

k
0g−1

i = hiaif1a
−1
i h−1

i = hif1h
−1
i . The

same argument shows that gig
k
0g−1

i = hif1h
−1
i for g + 1 ≤ i ≤ 2g. Thus the claim

is proven.

As hi ∈ U for 1 ≤ i ≤ 2g this implies that hi ∈ 〈g0, . . . , g2g〉 for 1 ≤ i ≤
2g and therefore h−1

i gi ∈ 〈g0, . . . , g2g〉 for 1 ≤ i ≤ 2g. As h−1
i gi = ai for 1 ≤

i ≤ g and h−1
i gi = bi−g for g + 1 ≤ i ≤ 2g it follows that all ai and bi lie in

〈g0, . . . , g2g〉. Furthermore both f1 and s are powers of g0 and lie in 〈g0, . . . , g2g〉.
The last generator t can be written as a product in the remaining generators by
the last relation. Thus all generators of π1(N1) lie in 〈g0, . . . , g2g〉 which shows that
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π1(N1) ⊂ 〈g0, . . . , g2g〉. Thus C ⊂ 〈g0, . . . , g2g〉 and therefore π1(N2) = 〈U, C〉 ⊂
〈g0, . . . , g2g〉. This shows that π1(M) = 〈g0, . . . , g2g〉. �

Lemma 16. Let M be a manifold as described in Theorem 1 and let M = V ∪S W
be a Heegaard splitting. Then one of the following holds:

(1) S ∩ N1 is vertical, S ∩ N2 is planar and pseudohorizontal with respect to

the exceptional fiber e of index p as in Lemma 6 and q ≤ 2g + 1.
(2) S∩N1 is as in Lemma 7, S∩N2 consists of a single annulus and genus(S) =

2g + 1.
(3) genus(S) ≥ 2g + 2.

Proof. Let M be a manifold as described in Theorem 1 and let M = V ∪S W be a
Heegaard splitting. Furthermore, let S1, F1, . . . , Fn−1, Sn be a strongly irreducible
untelescoping of M = V ∪S W that is standard.

Case 1: ((∪iFi)∪ (∪iSi))∩N1 and ((∪iFi)∪ (∪iSi))∩N2 are vertical or pseudover-
tical.

If (∪iFi) ∪ (∪iSi) meets the edge manifold Ne between N1 and N2 in annuli
including spanning annuli, then M must be a Seifert fibered space. It then follows
the main theorem of [4] that g(S) ≥ 2g + 2. The same is true if (∪iFi) ∪ (∪iSi)
meets Ne in annuli and a component obtained by ambient 1-surgery on spanning
annuli.

If (∪iFi) meets the edge manifold Ne in a torus, then we may assume that ∪(∪iSi)
is disjoint from Ne. (Annuli that are boundary parallel in Ne can be isotoped into
the vertex manifolds.) Then Lemma 13 tells us that

∑

i

(χ(Fi−1 ∩ N1) − χ(Si ∩ N1)) ≥

4g + 2 +
∑

i

(|Fi−1 ∩ ∂N1| − |Si ∩ ∂N1|) ≥ 4g

and Lemma 14 tells us that

∑

i

(χ(Fi−1 ∩ N2) − χ(Si ∩ N2)) ≥ 2 +
∑

i

(|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|) = 2

Hence by Theorem 3, 2genus(S)−2 = −χ(S) ≥ 4g +2; thus genus(S) ≥ 2g +2.
Otherwise (∪iFi)∪(∪iSi) meets the edge manifold between N1 and N2 in bound-

ary parallel annuli and one component of Euler characteristic −2 contained in
(∪iSi)∩Ne. Any boundary parallel annuli in ((∪iFi)∪ (∪iSi))∩Ne can be isotoped
into N1 or N2. It then follows from Lemma 13 and Lemma 14 that

∑

i

(χ(Fi−1) − χ(Si)) =

∑

i

[(χ(Fi−1 ∩ N1) − χ(Si ∩ N1)] +
∑

i

[χ(Fi−1 ∩ N2) − χ(Si ∩ N2)]+

+
∑

i

[χ(Fi−1 ∩ Ne) − χ(Si ∩ Ne)] ≥

(4g + 2 − 2) + (2 − 2) + 2 = 4g + 2.

Hence by Theorem 3, 2genus(S) − 2 = −χ(S) ≥ 4g + 2, whence genus(S) ≥
2g + 2.
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Case 2: ((∪iFi) ∪ (∪iSi)) ∩ N1 is horizontal.

Recall Fact 1 following Theorem 4, it tells us that for any vertex or edge mani-
fold N we have.

∑
i((χ(Fi−1 ∩ N) − χ(Si ∩ N) ≥ 0. It follows that

∑

i

(χ(Fi−1) − χ(Si)) ≥
∑

i

((χ(Fi−1 ∩ N1) − χ(Si ∩ N1).

By Lemma 11,
∑

i

((χ(Fi−1 ∩ N1) − χ(Si ∩ N1)) ≥ 8g − 2.

Thus ∑

i

(χ(Fi−1) − χ(Si)) ≥ 8g − 2.

Hence by Theorem 3, 2genus(S) − 2 = −χ(S) ≥ 8g − 2, whence genus(S) ≥
4g ≥ 2g + 2.

Case 3: A component of ∪iSi ∩ N1 is pseudohorizontal.

Denote the pseudohorizontal component of (∪iSi)∩N1 by S̃. Then by Lemma 7,

either S̃ is as in Lemma 7 and (∪iSi)∩N2 consists of a single annulus or genus(S) ≥
2g + 2. This puts us into situation (2) or (3), respectively.

Case 4: ((∪iFi) ∪ (∪iSi)) ∩ N2 is horizontal.

If ((∪iFi) ∪ (∪iSi)) ∩ N1 is horizontal, then the result follows by Case 2. If a
component of (∪iSi) ∩ N1 is pseudohorizontal, then the result follows by Case 3.
Thus we may assume that ((∪iFi) ∪ (∪iSi)) ∩ N1 is vertical.

Note that the components of ((∪iFi) ∪ (∪iSi)) ∩ N2 are all parallel. Let H be
such a component, then

χ(H) = 2 − 2genus(H)− |H ∩ ∂N2|.

Recall that by Lemma 9, genus(H) ≥ 1.
Thus ∑

i

((χ(Fi−1 ∩ N2) − χ(Si ∩ N2)) =

(2genus(H)− 2)(|Si ∩ N2| − |Fi−1 ∩ N2|) −
∑

i

(|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|) ≥

−
∑

i

(|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|.

Fact 4 following Theorem 4 tells us that (∪iFi) ∩ Ne does not contain a torus.
It follows that ∪iSi ∩ ∂N1 6= ∅.

Now

∑

i

(χ(Fi−1) − χ(Si)) =

∑

i

((χ(Fi−1 ∩ N1) − χ(Si ∩ N1)) +
∑

i

((χ(Fi−1 ∩ Ne) − χ(Si ∩ Ne))+

+
∑

i

(χ(Fi−1 ∩ N2) − χ(Si ∩ N2))

If we denote the edge manifold by Ne, then Fact 1 following Theorem 4 tells us
that

∑
i((χ(Fi−1 ∩ Ne) − χ(Si ∩ Ne)) ≥ 0. So
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∑

i

(χ(Fi−1) − χ(Si)) ≥

∑

i

((χ(Fi−1 ∩ N1) − χ(Si ∩ N1)) + (χ(Fi−1 ∩ N2) − χ(Si ∩ N2))

Thus by Lemma 13, ∑

i

(χ(Fi−1) − χ(Si)) ≥

4g + 2 +
∑

i

(|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|) −
∑

i

(|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|) =

4g + 2.

Therefore by Theorem 3, 2genus(S)− 2 = −χ(S) ≥ 4g + 2, whence genus(S) ≥
2g + 2.

Case 5: A component of (∪iSi) ∩ N2 is pseudohorizontal.

Here too, note that if ((∪iFi)∪ (∪iSi))∩N1 is horizontal, then the result follows
by Case 2. And if a component of (∪iSi) ∩ N1 is pseudohorizontal, then the result
follows by Case 3. Thus we may assume that ((∪iFi) ∪ (∪iSi)) ∩ N1 is vertical.

Denote the pseudohorizontal component of (∪iSi) ∩ N2 by S̃ and note that here

(((∪iFi) ∪ (∪iSi)) − S̃) ∩ N2 = ∅.
Here χ(S̃) = 2− 2genus(S̃)− |S ∩ ∂N2|. By Lemma 12, S̃ is either as in Lemma

6 or genus(S̃) ≥ 2.
Thus ∑

i

((χ(Fi−1 ∩ N2) − χ(Si ∩ N2)) = −χ(S̃) =

2genus(S̃) − 2 + |S ∩ ∂N2| ≥ |S ∩ ∂N2|.

Any boundary parallel annuli in ((∪iFi)∪ (∪iSi))∩Ne must be parallel into N1

and can be isotoped into N1. We may then assume that
∑

i

(|Fi−1 ∩ ∂N1| − |Si ∩ ∂N1|) = −2.

Thus

∑

i

((χ(Fi−1 ∩ N1) − χ(Si ∩ N1)) ≥ 4g + 2 +
∑

i

(|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|)

Hence arguing as in Case 4, we obtain

∑

i

(χ(Fi−1) − χ(Si)) ≥

∑

i

((χ(Fi−1 ∩ N1) − χ(Si ∩ N1)) + (χ(Fi−1 ∩ N2) − χ(Si ∩ N2)) ≥

4g + 2 +
∑

i

(|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|) −
∑

i

(|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|) =

4g + 2 − 2 + 2 = 4g + 2.

Again, by Theorem 3, 2genus(S) − 2 = −χ(S) ≥ 4g + 2, whence genus(S) ≥
2g + 2.

�
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Proof of Theorem 1 If option 1 occurs in Lemma 16, then Lemma 6 implies that N2

is a q-bridge knot complement and the fiber of N1 is identified with the meridian
of N2. This puts us into situation 1 of Theorem 1. If option 2 occurs in Lemma
16, then N̂1 admits a horizontal Heegaard splitting of genus 2g by Lemma 7 and
we are in situation 2 of Theorem 1. If option 3 occurs there is nothing to show. 2

6. The proof of Theorem 2

In this section we construct for any n ∈ N such that n ≥ 3 a graph mani-
fold Mn such that π1(Mn) is 3n-generated but that the Heegaard genus of Mn is
4n. We denote the graph underlying Mn by Γn. Γn is a tree on 2n + 1 vertices
z, c1, . . . , cn, d1, . . . , dn and 2n edges e1, . . . , en, f1, . . . , fn such that ci and di are
the endpoints of ei and that di and z are the endpoints of fi.

q z qd1 q c1

qd2

q c2

q
d3q

c3

Figure 3. The tree Γ3

The closed graph manifold Mn is then constructed as follows, where we denote
the Seifert piece corresponding to a vertex v by Nv.

(1) The intersection number between the fibers of the adjacent Seifert spaces
is 1 at any torus of the JSJ decomposition.

(2) O(Nz) is a n-punctured sphere with one cone point of order 20n and N̂z =
S3.

(3) O(Ndi
) = T 2(∞,∞, 20n) and Ndi

admits no pseudohorizontal surface that
has genus 2.

(4) O(Nci
) is of type D(3, q) with q ≥ 20n and (3, q) = 1 but Nci

is not
homeomorphic to the exterior of a 2-bridge knot in S3.

Remark 17. Note that (2) is equivalent to stating that Nz is the exterior of a Seifert
fibered n component n-bridge link in S3, in particular π1(Nz) is generated by the
fibers of the Ndi

. The existence of the spaces Ndi
satisfying (3) is an immediate

consequence of Lemma 8.

The first part of the proof of Theorem 2 is again a simple calculation:

Lemma 18. π1(Mn) can be generated by 3n elements.

Proof. The proof is almost identical to the proof of Lemma 15 and we frequently
omit explicit calculations if they are identical. Recall that

π1(Ndi
) = 〈ai, bi, si, ti1, ti2, fi |Ri 〉 with
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Figure 4. A graph manifold M with g(M) = 12 and r(M) ≤ 9

Ri = {[ai, fi], [bi, fi], [si, fi], [ti1, fi], [ti2, fi], s
5n
i = fβi

i , [aibi]ti1ti2si = fei

i }

where ti1 corresponds the the boundary component between Ndi
and Nz and ti2

corresponds to the boundary component between Ndi
and Nci

.
Recall from the proof of Lemma 15 that there exist elements hi1, hi2 ∈ π1(Nci

)
such that Ui = 〈fi, hi1fih

−1
i1 , hi2fih

−1
i2 〉 is a subgroup of finite index in π1(Nci

) that
maps surjectively onto the fundamental group of O(Nci

) and that hi1, hi2 ∈ Ui.
We will show that π1(Mn) is generated by the generators g1, . . . , g3n defined as

follows:

(1) gi is the generator of the cyclic group 〈fi, si〉 for 1 ≤ i ≤ n.
(2) gn+i = hi1ai for 1 ≤ i ≤ n.
(3) g2n+i = hi2bi for 1 ≤ i ≤ n.

Let H = 〈g1, . . . , g3n〉. We show that H = π1(Mn).

Note first that π1(Nz) ⊂ H as gi ∈ H implies fi ∈ H for 1 ≤ i ≤ n and π1(Nz)
is generated by the fi. This implies that ti1 ∈ H for 1 ≤ i ≤ n.

The same calculation as in the proof of Lemma 15 further shows that Ui ⊂ H
for 1 ≤ i ≤ n. It follows that ai, bi ∈ H for 1 ≤ i ≤ n. Thus π1(Ndi

) ⊂ H as
π1(Ndi

) is generated by ai, bi, si, fi, ti1 and si and fi are powers of gi.

It now further follows that π1(Nci
) ⊂ H as π1(Nci

) is generated by Ui and Ci

where Ci = π1(Nci
) ∩ π1(Ndi

). �

To conclude it clearly suffices to establish the following:

Proposition 19. The Heegaard genus of Mn is at least 4n.

Before we proceed with the proof of Proposition 19 we show that small genus
Heegaard splittings have very special untelescopings.

Lemma 20. Let Mn = V ∪S W be a Heegaard splitting of Mn. Then either

g(S) ≥ 4n or there is a strongly irreducible untelescoping S1, F1, . . . , Fk−1, Sk of

MN = V ∪S W such that for any vertex manifold N no component of Si ∩ N or

Fi ∩ N is horizontal. In particular all Fi are vertical incompressible tori.

Proof. Suppose that some component F of Si ∩N or Fi ∩N is horizontal for some
i and some vertex manifold N . Note first that no component of ∂F bounds a disk
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as any component is an essential curve in an incompressible torus. It follows that
χ(F ) ≥ χ(Fi) (or χ(F ) ≥ χ(Si)) where Fi (or Si) is the surface containing F .

Note first that F ∩ N is a covering of the base space O of N of degree at least
20n. It is furthermore easy to see that we have χ(O) ≤ − 1

2
for any choice of N .

If follows that χ(F ∩ N) ≤ −10n and therefore χ(Fi) ≤ −10n (or χ(Si) ≤ −10n).
This however implies that the genus of Fi (or Si) is greater than 5n which implies
that the Heegaard surface S is of genus at least 5n. This proves the assertion. �

Proof of Proposition 19 To see that Mn admits no Heegaard splitting of genus
less than 4n, proceed along the same lines as in the proof of Lemma 16. Let
M = V ∪S W be a Heegaard splitting and let S1, F1, . . . , Fk−1, Sk be a strongly
irreducible untelescoping of M = V ∪S W . We consider the various possible cases
for ((∪iFi) ∪ (∪iSi)) ∩ Ncj

and ((∪iFi) ∪ (∪iSi)) ∩ Ndj
.

Case 1: Fix j and suppose that ((∪iFi)∪ (∪iSi))∩Ncj
and ((∪iFi)∪ (∪iSi))∩Ndj

are vertical or pseudovertical.

Note that in this case it is impossible for ((∪iFi) ∪ (∪iSi)) to meet the edge
manifold Nej

between Ncj
and Ndj

in spanning annuli. Thus either ∪iFi meets Nej

in an essential torus, or ∪iSi meets Nej
in the only other possible configuration. In

the first case, we may assume that
∑

i

(−|Si ∩ ∂Ncj
| + |Fi−1 ∩ ∂Ncj

|) = 0

and
∑

i

(−|Si ∩ ∂Ndj
| + |Fi−1 ∩ ∂Ndj

|) =
∑

i

(−|Si ∩ ∂N j
z | + |Fi−1 ∩ ∂N j

z |)

where ∂N j
z is the component of ∂Nz that meets the edge manifold Ngj

between
Nz and Ndj

. In the second case we may assume that

∑

i

(−|Si ∩ ∂Ncj
| + |Fi−1 ∩ ∂Ncj

|) = 2

and
∑

i

(−|Si ∩ ∂Ndj
| + |Fi−1 ∩ ∂Ndj

|) = 2 +
∑

i

(−|Si ∩ ∂N j
z | + |Fi−1 ∩ ∂N j

z |)

We further distinguish the cases in which ∪iFi meets or does not meet the edge
manifold Ngj

in an essential torus.

Subcase 1.1: ∪iFi meets Nej
in an essential torus.

Here, by Lemma 13 and Lemma 14, we have

∑

i

((χ(Fi−1 ∩ Ndj
) − χ(Si ∩ Ndj

) + χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

)) ≥

4 + 2 +
∑

i

(|Fi−1 ∩ ∂Ndj
| − |Si ∩ ∂Ndj

|) + 2 +
∑

i

(|Fi−1 ∩ ∂Ncj
| − |Si ∩ ∂Ncj

|) ≥

4 + 2 +
∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |) + 2 ≥

8 +
∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |).
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Subcase 1.2: ∪iFi meets neither Ngj
nor Nej

in an essential torus.

Here, by Lemma 13 and Lemma 14, we have

∑

i

((χ(Fi−1 ∩ Ndj
) − χ(Si ∩ Ndj

) + χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

)+

+(χ(Fi−1 ∩ Nej
) − χ(Si ∩ Nej

)) ≥

4+4+
∑

i

(|Fi−1 ∩∂Ndj
|− |Si ∩∂Ndj

|)+2+
∑

i

(|Fi−1 ∩∂Ncj
|− |Si ∩∂Ncj

|)+2 ≥

4 + 4 − 2 +
∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |) + 2 − 2 + 2 ≥

8 +
∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |).

Subcase 1.3: ∪iFi meets Ngj
in an essential torus but does not meet Nej

in an
essential torus.

Here Lemma 13 and Lemma 14 yield only the following:

∑

i

((χ(Fi−1 ∩ Ndj
) − χ(Si ∩ Ndj

) + χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

)+

+(χ(Fi−1 ∩ Nej
) − χ(Si ∩ Nej

)) ≥

4+2+
∑

i

(|Fi−1 ∩∂Ndj
|− |Si ∩∂Ndj

|)+2+
∑

i

(|Fi−1 ∩∂Ncj
|− |Si ∩∂Ncj

|)+2 ≥

4 + 2 − 2 + 2 − 2 + 2 ≥ 6

It is important to note that in this case ((∪iFi) ∪ (∪iSi)) ∩ Nz must be vertical
or pseudovertical.

Note that in all cases we have

∑

i

(χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

) + χ(Fi−1 ∩ Nej
) − χ(Si ∩ Nej

)) ≥ 2.

Case 2: Fix j and suppose a component of ∪iSi ∩ Ndj
is pseudohorizontal.

Recall that in this case ((∪iSi) ∪ (∪iFi)) ∩ Ndj
is connected. In particular,

∪iFi ∩ Ndj
= ∅.

By construction, the genus of a pseudohorizontal surface is even. Thus it follows
from the assumption that Ndj

admits no pseudohorizontal surface of genus 2 that
the genus of (∪iSi) ∩ Ndj

is at least 4. Hence

∑

i

((χ(Fi−1 ∩ Ndj
) − χ(Si ∩ Ndj

)) =
∑

i

(0 − χ(Si ∩ Ndj
)) ≥ 6 + b

where b is the number of boundary components of the connected pseudohorizon-
tal surface (∪iSi) ∩ Ndj

.
Thus

∑

i

((χ(Fi−1 ∩ Ndj
) − χ(Si ∩ Ndj

) + χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

)) ≥

6 + b + 2 +
∑

i

(|Fi−1 ∩ ∂Ncj
| − |Si ∩ ∂Ncj

|) =
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8 −
∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |)

Case 3: Fix j and suppose a component of (∪iSi) ∩ Ncj
is pseudohorizontal.

It will suffice to consider the case in which ((∪iFi) ∪ (∪iSi)) ∩ Ndj
is vertical or

pseudovertical. Denote the pseudohorizontal component of (∪iSi) ∩ Ncj
by S̃ and

note that here (((∪iFi)∪(∪iSi))−S̃)∩Ncj
= ∅. Note that here we may assume that∑

i(|Fi−1 ∩ ∂Ncj
| − |Si ∩ ∂Ncj

|) = −2 and
∑

i(|Fi−1 ∩ ∂Ndj
| − |Si ∩ ∂Ndj

|) =−2 +∑
i(|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |).

Thus by Lemma 13 and Lemma 12, and since min(p, q) ≥ 3,

∑

i

((χ(Fi−1 ∩ Ndj
) − χ(Si ∩ Ndj

) + χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

)) ≥

4 + 2 +
∑

i

(|Fi−1 ∩ ∂Ndj
| − |Si ∩ ∂Ndj

|) + 2min(p, q) − 2 ≥

4 + 2 − 2 +
∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |) + 2min(p, q)− 2 ≥

8 +
∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |).

Note that here
∑

i

(χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

)) = −χ(S̃) ≥ 4.

Putting these computations together we must consider the various options for
((∪iFi) ∪ (∪iSi)) ∩ Nz:

Case A: ((∪iFi) ∪ (∪iSi)) ∩ Nz is vertical and pseudovertical.

Note that in this case the options for ((∪iFi)∪ (∪iSi))∩Ngj
are severely limited.

If ((∪iFi)∪ (∪iSi))∩Ndj
is vertical and pseudovertical, then ((∪iFi)∪ (∪iSi))∩Ngj

cannot consist of spanning annuli. So either ∪iFi meets Ngj
in an essential torus, or

∪iSi meets Ngj
in the only other possible configuration. If ((∪iFi)∪(∪iSi))∩Ndj

is
pseudohorizontal, then Ngj

cannot meet a toral component of ((∪iFi). So it must
consist either of spanning annuli or the only other possible configuration.

Denote the set of j such that
∑

i(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |) = 0 by J0. Then∑
i((χ(Fi−1 ∩ Ngj

) − χ(Si ∩ Ngj
)) = 0 for j ∈ J0.

Denote the set of j not in J0 such that ((∪iFi) ∪ (∪iSi)) ∩ Ndj
are vertical or

pseudovertical by J1. Then
∑

i(|Fi−1∩∂N j
z |−|Si∩∂N j

z |) = −2, and
∑

i((χ(Fi−1∩
Ngj

) − χ(Si ∩ Ngj
) = 2 for j ∈ J1.

Denote the set of j such that ((∪iFi) ∪ (∪iSi)) ∩ Ndj
is pseudohorizontal by J2.

We clearly have J = J0∪̇J1∪̇J2.
By Lemma 13,

∑

i

∑

j

((χ(Fi−1∩Nz)−χ(Si∩Nz)) ≥ −2(2−n)+2+
∑

i

(|Fi−1∩∂Nz|−|Si∩∂Nz|)

Thus,

−χ(S) =
∑

i

(χ(Fi−1) − χ(Si)) ≥
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∑

i

((χ(Fi−1 ∩ Nz) − χ(Si ∩ Nz) +
∑

j

(χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

)+

+χ(Fi−1 ∩ Ndj
) − χ(Si ∩ Ndj

) + χ(Fi−1 ∩ Nej
) − χ(Si ∩ Nej

)+

+(χ(Fi−1 ∩ Ngj
) − χ(Si ∩ Ngj

))) =

∑

i

((χ(Fi−1 ∩ Nz) − χ(Si ∩ Nz))+

+
∑

j

∑

i

(χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

) + χ(Fi−1 ∩ Ndj
) − χ(Si ∩ Ndj

)+

+χ(Fi−1 ∩ Nej
) − χ(Si ∩ Nej

) + χ(Fi−1 ∩ Ngj
) − χ(Si ∩ Ngj

)) ≥

−2(2 − n − 1) +
∑

i

(|Fi−1 ∩ ∂Nz| − |Si ∩ ∂Nz|)+

+
∑

j∈J0

∑

i

(χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

) + χ(Fi−1 ∩ Ndj
) − χ(Si ∩ Ndj

)+

+χ(Fi−1 ∩ Nej
) − χ(Si ∩ Nej

) + χ(Fi−1 ∩ Ngj
) − χ(Si ∩ Ngj

))+

+
∑

j∈J1

∑

i

(χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

) + χ(Fi−1 ∩ Ndj
) − χ(Si ∩ Ndj

)+

+χ(Fi−1 ∩ Nej
) − χ(Si ∩ Nej

) + χ(Fi−1 ∩ Ngj
) − χ(Si ∩ Ngj

))+

+
∑

j∈J2

∑

i

(χ(Fi−1 ∩ Ncj
) − χ(Si ∩ Ncj

) + χ(Fi−1 ∩ Ndj
) − χ(Si ∩ Ndj

)+

+(χ(Fi−1 ∩ Nej
) − χ(Si ∩ Nej

) + (χ(Fi−1 ∩ Ngj
) − χ(Si ∩ Ngj

)) ≥

−2(1 − n) +
∑

i

∑

j

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |)+

∑

j∈J0

6 +
∑

j∈J1

(8 − 2 + 2)+

+
∑

j∈J2

(8 −
∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |)) =

−2(1− n) +
∑

j∈J0

∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |)+

+
∑

j∈J1

∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |) +
∑

j∈J2

∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |)+

∑

j∈J0

6 +
∑

j∈J1

(8 − 2 + 2) +
∑

j∈J2

(8 −
∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |)) =

−2 + 2n + 0 +
∑

j∈J1

(−2) +
∑

j∈J2

∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |)+

∑

j∈J0

6 +
∑

j∈J1

(8 − 2 + 2) +
∑

j∈J2

8 −
∑

j∈J2

∑

i

(|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |)) =
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−2 + 2n +
∑

j∈J0

6 +
∑

j∈J1

6 +
∑

j∈J2

8 ≥ −2 + 2n + 6n = 8n − 2

Hence genus(S) ≥ 4n.

Case B: A component of (∪iSi) ∩ Nz is pseudohorizontal.

Denote the pseudohorizontal component of (∪iSi)∩Nz by S̃ and note that here

(((∪iFi) ∪ (∪iSi)) − S̃) ∩ Nz = ∅. Now χ(S̃) = 2 − 2genus(S̃) − |∂S̃| and
∑

i

(|Fi−1 ∩ ∂Nz| − |Si ∩ ∂Nz| = −|∂S̃|.

Thus here,

−χ(S) =
∑

i

(χ(Fi−1) − χ(Si)) ≥

∑

i

(χ(Fi−1∩Nz)−χ(Si∩Nz))+
∑

i

∑

j

((χ(fi−1∩Ncj
)−χ(Si∩Ncj

)+(χ(Fi−1∩Ndj
)−

χ(Si ∩ Ndj
) + (χ(Fi−1 ∩ Nej

) − χ(Si ∩ Nej
)) =

−2 + 2genus(S̃) + |∂S̃| +
∑

j

∑

i

(8 − (|Fi−1 ∩ ∂N j
z | − |Si ∩ ∂N j

z |)) =

−2 + 2genus(S̃) +
∑

j

8 ≥ −2 + 8n.

Whence, genus(S) ≥ 4n. 2

7. Some comments on non totally orientable graph manifolds

During the proofs of Theorem 1 and Theorem 2 we make extensive use of the
structure theorem for Heegaard splittings of totally orientable graph manifolds [9].
We believe however that similar statements are true for graph manifolds in general.
This suggests a more straightforward generalization of the examples provided in
[13] which are not totally orientable.

It should be noted that the verification that the manifolds constructed in [13]
are not of Heegaard genus 2 relies on the classification of 3-manifolds with non-
empty characteristic submanifold that have a genus 2 Heegaard splitting as given
by T. Kobayashi [3].

Thus we conjecture that the manifolds Mn constructed below are of Heegaard
genus 3n, the same argument as above shows that they can be generated by 2n
elements.

The graph underlying the manifold Mn is again Γn, the Seifert piece correspond-
ing to the vertex v is again denoted by Nv and the following hold:

(1) The intersection number between the fibers of the adjacent Seifert spaces
is 1 at any torus of the JSJ decomposition.

(2) O(Nz) is a n-punctured sphere with at most one cone point and N̂z = S3.
(3) O(Ndi

) = P 2(∞,∞, 5n) and Ndi
admits no pseudohorizontal surface that

has genus 2.
(4) O(Nci

) is of type D(2, q) with odd q but Nci
is not homeomorphic to the

exterior of a 2-bridge knot in S3.
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Figure 5. A graph manifold M with g(M) = 9 and r(M) ≤ 6?
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