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Abstract

Essential tori in knot complements were first studied by Horst Schubert in
the 1950s. He described the satellite construction for knots and established
several natural properties of this construction. This chapter considers satellite
knots and how they fit into a more recent discussion of 3-manifolds, most
notably JSJ decompositions and geometrization.

1 Introduction
In the 1950s Horst Schubert developed an understanding of essential tori in knot
complements. His work can be interpreted as a specialized version and precursor of
the work of Jaco-Shalen and Johannson in the 1970s. Specifically, Schubert described
JSJ decompositions for knot complements, see [8], and proved that they were finite,
see Section 6.

Let K be a knot in S3. An essential torus T in the complement of K is, by
definition, incompressible and non peripheral in the complement of K, but necessarily
compressible in S3. Via an exercise in Dehn’s Lemma and the Schönflies theorem it
follows that T bounds a solid torus containing K. Denote this solid torus by V . The
complement of V is a knot complement (usually not homeomorphic to the complement
of K). This consideration gives rise to the following definition:

Definition 1. Let J be a nontrivial oriented knot in S3 and V a closed regular
neighborhood of J . Let Ṽ be an oriented unknotted closed solid torus in S3 and K̃ an
oriented knot in the interior of Ṽ . A meridional disk of Ṽ will meet K̃ in a finite
subset. The least number of times a meridional disk of Ṽ must meet K̃ is called the
wrapping number of the pattern. Suppose that the wrapping number of the pattern
is greater than zero and let h : (Ṽ , K̃) → (V,K) be an oriented homeomorphism of
pairs. The image of K̃ under h, denoted by K, is a knot in V ⊂ S3 called a satellite
knot.

The knot J is called a companion knot of K and the torus T = ∂V is called a
companion torus. The pair (K̃, Ṽ ) is called a pattern of K.
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Note that the homeomorphism h in the above definition is unique up to isotopy.
The use of the word “satellite” alludes to the fact that a satellite knot “orbits” around
its companion knot.

Figure 1: A satellite knot

2 Case studies
Three special cases deserve to the pointed out:

Definition 2. A satellite knot with a torus knot as its pattern is called a cabled knot.
More specifically, a satellite knot with pattern the (p, q)-torus knot and companion J
is called a (p, q)-cable of J .

See Figure 2.

Figure 2: The (3, 2)-cable of the trefoil
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Definition 3. A satellite knot with a pattern of wrapping number 1 is called a con-
nected sum of knots. The companion torus of a satellite knot with wrapping number
1 is called a swallow-follow torus.

Figure 3: A swallow-follow torus

We must reconcile the definition just given with the standard definition, which
defines the connected sum of knots K1 ⊂ S3 and K2 ⊂ S3 in terms of the pairwise
connected sum (K, S3) = (K1,S3)#(K2, S3). This is accomplished by setting K1 = J
and K2 = K̃ or vice versa. See Figures 3 and 4 and Section 3 below.

Figure 4: The connected sum of the figure 8 knot and the trefoil

Definition 4. A satellite knot with the pattern pictured in Figure 5 is called a doubled
knot.

3 A theorem of Schubert on companion tori
In the 1950s Schubert investigated companion tori and how they lie with respect to
each other.

Definition 5. A decomposing sphere for a knot K ⊂ S3 is a 2-sphere S that meets K
in exactly two points and separates K into two knotted arcs. (I.e., for B the closure
of a 3-ball complementary to S, K ∩B must not be parallel into ∂B.)
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Figure 5: The pattern for a doubled knot

Figure 6: The double of the trefoil

Consider a decomposing sphere for the knot K. It is the 2-sphere along which a
connected sum of knots

(S3, K) = (S3, K1)#(S3, K2)

is performed. Given K, a closed regular neighborhood N(K), and the decomposing
sphere S, the boundary of the closure of a component of S3 − (N(K) ∪ S) is a torus.
In fact, it is a swallow-follow torus after an isotopy. See Figures 3 and 8.

For K = K1#K2, denote the swallow-follow torus that swallows K1 and follows
K2 by T1 and the swallow-follow torus that swallows K2 and follows K1 by T2. We
call T1 and T2 complementary swallow-follow tori. For i = 1, 2, Ti bounds a solid torus
containing K which we denote by Vi. If both swallow-follow tori are as in Figure 8,
then T1 ∩ T2 = ∅. Interestingly, V1 then contains the closure of the complement of V2

and vice versa.
Unless K1 or K2 is the trivial knot, the swallow-follow torus T1 will not be isotopic

to T2. If T1 and T2 are as in Figure 8, then they will be disjoint, but we are interested
in positioning them as in Figure 3. They will then meet in two simple closed curves
that are meridians in both T1 and T2. Assume that this is the case, then the solid
tori V1 ∪ V2 form an unknotted solid torus.

We build a knot satellite knot L with companion any nontrivial knot and pattern
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Figure 7: The connected sum of the figure 8 knot and the trefoil with a decomposing
sphere

Figure 8: A swallow-follow torus after an isotopy

(K, unknotted solid torus). The images of T1 and T2 can no longer be isotoped to be
disjoint and isotoping them to meet in two simple closed curves that are meridians
in both the image of T1 and the image of T2 provides the best positioning of the two
tori.

These best possible positionings for tori are described in the theorem below, where
Schubert summarizes his findings concerning essential tori in knot complements:

Theorem 1. (Schubert) Let T1, T2 be distinct companion tori of a knot K and V1, V2

the solid tori they bound. (I.e., V1, V2 each contain K, T1 = ∂V1 and T2 = ∂V2.) The
solid tori V1 and V2 can be isotoped so that (at least) one of the following holds:

• V1 lies in the interior of V2;

• V2 lies in the interior of V1;
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• V1 contains the closure of the complement of V2 and V2 contains the closure of
the complement of V1;

• T1 meets T2 in two simple closed curves that are meridians in both solid tori.

For more information on the modern point of view on companion tori in knot
complements, that is, as a characteristic submanifold of a JSJ decomposition, see [1].

4 The Whitehead manifold
The double of a knot, discussed in Section 2, is also called the Whitehead double.
Indeed, note that the complement of K̃ in Ṽ , for (K̃, Ṽ ) as pictured in Figure 5, is
exactly the complement of the Whitehead link, see Figure 9.

Figure 9: The Whitehead link

Definition 6. The Whitehead manifold is the 3-manifold MW obtained by iterating
the satellite construction as follows: To begin, we choose K̃ from Figure 5 as our
companion and also choose (K̃, Ṽ ) from Figure 5 as our pattern to obtain the satellite
knot K1. In Step 2 we choose K1 as our companion and again choose (K̃, Ṽ ) from
Figure 5 as our pattern to obtain the satellite knot K2. We continue in this fashion
to obtain a sequence of satellite knots K1, K2, K3, . . . each of which is an unknot
in S3. For i = 1, 2, 3, . . . , choose a closed regular neighborhood Ni of Ki such that
N1 ⊃ N2 ⊃ N3 ⊃ . . . . We set

N∞ = ∩∞
i=1Ni

and
MW = S3 −N∞.
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We can think of the Whitehead manifold as the complement of an iterated satellite
knot. Note that for i = 1, 2, 3, . . . the homomorphism

π1(Ni+1) → π1(Ni)

is trivial. The Whitehead manifold is interesting for several reasons. Most impor-
tantly, it is contractible, yet not homeomorphic to R3. For more information, see [11]
or [5].

5 The genus of a satellite knot
It is interesting to consider how invariants of knots behave with respect to the satellite
construction.

Definition 7. A Seifert surface of a knot K is a compact orientable surface S ⊂ S3

such that ∂S = K. The genus of K is the least possible genus of a Seifert surface of
K.

+

−

Figure 10: A Seifert surface for the trefoil

Figures 10 and 11 illustrate that the genus of a satellite knot is not necessarily
greater than that of its companion. Nevertheless, as we shall see below, the behavior
of genus vis-à-vis the satellite construction is completely understood.

Let V be a knotted solid torus in S3. Then V is homeomorphic to D2×S1. Under
this homeomorphism, 0×S1 is homeomorphic to a curve c called the core of V . Since
c is a knot in S3, it has a Seifert surface S. After isotopy, if necessary, the Seifert
surface S meets ∂V in a single simple closed curve c′. We leave it as an exercise to
show that the isotopy class of c′ does not depend on our choice of Seifert surface S.

Definition 8. A simple closed curve in ∂V parallel to c′ is called a preferred longitude.

7



Figure 11: A Seifert surface for the double of the trefoil

We will build a Seifert surface for a satellite knot from a surface inside the com-
panion torus along with Seifert surfaces for the companion torus. The surface inside
the companion torus should mimic the features of a Seifert surface:

Definition 9. Let (K̃, Ṽ ) be a pattern. Orient K̃, Ṽ and a meridian disk of Ṽ . Then
the oriented intersection number r between K̃ and the meridian disk of Ṽ is called
the winding number of (K̃, Ṽ ).

Let (K̃, Ṽ ) be a pattern with winding number r. A relative Seifert surface is a
compact orientable surface in Ṽ whose interior is disjoint from K̃ and whose boundary
consists of K̃ together with r disjoint coherently oriented preferred longitudes.

The genus of (K̃, Ṽ ), denoted by genus(K̃, Ṽ ), is the smallest possible genus of a
relative Seifert surface for (K̃, Ṽ ).

It is important to distinguish the wrapping number and winding number of a
pattern. For instance, the wrapping number of the pattern in Figure 5 is two, whereas
the winding number is zero.

We obtain a Seifert surface for K from a relative Seifert surface for (K̃, Ṽ ) by
capping off the r preferred longitudes in ∂V with Seifert surfaces for the companion.
We thereby obtain the following inequality:

genus(K) ≤ r · genus(J) + genus(K̃, Ṽ )

Using a delicate argument, Schubert proved that the reverse inequality also holds,
thereby establishing the following:

Theorem 2. (Schubert) Let K be a satellite knot with companion J and pattern
(K̃, Ṽ ), then

genus(K) = r · genus(J) + genus(K̃, Ṽ ).
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6 Bridge numbers
The bridge number of a knot, denoted b(K), discussed elsewhere in this volume,
assigns a natural number to each knot and behaves well with respect to the satellite
construction. Specifically, Schubert proves the following (see [6] or [9]):

Theorem 3. (Schubert) Let K be a satellite knot with companion J and pattern
(K̃, Ṽ ) of wrapping number k. Then

b(K) ≥ k · b(J).

If K = K1#K2, then
b(K) = b(K1) + b(K2)− 1.

Recall that in Theorem 1, companion tori are nested unless they are both swallow-
follow tori. For a prime knot K, i.e., for a knot that is not a connected sum, there are
no swallow-follow tori and hence Theorem 1 tells us that companion tori are nested.
Furthermore, if the prime knot K is a satellite knot (with nontrivial companion and
pattern), then the wrapping number of the pattern will be at least 2. In particular,
Theorem 3 then tells us that each companion knot will have bridge number strictly
lower than that of K. It therefore follows that a prime knot can have only finitely
many non isotopic companion tori. In this manner Schubert established finiteness, in
the case of knot complements, for what later became known as JSJ decompositions.

It deserves to be pointed out that decompositions of knots into prime knots,
unlike JSJ decompositions, are not canonical. They must always be finite, see [10],
but collections of decomposing spheres and swallow-follow tori need not be isotopic
when there are more than two prime factors. However, prime factors into which
certain maximal collections of decomposing spheres decompose a knot are unique up
to homeomorphism. See [7].

Ryan Budney gives a comprehensive survey of JSJ decompositions of knot and
link complements, see [1]. His description is formulated in the language of graphs,
using what he calls companionship graphs. In particular, he identifies precisely which
graphs are companionship graphs of knots and links and what types of knot and link
complements occur as basic building blocks. He also describes operations on knots
and links such as cabling, connect-sum, Whitehead doubling and the deletion of a
component and how these operations tie into a description of the JSJ decompositions
of knot and link complements.

7 Geometrization
Thurston’s Geometrization conjecture, proved by Grisha Perelman, see [2], [3], [4]
tells us that every orientable 3-manifold can be decomposed along a finite collection
of 2-spheres and tori into pieces each of which is geometric, i.e., admits a complete
finite volume Riemannian metric and has universal cover isometric to one of the
following:
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• H3

• E3

• S3

• H2 × R

• S2 × R

• The universal cover of SL(2,R)

• Nil

• Solv

Long before the Geometrization conjecture was proved, Thurston established its
specialization to knot and link complements. Specifically, he proved that for a prime
knot K, one of the following holds:

• K is a torus knot;

• K is a satellite knot;

• The complement of K admits a complete finite volume hyperbolic structure.
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