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Fig. 1. We demonstrate our method with various cooking and baking examples. Top left dehydrated apple slices. Bottom left pouring pancake batter. Center
tearing a loaf of bread. Top right baking cookies. Bottom right baking loaves of bread.

We present a Material Point Method for visual simulation of baking breads,
cookies, pancakes and similar materials that consist of dough or batter
(mixtures of water, flour, eggs, fat, sugar and leavening agents). We develop a
novel thermomechanical model using mixture theory to resolve interactions
between individual water, gas and dough species. Heat transfer with thermal
expansion is used to model thermal variations in material properties. Water-
based mass transfer is resolved through the porous mixture, gas represents
carbon dioxide produced by leavening agents in the baking process and
dough is modeled as a viscoelastoplastic solid to represent its varied and
complex rheological properties. Water content in the mixture reduces during
the baking process according to Fick’s Law which contributes to drying and
cracking of crust at the material boundary. Carbon dioxide gas produced by
leavening agents during baking creates internal pressure that causes rising.
The viscoelastoplastic model for the dough is temperature dependent and
is used to model melting and solidification. We discretize the governing
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equations using a novel Material Point Method designed to track the solid
phase of the mixture.
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1 INTRODUCTION
Whether it is bread rising in the oven, cookies oozing with melting
chocolate chips, or a pancake sizzling in a pan, baking and cooking
are integral parts of our everyday lives. It is therefore important and
yet challenging to model these phenomena accurately when creat-
ing compelling virtual scenes for computer graphics applications.
Famously, Shah [2007] demonstrated the compelling nature of food
dynamics in Pixar’s Ratatouille. Surprisingly, given our everyday fa-
miliarity, these processes involve a wide range of complex physical
phenomena including heat and mass transfer [Broyart and Trystram
2002; Nicolas et al. 2014], viscous and elastic rheology [Faridi and
Faubion 2012], dynamics of porous mixtures [Debaste et al. 2010;
Sakin-Yilmazer et al. 2013] and many more. We develop a model and
numerical methods that can capture some of the most character-
istic visual aspects of the baking or general cooking process, such
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as melting, dehydrating, rising, and gelatinization. Furthermore,
our approach allows for realistic simulation of user interactions
like breaking and folding of the materials at various stages in the
cooking process.
We propose a porous thermo-viscoelastoplastic mixture model.

Melting effects are captured by a temperature-based change in vis-
coelastoplastic constitutive laws. During the cooking process water
diffuses through the surface of the material according to Fick’s law.
This allows for effects such as wrinkling and curling of dehydrated
fruit, as well as cracking of the top of baked goods [Thorvaldsson
and Skjöldebrand 1998]. Leavening agents are often a predominant
source of rising in baked goods, and we focus on the effects of
chemical leaveners like baking powder and baking soda. With these
agents, carbon dioxide (CO2) is created through a chemical reaction,
which then expands under heat to help the dough to rise [Nicolas
et al. 2014; Zhang and Datta 2006]; this reaction is activated at the
critical temperature, peaks as temperature rises and finally gets
deactivated when it goes beyond a threshold. Our model keeps track
of the CO2 creation to capture the rising effect in baking. At the
final stage of the baking process, flour gelatinization takes place and
the baked goods become much more elastic and less viscous than
the initial dough or batter [Vanin et al. 2009]. This is achieved in
our model with temperature-dependent plasticity. We demonstrate
these abilities with baking, tearing and dehydrating examples.

While dough and batter are mixtures of constituents that include
water, leavening agents, flour, eggs, fat, sugar and others, we model
the non-water or non-CO2 agents as a single phase in a three species
mixture model. CO2 from leavening agents and water make up
the other two species in the mixture. We refer to the mixture of
non-water and non-CO2 species as the solid phase and model it as
viscoelastoplastic with parameters that vary with temperature. This
allows us to address rheological changes induced by cooking that
do not arise from the effects of the leavening agents or water-based
mass transfer. It is a simplification, but we confidently make it as
it reduces the modeling complexity without precluding important
features like melting and solidification.
We discretize our model with a novel Material Point Method

[Sulsky et al. 1994] designed to treat thermomechanical porous
mixtures and temperature dependent chemical production of gas
from leavening agents. Our approach is designed to track the solid
phase (everything but the water and CO2) since it is most apparent
for visual rendering. Various MPM approaches have treated porous
mixtures of water, gas and solid species [Abe et al. 2014; Bandara
et al. 2016; Bandara and Soga 2015; Gao et al. 2018a; Jassim et al.
2013; Tampubolon et al. 2017; Yerro et al. 2015; Zhang et al. 2009].
Tampubolon et al. [2018a; 2017] use two sets of material points to
track distinct water and sand phases. This allows for detailed visual
resolution of each phase, but it is costly since each phase must be
treated with a separate grid and their interactions are resolved via a
stiff interaction term. Our approach is similar to [Abe et al. 2014;
Bandara et al. 2016; Yerro et al. 2015] in that they use one set of
material points and track relative motion of the other species. How-
ever, these works only considered mixtures of soil, water and air,
largely for landslide applications. While there are some similarities
in the treatment of porosity, none have considered thermal effects

Fig. 2. Muffin. The left column depicts baking of a tray of muffins, result-
ing in a classic dome shape on top. The right column shows a muffin torn
open to reveal a fully cooked interior and melted chocolate chips. Surface
meshes of the fracturedmuffin are generated through themesh post-process
of [Wang et al. 2019] and are used for rendering.

in the solid species as we do. Also, none have modeled gas pres-
sures arising from temperature dependent chemical reactions. We
summarize our contributions as

• A thermo-viscoelastoplastic model of dough and batter that
approximates mixtures of non-water or CO2 contents, i.e.
ingredients like flour, egg, fat, sugar, etc.

• A three species porous mixture model of the water, CO2 and
remaining dough and batter contents.

• A model for the thermomechanical production of CO2 from
leavening agents and its influence on the viscoelastoplastic
rheology of the remaining materials in the solid phase.

• A novel MPM discretization of three species thermomechani-
cal mixtures of solid, gas and water including the effects of
chemical production of CO2 from leavening agents.

2 PREVIOUS WORK
Many efforts have beenmade to study one or a few aspects of compli-
cated food processes. Vanin et al. [2009] focus on the formation and
distinct texture of bread crust due to significantly lower water con-
tent than the crumb caused by rapid drying on the surface from the
heat of the oven. Guillard et al. [2004] model the moisture content
evolution in dry biscuit based on Fick’s second law [1855]. De Cindio
and Correra [1995] view a leavened dough as a viscoelastic homoge-
neous macrosystem but also a gas-paste microsystem to model the
interactions between the two phases during mixing, leavening and
baking. Zhang and Datta [2006] develop a coupled system of solid,
liquid water, water vapor and carbon dioxide phases to model the
bread baking process. They model the material as viscoelastic and
track the evolution of temperature, moisture, volume and surface
coloration during bread baking. Yang et al. [2017] develop a unified
particle framework for simulating various viscoelastic soft-matter
with phase changes using conservative Cahn-Hilliard advection.
They produce compelling simulations of phase transitions for cook-
ing eggs and melting butter. Liu et al. [2015] use elastoplasticity
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to simulate porous dehydration of fruits and other foods with the
Finite Element Method (FEM). Chen et al. [2019] proposed a data-
driven model that predictively generates RGB images of dough
surface browning. Blutinger et al. [2019] studied the application of
laser-heating technology to browning dough.

Graphics applications have usedmixture theory andmulti-species
simulations to model porous water, sand and air mixtures [Gao
et al. 2018a; Liu et al. 2008; Tampubolon et al. 2017]. Many other
graphics applications have made compelling use of multi-species
simulations for water, sprays and foams [Losasso et al. 2008; Nielsen
and Osterby 2013; Takahashi et al. 2003; Yang et al. 2014], liquids
with bubbles [Mihalef et al. 2009; Ren et al. 2015; Thürey et al. 2007]
as well as for mixing of fluids [Bao et al. 2010; He et al. 2015; Kang
et al. 2010; Ren et al. 2014; Yang et al. 2015]. Various models and
numerical methods have been used to simulate realistic viscoelastic
and plastic material behaviors [Bargteil et al. 2007; Barreiro et al.
2017; Gerszewski et al. 2009; Goktekin et al. 2004; Müller et al. 2005;
Teschner et al. 2004; Wicke et al. 2010; Wojtan and Turk 2008] .
Heat transfer and viscoelastic melting have also been used in many
graphics applications to simulate visual effects of phase change and
melting [Carlson et al. 2002; Keiser et al. 2005; Losasso et al. 2006;
Maréchal et al. 2010; Müller et al. 2004; Terzopoulosi et al. 1991; Wei
et al. 2003; Zhao et al. 2006].

The Material Point Method (MPM) [1994] has been used in many
computer graphics applications, including snow [Stomakhin et al.
2013], non-Newtonian fluids and foams [Ram et al. 2015; Yue et al.
2015], heat transfer and phase change [Gao et al. 2018b; Stomakhin
et al. 2014], elastic and porous materials [Fei et al. 2018; Guo et al.
2018; Jiang et al. 2017a], and granular materials [Daviet and Bertails-
Descoubes 2016; Klár et al. 2016; Yue et al. 2018]. Various MPM
approaches have treated porous mixtures of different liquid, gas and
solid species. Bandara et al. [2014; 2016; 2015] simulate mixtures of
air, water and soil for landslide applications. In [Bandara and Soga
2015], they use two sets of Lagrangian marker particles for water
and soil respectively. Tampubolon et al. [2018a; 2017] use a similar
approach. In [Abe et al. 2014; Bandara et al. 2016], they use a single
set of material points for the soil and track the motion of the water
relative to the soil, but they neglect the water acceleration. Zhang
et al. [2009] also neglect the water acceleration terms. Yerro et al.
[2015] build on the two-phase porous MPM approach of Jassim et
al. [2013] to simulate three species mixtures of air, water and soil.
Bandara et al. [2015] use Biot’s [1941] phenomenological model for
their governing equations.
A few aspects of our approach are closely related to existing

MPM techniques. We treat thermal effects similar to Stomakhin et
al. [2014] and Gao et al. [2018b] and our treatment of multi-species
mixtures is similar to the one-species-centric formulations in [Abe
et al. 2014; Bandara et al. 2016; Bandara and Soga 2015; Yerro et al.
2015; Zhang et al. 2009]. Stomakhin et al. [2014] discretize the heat
equation for temperature using a finite difference approach and
use a Particle-In-Cell (PIC) [1964] transfer of thermal quantities
between particles and grid. Gao et al. [2018b] improved on this by
using an MPM style weak form discretization of the heat equation
where particles are used as quadrature points to avoid voxelization
associated with finite difference discretization. Furthermore, Gao
et al. use higher order PIC ([Jiang et al. 2017b]) transfers. We use a

Fig. 3. Cookies. The cookies are initialized as dough balls (top left). The
bottom left shows the end results. The top row from left to right varies with
decreasing amounts of leavener, and the bottom row from left to right with
decreasing oven temperature. The right column depicts the heat transfer
progress in the cookies during baking with color varying from blue to green
then to red with increasing temperature.

particle-based weak form derivation of the heat equation as in Gao
et al., however we use Fluid-Implicit-Particle (FLIP) [1986] transfers
rather than PIC transfers. Although FLIP transfers can suffer from
noise [Jiang et al. 2015], we found that it was not an issue for our
examples. Lastly, we note that we include the effects of thermal
expansion which neither Stomakhin et al. nor Gao et al. address.

Our approach, as with many other MPM approaches, use the no-
tion of effective stress [Atkin and Craine 1976] with multi-species
mixtures. These approaches naturally admit MPM discretizations
where particles track each species, however stiff drag interaction
terms can require small time steps [Bandara and Soga 2015; Gao
et al. 2018a; Tampubolon et al. 2017]. Alternatively, we track the
motion of species relative to one set of particles. This is similar to
many formulations for porous soil in geomechanical applications
[Abe et al. 2014; Bandara et al. 2016; Bandara and Soga 2015; Yerro
et al. 2015; Zhang et al. 2009]. However, none of these formulations
account for thermal effects that occur during baking. Furthermore,
most only account for water and soil mixtures. Only Yerro et al.
[2015] consider three species mixtures of soil, water and air. While
they discretize momentum balance relative to the mixture configu-
ration, however, we do so relative to the solid phase which is easier
to track numerically.

3 GOVERNING EQUATIONS
We model our materials as a mixture of water, gas and solid con-
stituents and use a multi-species continuum model to derive the
equations of motion from the governing physics [Atkin and Craine
1976]. With this assumption we use a different flow map for each
constituent which can then be combined to describe the kinematics
of the mixture. Formally, we use ϕα : B0 × [0,T ] → R3 to define
the motion of species α where α = w for water, α = s for solid
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and α = д for gas. Here B0 ⊂ R3 represents the configuration of
the material at time t = 0. We refer to points X ∈ B0 as mate-
rial points and x ∈ Bαt =

{
x ∈ R3 |∃X ∈ B0 with x = ϕα (X, t)

}
as

world-space points where Bαt is the time t configuration of species
α . Furthermore, We use

Ωα
t =

{
x ∈ R3 |∃X ∈ Ω0 with x = ϕα (X, t)

}
(1)

for Ω0 ⊂ B0 to denote subsets of the domains. Note that we do not
distinguish between different species in B0 since we assume they
are all present in the initial mixture. We further assume that the
motion of the gas relative to the solid is negligible, and that therefore
ϕs = ϕд (and Bst = B

д
t ). We also assume that water may diffuse out

of the mixture, but that our mixture will never be completely dry.
With this assumption Bst ⊂ Bwt .

The Lagrangian velocity of each constituent is defined from the
flow map kinematics as Vα (X, t) = ∂ϕα

∂t (X, t) and the Eulerian
(or world-space) velocity is defined as vα (x, t) = Vα (ϕα

−1
(x, t), t)

where ϕα
−1
(x, t) is the inverse flow map of the species α . This is the

standard relationship between Lagrangian and Eulerian representa-
tions, but done with respect to the individual species flow maps. We
use Fα (X, t) = ∂ϕα

∂X (X, t) to denote the Jacobian of the constituent
mappings (or deformation gradients) and Jα = det(Fα ) to denote
their determinants. Intuitively, the deviation of Fα (X, t) from or-
thogonality indicates how non-rigid the motion is local to material
point X and Jα expresses the local volume gain (Jα > 1) or loss
(Jα < 1). Furthermore, we use ϕ : B0 × [0,T ] → R3 to denote the
flow map of the mixture. It is related to the Eulerian velocity of the
mixture v as ∂ϕ

∂t (X, t) = v(ϕ(X, t), t). The deformation gradient of
the mixture and its determinant are denoted as F and J respectively.

Following [Atkin and Craine 1976], the mass and momentum den-
sities of the species are denoted as ρα : Bαt → R and ρα vα : Bαt →

R respectively. The mass and momentum densities of the mixture
are defined as the respective sums ρ =

∑
α ρα and ρv =

∑
α ρα vα .

With this convention, the velocity of the mixture is defined via
mass average v =

∑
α ρα vα∑
α ρα . This mass averaged notion of velocity

defines the motion of the mixture from the individual species, and
we emphasize that it follows directly from conservation of mass
and momentum considerations. Furthermore, in our formulation we
assume that the mass density of the gas ρд is negligible compared to
that of the water and solid and that the density of water is initially
spatially constant and equal to ρw0 . With these assumptions the
velocity of the mixture follows as v ≈

ρwvw+ρsvs
ρw+ρs .

Lastly, we use Θ : B0 × [0,T ] → R to refer to the material-space
temperature of the solid and θ : Bt × [0,T ] → R as the world-space
temperature. They are related through θ (ϕ(X, t), t) = Θ(X, t).

3.1 Conservation of mass and momentum
Following [Atkin and Craine 1976], we assume each constituent
obeys conservation of mass with respect to its own motion Dα ρα

Dt +

ρα∇ · vα = 0 where Dα f
Dt =

∂f
∂t +

∂f
∂x v

α is the material derivative
with respect to motion α . By considering the mass in an arbitrary

Fig. 4. Lava Cake. A lava cake is initialized as a homogeneous batter and
baked in a ramekin, then plated and cut open, the molten center flows out.

subset of Ωα
t ⊂ Bαt this can equivalently be expressed as

d

dt

∫
Ωα
t

ραdx =
∫
Ωα
t

dρα

dt
dx +

∫
∂Ωα

t

ρα vα · nds(x) = 0 (2)

Momentum balance for each constituent can similarly be expressed
as

d

dt

∫
Ωα
t

ρα vαdx =
∫
Ωα
t

(fα + pα )dx +
∫
∂Ωα

t

tαds(x)

where fα and tα are the external body force and traction on phase
α , and the pα term stands for the transfer of momentum between
the constituents. We refer the reader to [Atkin and Craine 1976]
for a more detailed derivation and motivation of these balances and
the momentum exchanges between them. However, we note the
mathematical relation
d

dt

∫
Ωα
t

ρα vαdx =
∫
Ωα
t

d

dt
(ρα vα )dx +

∫
∂Ωα

t

ρα vα ⊗ vα · nds(x)

(3)

which states that the rate of change of the momentum of species α
in the region Ωα

t varies based on the rate of change of the Eulerian
momentum as well as the effect of the change of Ωα

t under the
motion of the species, as this will be useful for later derivations.

In contrast to other multi-species MPM approaches, e.g. Yerro et
al. [2015], we consider conservation relative to the motion of the
solid constituent. While the balance laws of the mixture are most
naturally expressed in terms of its own motion, this can complicate
the numerical method since it would typically require explicitly
tracking the mixture motion. Instead, we follow the convention of
Zhao et al. [Zhao and Papadopoulos 2013] to express mass and mo-
mentum conservation of the mixture relative to the solid constituent
since it does not require explicit resolution of the mixture flow map.

First, we note that the rate of change of the mass of water in Ωs
t

due to motion of the solid is
d

dt

∫
Ωs
t

ρwdx =
∫
Ωs
t

dρw

dt
dx +

∫
∂Ωs

t

ρwvs · nds(x). (4)

Here the time derivative takes into account the change in the set Ωs
t

and its effect as the domain of integration. Consider the case when
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Ωw
t = Ωs

t at a given time t . In this case the sets are equal, but may
not be so for earlier times t̂ < t , e.g. Ωw

t̂
, Ωs

t̂
, since they evolve

under the respective constituent motions via Equation (1). We can
subtract Equation (2) (in the case of α = w) from Equation (4) to
yield an expression of conservation of water mass with respect to
motion of the solid

d

dt

∫
Ωs
t

ρwdx +
∫
∂Ωs

t

ρw (vw − vs ) · nds(x) = 0.

Wehenceforth use qw = ρw (vw−vs ) to denote the density weighted
velocity of the water relative to the solid. Since the setΩs

t is arbitrary,
conservation of mass of the water with respect to the motion of the
solid can be expressed as

Dsρw

Dt
+ ρw∇ · vs + ∇ · qw = 0, x ∈ Bst . (5)

As in the case of water mass, the rate of change of water mo-
mentum with respect to the motion of the solid can be expressed
as
d

dt

∫
Ωs
t

ρwvwdx =
∫
Ωs
t

d

dt
(ρwvw )dx +

∫
∂Ωs

t

ρwvw ⊗ vs · nds(x).

(6)

Again as with water mass, by considering coincident sets at time t ,
Ωs
t = Ωw

t and subtracting Equation (3) (in the case of α = w) from
Equation (6), we can conclude

d

dt

∫
Ωs
t

ρwvwdx =
d

dt

∫
Ωw
t

ρwvwdx −
∫
∂Ωs

t

vw ⊗ qw · nds(x).

We can use this equality to express conservation of momentum of
the mixture relative to the motion of the solid constituent as

d

dt

∫
Ωs
t

ρvdx

=
d

dt

∫
Ωs
t

(ρsvs + ρwvw )dx

=
d

dt

∫
Ωs
t

ρsvsdx +
d

dt

∫
Ωw
t

ρwvwdx −
∫
∂Ωs

t

vw ⊗ qw · nds(x)

=

∫
Ωs
t

(fs + ps )dx +
∫
∂Ωs

t

tsds(x) +
∫
Ωw
t

(fw + pw )dx

+

∫
∂Ωs

t

twds(x) −
∫
∂Ωs

t

vw ⊗ qw · nds(x)

=

∫
Ωs
t

fdx +
∫
∂Ωs

t

tds(x) −
∫
∂Ωs

t

vw ⊗ qw · nds(x)

where f = fs + fw is the total body force on the mixture, and
t = ts + tw is the total traction and the sum of the momentum
exchange terms pw + ps = 0 is assumed to be zero [Atkin and
Craine 1976]. Therefore, since the set Ωs

t ⊂ Bst is arbitrary, we can
conclude that conservation of momentum of the mixture can be
expressed with respect to motion of the solid constituent as

Dsρv
Dt

+ ρv∇ · vs = f + ∇ · σ − ∇ ·
(
vw ⊗ qw

)
, x ∈ Bst . (7)

Here σ is the Cauchy stress in the mixture and it is related to the
total traction of the mixture as t = σn.

Fig. 5. S’more. The left column depicts a marshmallow roasting on the
stovetop. Coloring is based on temperature. We press the marshmallow
between two crackers (right column) and the melted interior flows out.

3.2 Fick’s Law
We assume that the motion of the liquid phase (relative to the solid
phase) qw is restricted to diffusion in the mixture; Fick’s law [1855]
states that

qw = −Kθρw∇s

where K > 0 is a material diffusivity constant, and s = Vw

V stands
for the saturation level of the dough, which is in the form of a
volume fraction whereV is a local volume of the mixture andVw is
the local volume of water in the mixture. Intuitively, this means that
water content in the mixture flows from regions of higher saturation
to regions of lower saturation at a rate that depends both on the
material diffusivity K as well as the dough temperature θ .
We note that the density of water ρw can be expressed in terms

of the saturation s as

ρw =
mw

V
=
mw

Vw
Vw

V
= ρw0 s . (8)

Furthermore, we use qw · n = βwθs for the boundary conditions
in Equation (5) where βw is a material constant that represents the
rate of water mass loss due to exterior conditions.

4 HEAT TRANSFER
Heat flow through the material obeys the first and second law of
thermodynamics, and following [Gonzalez and Stuart 2008] we
summarize our heat energy balance equation as

ρα
Dθ

Dt
= ∇ · (κ∇θ ) − θcλ∇ · v, x ∈ Bt . (9)

Here, α is the specific heat at constant volume which controls the
rate at which temperature changes for a given amount of heating;
and κ is the thermal conductivity which controls the speed with
which heat diffuses through the body. cλ controls rate of temper-
ature decrease resulting from thermal expansion and λ is a Lamé
coefficient. Intuitively, since temperature measures the kinetic en-
ergy density at small scales, increases in material volume will tend
to cool the material. We note that this effect was not considered
in previous MPM work on thermal effects. We refer readers to the
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supplemental technical document for the derivation [Ding et al.
2019]. Lastly, the heat flow boundary condition is

κ∇θ · n = β(θ − θout ), x ∈ ∂Bt

where n is the outward normal, θout is the ambient temperature
outside of the material and β controls the rate of temperature change
that results from heat transfer with the ambient space.

5 CONSTITUTIVE MODEL
Again following [Atkin and Craine 1976], the stress in the mixture
is a sum of the stresses in the solid, gas and water constituents

σ = σ s + σд + σw .

We note that although this is the Cauchy stress with respect to the
configuration of the mixture, it can be expressed in the domain of the
solid constituent in Equation (7). Here we discuss the constitutive
models we use for each of the constituent species.

5.1 Solid stress
We assume the solid phase is itself a complex mixture of constituents
which may include flour, fat, leavening agent, salt, sugar, or egg.
These ingredients create a mixture material with a wide range of
complex, non-Newtonian rheological behaviors whose properties,
depending on temperature, vary from nearly liquid to nearly solid.
Ideally each phase would be included in the mixture model, however
to reduce complexity we instead adopt a temperature dependent
viscoelastoplasticity model for the solid phase. This allows us to
efficiently reproduce a wide range of complex rheological behaviors
without the need to track each of the many species.

5.2 Elastic stress
We use a multiplicative decomposition of the deformation in the
solid phase Fs = Fs,EFs,P where Fs,E is the elastic component of
the motion that will be penalized by the potential energy density
and Fs,P is the permanent deformation associated with the plasticity
[Bonet and Wood 2008]. The stress in the solid phase arises from
the potential energy density and thermal expansion as

σ s =
τ s,E

J s
− cλJ sθ . (10)

where τ s,E is the elastic Kirchhoff stress defined in terms of the
elastic potential as τ s,E = ∂Ψ

∂Fs,E F
s,E−T and c is the same param-

eter that appears in Equation (9). The last term is due to thermal
expansion and we refer the reader to [Ding et al. 2019; Gonzalez
and Stuart 2008] for its derivation. Intuitively, as the material is
heated, this term contributes an expansional pressure proportionate
to temperature. We note that the elastic potential will have further
temperature dependence from the thermal effects of plasticity (see
Section 5.3). Our choice of potential is

Ψ(Fs,E ) =
1
2
λ(tr(ϵ))2 + µϵ : ϵ

where ϵ = 1
2 log(F

s,EFs,ET ) is the elastic Hencky strain in the solid.
Here µ and λ are the Lamé coefficients. Note that the cλ term gives
rise to a temperature varying positive (expansional) pressure. We
also note that our primary motivation for adopting this potential

Fig. 6. Dough Pull and Twist. We apply the same pull and twist motion
to dough cylinders of varying yield stress and viscosity parameters. The
viscosity increases from bottom to top, and yield stress increases from left
to right.

is to simplify discrete plastic integration as in [Gaume et al. 2018;
Klár et al. 2016]. This simplicity is a consequence of its property
τ s,E = Cϵ where C = 2µI + λI ⊗ I is the isotropic fourth order
elastic stiffness tensor and I is the fourth order identity tensor.
Furthermore, it is for this reason that we introduce the notion of
the Kirchhoff stress in Equation (10) despite being generally less
intuitive than the Cauchy stress.

5.3 Viscoplasticity
While the potential energy varies with the elastic portion of the
decomposition, the evolution of the plastic portion is defined in
terms of a yield condition that identifies states of stress consistent
with observed material behavior. We represent the yield condition in
terms of the Kirchhoff stress τ = Jσ and a signed distance function
f (τ ) where f (τ ) ≤ 0 indicates a state of physically meaningful
stress. We express this evolution of the plastic flow and its relation
to the yield condition in terms of the left Cauchy-Green strain
bE = Fs,EFs,ET

DsbE

Dt
=
∂vs

∂x
bE + bE

∂vs

∂x

T
+ Lvs bE . (11)

Here Ls
vbE is the Lie derivative with respect to the motion of the

solid and is defined in terms of the yield condition. We use an
associative flow rule LvbE = −2γ ∂f

∂τ b
E where γ is the flow rate,

and ∂f
∂τ b

E specifies the direction of maximum energy dissipation
[Bonet and Wood 2008]. For rate independent plasticity γ is chosen
so that the stress satisfies the yield condition f (τ ) ≤ 0. In the case
of viscoplasticity we do not restrict the stress to always satisfy the
yield condition; instead we choose the rate as

γ =
1
η

∂д

∂ f
(f (τ ))

where η = η(θ ) is a viscosity penalty parameter, д(f ) is a monotonic
function for positive f and zero otherwise. It is chosen to penalize
states of stress outside the yield surface without making adherence
to the condition of a hard constraint. For simplicity, we use д(f ) =
1
2 f

2 whenever f is positive, and zero otherwise. Note that there is
no plastic flowwhen the stress is inside the yield surface since in this
case f (τ ) ≤ 0 and therefore γ = 0 since the argument to ∂д

∂f is non-
positive. Lastly, we also note that as η → 0, γ is chosen as in the rate
independent case. We demonstrate the effect of different plasticity
parameters with a dough pull and twist example, see Figure 6.

ACM Trans. Graph., Vol. 38, No. 6, Article 192. Publication date: November 2019.



A Thermomechanical Material Point Method for Baking and Cooking • 192:7

Fig. 7. Yield Surface. We visualize the yield surface with different choices
of porosity. The yield surface is an ellipsoidal shape in the upper half-plane.
In the limit nд → 0, the yield conditions becomes equivalent to a von Mises
type criterion.

5.3.1 Yield condition. We use a modified temperature and porosity
dependent Cam clay yield condition [Roscoe and Burland 1968].
This model is typically used for porous viscoelastoplastic materials
and gives rise to a wide range of behaviors similar to those exhibited
by the solid phase mixture for baking materials. This yield condition
is ellipsoidal in principle stress space (Figure 7) and is given by

f (τ ) =
9

4 ln2
(
1
np

) (
7
2n

p + 1
) p2 + q2 − τy (θ )

2 ≤ 0 (12)

where p = − 1
3 tr(τ ) is the mean normal stress, q =

√
3
2 ∥τ + pI∥F is

the effective stress (proportional to magnitude of deviatoric stress)
and τy (θ ) is the yield stress. np ∈ (0, 1) is the gas porosity of the
solid-gas mixture (see Section 5.4). We adopt the model of [Haghi
and Anand 1992] where the coefficient ofp is a monotonic increasing
function of np and vise versa. Note that in the limit np → 0, the
yield function becomes f (τ ) = q2 − τ 2y ≤ 0, which is a von Mises
type yield criterion equivalent to the viscoplastic formulation of
[Yue et al. 2015]. Intuitively, a more porous solid mixture (np > 0)
will have limits on the degree to which it can achieve cohesion. This
cohesion limit is expressed in terms of the tip of the ellipse on the
negative portion of the p axis.

5.3.2 Temperature dependence. We model the viscosity parameter
η and yield stress τy as piecewise linear functions of temperature in
order to track the melting and gelatinization of the dough that are
often observed during baking. In the initial stage of heating, the fat
in the dough, if present, would soften and melt, causing the mixture
to appear less viscous and more inelastic. Flour gelatinization takes
place later on which increases the elastic strength of the mixture,
and this process cannot be reversed during baking. Based on this
intuition we set η to be a non-negative monotonic non-increasing
function ofθ , and τy decreasing initially then increasingwith respect
to temperature, as shown in Figure 8. The parameters are fixed once
the material reaches the gelatinization temperature. We follow this
progression of plasticity parameters with respect to temperature
during baking. The actual values vary among the different examples
for optimal visual effects.

5.4 Gas stress
We model the effect of the leavening agents in the mixture with a
chemical reaction that creates carbon dioxide (CO2). The CO2 then
expands under heating to drive the rising of the mixture during the
baking process. Wemodel the chemical reaction with the differential

Fig. 8. Temperature Dependent Plasticity. We plot the change in yield
stress (left) and viscosity (right) with temperature. The marked temper-
atures θ1, θ2, θ3, θ4 stand for typical temperature ranges for fridge, room
environment, fat melting point, and starch gelatinization respectively.

equation [Nicolas et al. 2014; Zhang and Datta 2006]

dnд

dt
= αдR0 exp

(
−

(
θ − θr
∆θ

)2)
.

Here nд stands for the molar count of CO2 per unit volume, αд is a
material constant, R0 is initial mass density of the mixture, θr is a
reference temperature at which the chemical reaction reaches its
peak rate (Figure 12), and ∆θ is another constant scaling parameter.
We define the gas porosity of the solid material as np = V д

V s , where
V д stands for a local representative gas volume, and V s is the local
representative volume of the solid/gas mixture. We assume that
porosity changes as the solid mixture flows plastically as

np = J s,P − 1 + np0

where np0 is the initial gas porosity. Intuitively, as the material is
kneaded it will gain volume plastically, allowing more room for
gas. With these conventions, nд

J snp measures the amount of gas in
the pore volume. Therefore, using the ideal gas law to model the
pressure of CO2, the stress in the gas constituent is

σд = −
nдRθ

J snp
I (13)

where R is the ideal gas constant.

5.5 Water stress
We adopt the saturation-based pressure model of [Zhao and Pa-
padopoulos 2013] for the stress in the water phase. As the water
leaves a region of the material, the mixture experiences a negative
pressure and will tend to contract inwards as the elastic stress is
allowed to compress the mixture in the absence of liquid. When wa-
ter enters a region, the material will experience a positive pressure
as the liquid pushes on the mixture. This is modeled with the linear
relation

σw = −ĉ(s − s0)I (14)

where s0 is the initial saturation.

6 DISCRETIZATION
Our discretization is designed to track the solid constituents. We
store xnp = ϕs (Xp , t

n ) to denote the time tn location of discrete ma-
terial particleXp under the solid motion and an initial representative
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Fig. 9. Dehydrating Grapes. Grapes are dried at constant temperature.
The smooth exterior (left) wrinkles up due to water loss of the interior
flesh(right).

volume for each particleV s,0
p that partitions the initial domain of the

solid. Additionally, we store the translational vnp =
∂ϕs

∂t (Xp , t
n ), and

affine An
p ≈ ∂vs

∂x (xnp , t
n ) velocities and elastic/plastic decomposition

of the deformation gradient Fs,Enp Fs,Pnp = Fs,np =
∂ϕs

∂X (Xp , t
n ) of

the solid phase. The watermw,n
p and solidms

p masses are also stored.
We note that the solid mass does not change with time since we
track the solid motion in a Lagrangian manner. Furthermore the
water mass satisfiesmw,n

p = ρw (xnp , t
n )V s,n

p whereV s,n
p = J s,np V s,0

p
is a representative volume around xnp in the time tn configuration of
the solid and J s,np = det(Fs,np ). We store the water saturation snp and
the density weighted velocity of the water relative to the solid qw,n

p .
We also store the temperature θnp and molar count per volume nдp .

6.1 Time step
We update the discrete state from time tn to tn+1 by discretizing the
governing equations with MPM. This requires transferring various
data from particles to grid using grid based interpolating functions.
We use quadratic B-splines as in [Jiang et al. 2017a]. We let Ni (x)
denote the grid based interpolating function associated with grid
node xi andwip = Ni (xnp ), ∇wip = ∇Ni (xnp ) for short. We transfer
the mass, velocity, temperature and particle representative volume
to the grid. The momentum is transferred using APIC [Jiang et al.
2015]

ms,n
i =

∑
p

ms
pwip , m

w,n
i =

∑
p

mw,n
p wip (15)

vs,ni =
1

ms,n
i

∑
p

ms
pwip

(
vs,np + An

p (xi − xnp )
)

(16)

ms,n
i θni =

∑
p

ms,n
p wipθ

n
p (17)

V s,n
i =

∑
p

J s,np V s,0
p wip (18)

Here mα,n
i are grid masses, vs,ni is grid solid velocity and θni is

grid temperature. V s,n
i is the representative volume of grid node i

which we use to update grid saturation (see Section 6.2). We update
the grid water mass and temperature from Equations (5) and (9)
respectively to obtain m̃w,n+1

i and θn+1i . Details for these updates
are provided in Sections 6.2 and 6.3 respectively. Once these are
updated, we update the particle mass, saturation, temperature and

Fig. 10. Grape Saturation View. We visualize the saturation evolution of
the grapes. The color changes from blue to green then to red with decreasing
saturation.

density weighted velocity of the water relative to the solid from

mw,n+1
p =mw,n

p

(
1 +

∑
i

∆mw,n
i

mw,n
i

wip

)
(19)

sn+1p =
mw,n+1
p

V s,n
p ρw0

(20)

θn+1p = θn+1p +
∑
i

(
θn+1i − θni

)
wip (21)

qw,n+1
p = −kθn+1p

∑
i
sn+1i ∇wipρ

w
0 s

n+1
p (22)

Here ∆mw,n
i is from Equation (25) and represents the change in

the grid water mass; sn+1i in Equation (22) is the time tn+1 saturation
of grid node i and is used to compute saturation gradient needed for
the update of the density weighted velocity of the water relative to
the solid. The weighting of the transfer in Equation (20) is chosen
so that the total change in particle water mass is equal to the total
change in grid water mass. Also, the update in Equation (21) follows

from Equation (8) since ρw,n+1
p =

mw,n+1
p

V s,n
p

, ρw,n+1
p = sn+1p ρw0 where

ρw0 is the initial, spatially constant water mass density.
The last step in our update is to compute the updated grid solid

velocity ṽs,n+1i from the discrete conservation of momentum which
is outlined in Section 6.4. We then compute the updated particle
constant vn+1p and linear An+1

p velocities from ṽs,n+1i using APIC
[Jiang et al. 2015] and the particle positions as xn+1p = xn+1p +∆tvn+1p .
Lastly, a trial state of elastic stress is computed assuming no plastic
flow over the time step as

Fs,Etrp =

(
I + ∆t

∑
i
ṽs,n+1i ∇wip

)
FE,np

which is then finally projected to FE,sn+1p according to plastic flow
using the details in Section 6.5.
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Fig. 11. Pancake. Batter is poured into the pan (top row) and the pancake
is fliped after the bottom is cooked(bottom row). The coloring is based on
temperature.

Fig. 12. CO2 Creation Rate. The carbon dioxide creation rate is a bell-
shaped curve with the peak at θr . Bigger ∆θ results in a flatter curve
(right).

6.2 Water mass update
Our discretization is based on the weak form of Equation (5). Given
an arbitrary function u : Bstn → R we can conclude

0 =
∫
Bstn

Dsρw

Dt
u + ρw∇ · vsu + u∇ · qwdx

=

∫
Bstn

Dsρw

Dt
u + ρw∇ · vsu − ∇u · qwdx +

∫
∂Bstn

uβwθsds(x)

by integrating by parts and using the water flux boundary condition
in Section 3.2. Furthermore, we note that∫

Bstn

Dsρw

Dt
(x, t)u(x)dx (23)

=

∫
Bs0

d

dt
ρw (ϕs (X, tn ), tn )u(ϕs (X, tn ))J s (X, tn )dX

≈

∫
Bs0

ρw (ϕs (X, tn+1), tn+1) − ρw (ϕs (X, tn ), tn )
∆t

u(ϕs (X, tn ))J s (X, tn )dX

=

∫
Bstn

ρ̃w (x, tn+1) − ρw (x, tn )
∆t

u(x)dx

where ρ̃w (x, tn+1) = ρw (ϕs (ϕs
−1
(x, tn ), tn+1), tn+1) andϕs

−1
(x, tn )

is the inverse flowmap of the solid constituents. Intuitively, ρ̃(x, tn+1)
is the time tn+1 mass density but pulled back to the time tn spatial
configuration of the solid constituents.

Letting u(x) =
∑
j ujNj (x) be defined from interpolation over the

grid, we can then conclude

0 =
∫
Bstn

(
Dsρw

Dt
+ ρw∇ · vs

) ∑
j
ujNj −

∑
j
uj∇Nj · qwdx

+

∫
∂Bstn

∑
j
ujNjβ

wθsds(x)

≈

∫
Bstn

(
ρ̃w − ρw

∆t
+ ρw∇ · vs

) ∑
j
ujNj −

∑
j
uj∇Nj · qwdx

+

∫
∂Bstn

∑
j
ujNjβ

wθsds(x).

If we use the positions xnp as quadrature points with weights V s,n
p

for volume integrals and Ss,np for surface integrals, then we can
further approximate as

0 =
1
∆t

∑
p
(ρ̃w,n+1
p − ρw,n

p )V s,n
p

∑
j
ujw jp+∑

p
ρw,n
p V s,n

p ∇ · vs (xnp , t
n )

∑
j
ujw jp −

∑
p

V s,n
p qw,n

p ·
∑
j
uj∇w jp

+
∑

p∈∂Bstn

βwθnp s
n
p S

s,n
p

∑
j
ujw jp

where ρ̃w,n+1
p = ρ̃(xnp , t

n+1) and ρw,n
p = ρ(xnp , t

n ). Since this must
hold for any uj , we choose uj = δi j to conclude

0 =
∑
p

(ρ̃w,n+1
p − ρw,n

p )

∆t
V s,n
p wip +

∑
p

ρw,n
p V s,n

p ∇ · vs (xnp , t
n )wip

−
∑
p

V s,n
p qw,n

p · ∇wip +
∑

p∈∂Bstn

βwθnp s
n
p S

s,n
p wip

for all i . Noting that ρw,n
p V s,n

p = mw,n
p , we can see that mw,n

i =∑
p ρ

w,n
p V s,n

p wip from Equation (15). With this observation, we can
see that the discrete equations give us the following update of the
grid water mass

m̃w,n+1
i =mw,n

i + ∆mw,n
i (24)

∆mw,n
i = −∆t

∑
p

mw,n
p

∑
k

vs,nk · ∇wkpwip

+ ∆t
∑
p

V s,n
p qw,n

p · ∇wip − ∆t
∑

p∈∂Bstn

βwθnp s
n
p S

s,n
p wip (25)

where we use ∇ · vs (xnp , t
n ) =

∑
k v

s,n
k · ∇wkp with vs,nk from

Equation (16). Here m̃w,n+1
i =

∑
p ρ̃

w,n+1
p wipV

s,n
p is the updated

grid mass computed from the time tn+1 density and time tn grid.
We use m̃w,n+1

i to compute time tn+1 grid node saturations from

sn+1i =
m̃w,n+1
i

ρw0 V s,n
i

where V s,n
i is the representative volume of the grid

node from Equation (18). This follows since m̃w,n+1
i ≈ ρw,n+1

i V s,n
i

and ρw,n+1
i = sn+1i ρw0 where ρw0 is the initial spatially constant

mass density of water.

ACM Trans. Graph., Vol. 38, No. 6, Article 192. Publication date: November 2019.



192:10 • M. Ding et al

Fig. 13. Dehydrating Apple Slices. Apple slices with various initial thick-
ness are dried at constant temperature. The skin wrinkles and the slices
buckle up and experience significant volume loss.

6.3 Heat transfer update
The discretization of Equation (9) is similar to that of the water mass
update and [Stomakhin et al. 2014]. We summarize it as

1
∆t

(
αms,n

i θn+1i − αms,n
i θni

)
=

∑
p∈∂Bstn

Spβ(θ
n+γ
p − θout )wip

+
∑
p

V s,n
p

©«
∑
j
θ
n+γ
j ∇w jp · ∇wip −

cλθp

J s,np

∑
k

vs,nk · ∇wkpwip
ª®¬

where γ = 0 for forward Euler and γ = 1 for backward Euler. We
note that the last term expresses the effects of thermal expansion,
which were not considered in [Stomakhin et al. 2014].

6.4 Grid momentum update
We discretize Equation (7) in a variational MPM manner to derive
the grid momentum and velocity update. Multiplying Equation (7)
by an arbitrary function u(x) =

∑
i uiNi (x), taking an arbitrary ui ,

using ρv = ρvs+qw and treating the Ds ρvs
Dt term as in Equation (23),

we can conclude∫
Bstn

(
ρ̃ṽs + q̃w − ρvs − qw

∆t
+ (ρvs + qw )∇ · vs

)
Nidx =∫

Bstn
fNi −

(
σ − vw ⊗ qw

)
∇Nidx +

∫
∂Bstn

(
t + βwθsvw

)
Nids(x)

with the convention that function f̃ is inherited as a function over
Bstn as f̃ = f (ϕs (ϕs

−1
(x, tn ), tn+1), tn+1) for functions f defined

over Bstn+1 .
Using the particle positions xnp as the quadrature points with

weights V s,n
p = J s,np V s,0

p we conclude∑
p

ρ̃n+1p ṽs,n+1p wipV
s,n
p + q̃w,n+1

p wipV
s,n
p = (26)∑

p
ρnp v

s,n
p wipV

s,n
p + qw,n

p wipV
s,n
p + ∆t∆(ρvs )i (27)

∆(ρvs )i = −
∑
p

(
ρnp v

s,n
p + qw,n

p

)
wipV

s,n
p

∑
k

vs,nk · ∇wkp

+
∑
p

fnpwip −

(
σn
p − vw,n

p ⊗ vs,np
)
V s,n
p ∇wip

+
∑

p∈∂Bstn

Spwip

(
tnp + β

wθnp s
n
p v

w,n
p

)

Fig. 14. Return Mapping. The projections of two trial state stresses are
illustrated. With η → 0 (left) the trial stresses are projected onto the yield
surface; with η > 0 (right) the projections have the same directions but
only a portion of the distance.

where ρ̃n+1p = ρ̃(xnp , t
n+1), ρnp = ρ(xnp , t

n ) = snp ρ
w
0 +

ms
p

V s,n
p

, and

q̃w,n+1
p = q̃w (xnp , t

n+1) is from Equation (22). We note that Equa-
tion (22) does not have a tilde superscript because it will be used
with particle positions xn+1p at the end of the time step, whereas
q̃w (xnp , t

n+1) is the same value, but being usedwith time tn positions
xnp . Noting that

∑
p ρ

n
p v

s,n
p wipV

s,n
p ≈mn

i v
s,n
i , we use Equation (26)

as an update for the solid grid velocity as

ṽs,n+1i =
1

m̃n+1
i

(
mn
i v

s,n
i + ∆t∆(ρvs )i +

∑
p

∆qpwipV
s,n
p

)
,

where ∆qp = qw,n
p − q̃w,n+1

p . We note that m̃n+1
i = m̃w,n+1

i +ms,n
i

where m̃w,n+1
i is from Equation (25) andms,n

i is from Equation (15).
We note thatms,n

i does not change with time in this update since we
track the motion of the solid constituents in a Lagrangian manner.
Lastly we note that σn

p is a sum of the stresses in Equations (10),
(13) and (14).

6.5 Return mapping
Plasticity is applied by first assuming all deformation is elastic and
getting a trial stress τ s,Etr = ∂Ψ

∂Fs,E (F
s,Etr
p )Fs,Etrp

−T
from Equa-

tion (10). Following [Simo and Meschke 1993] we can write the
return mapping discretization of Equations (11) and (12) in the form
of a constrained minimization problem:

τ s,En+1 = argminτ ∈E
1
2
(τ s,Etr − τ )TC−1(τ s,Etr − τ )

where E stands for the elastic region bounded by the yield surface
with f (τ ) ≤ 0, and C is the elastic tensor from τ s,E = Cϵ . For
viscoplasticity the hard constraint that the minimization be over
E is replaced by a penalty term from viscosity and we have the
unconstrained minimization

τ s,En+1 = argmin
1
2
(τ s,Etr − τ )TC−1(τ s,Etr − τ ) +

∆t

η
д(f (τ ))

where ∆t is the time step. To solve the minimization, we take the de-
rivative with respect to τ and set it equal to zero. The elastic Hencky
strain can then be obtained trivially as ϵs,En+1p = C−1τ s,En+1. Then
the new deformation gradient can be obtained using Fs,En+1p =

Us,En+1p exp
(
Λs,En+1p

) (
Vs,En+1p

)T
, where Λs,En+1p is derived from
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Fig. 15. Bread. The top left shows raw dough, one is left intact and the
other two have different slits on top. When baked(right) the breads expand
in size and the slits open up. The bread without an initial slit also cracked
on the top surface.

the eigen decomposition ϵs,En+1p = Us,En+1p Λs,En+1p

(
Us,En+1p

)T
,

and Us,En+1p and Vs,En+1p are derived from the singular value de-

compostion Fs,Etrp = Us,En+1p Σs,Etrp

(
Vs,En+1p

)T
respectively. This

can be solved efficiently in terms of the eigenvalues of τ s,En+1 and
is similar to the methods in [Gaume et al. 2018; Klár et al. 2016]. We
refer the reader to [Ding et al. 2019] for specific details and illustrate
the return mapping in the zero porosity case in Figure 14.

6.6 Boundary conditions
We need to treat discrete boundary integrals in various terms in
Sections 6.2, 6.3 and 6.4. We define the set of boundary particles
p ∈ ∂Bstn as follows. First, we define a grid node xi to be on the
boundary if it has a neighboring grid node with zero massmn

i . Each
boundary grid node then appends the particle closest it to the set of
boundary particles. We assume that each boundary particle owns
a local spherical region, the volume of which is its representative
volume, i.e. we have

V s,n
p =

4π
3
(r s,np )3

where r s,np is the approximated radius of the sphere. The surface area
of the particle is then computed as π (r s,np )2 which can be written
in the form

Ss,np ≈ (
9π
16

(V s,n
p )2)1/3

This serves as the quadrature weight at position xnp when needed
for the surface integral approximation in Sections 6.2, 6.3 and 6.4.

7 RESULTS
We demonstrate the efficacy of our model with several examples
that illustrate the baking and cooking process of mixtures with
various textures, and show our method is able to capture some of
the key visual effects. Runtime performance is listed in Table 1 and
the parameters used are listed in Table 2. Simulations are run on an
Intel Xeon E5-2687W v4 system with 48 threads and an Intel Xeon
X5690 with 12 threads. We report the computation runtime in terms
of average seconds per frame. Particle counts are given for each
example. In general, we chose ∆x so that there are approximately six
particles per grid cell in the initial state. ∆t is chosen in an adaptive

Fig. 16. Tearing Bread. We demonstrate tearing of the bread after baking.
Surface meshes are generated through the mesh post-process of [Wang
et al. 2019] and are used for rendering.

manner restricted by a CFL condition that no particles are allowed
to travel more than a portion of ∆x in each time step.

7.1 Effect of Water Loss
We demonstrate the effect of the water content evolution with the
simple scenario of fruit dehydration. In Figure 13 we simulate the
process of drying apple slices on a rack. The flesh part is visco-
elastoplastic with zero porosity and high initial saturation. Fruit
skin contains much less moisture than the flesh and thus is modelled
as a two-dimensional elastic sheet with zero water content. We use
the Lagrangian energy approach of Jiang et al. [Jiang et al. 2015] to
couple the elastic surface. Ambient temperature is set to be constant.
The apple skin wrinkles and the slices twist and buckle out of the
plane, matching real life observations. Figure 9 shows drying grapes
with a similar setting. Water evaporates through the skin of the
grapes and results in shrinkage. The skin again has a much lower
water content and thus experiences less shrinkage, causing themany
wrinkles and folds as it tries to retain its surface area while losing
volume. Figure 10 visualizes the saturation change of the grapes,
coloring from blue to green and finally red for decreasing saturation.

7.2 Temperature Dependent Plasticity
Figure 5 depicts a marshmallow roasting on an electric stove. The
marshmallow is modeled as a homogeneous mixture in its initial
state. Our model achieves the visual effect of an initial volume gain
from the thermal expansion followed by a slightly burnt crust with
a gooey center by using temperature dependent plasticity parame-
ters. The coloration of the marshmallow is also rendered according
to temperature. Our model can successfully track the significant
texture changes of the mixture during the baking process. Figure 4
demonstrates baking of a lava cake in a ramekin. The initial batter is
again a homogeneous mixture, and our model captures its transition
to a cake with fully baked exterior and the characteristic molten
center. We also show pouring liquid pancake batter into a frying
pan followed by cooking to get a soft elastic pancake that can be
flipped, see Figure 11. In Figure 3, we test baking the same cookie
dough with varying oven settings. The three cookies on the bottom
row from left to right are baked under decreasing temperatures.
With the temperature being too high, the dough gets heated up very
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Fig. 17. Cookie comparison. Cookies are baked with decreasing tempera-
ture from left to right. Top row: Stomakhin et al. [2014] and bottom row:
our model.

quickly, so the cookie does not get enough time to spread, and the
dough baked under low temperature has the opposite issue. This
comparison matches closely to real life observations. The temper-
ature is also visualized in the right column. The color varies from
blue to green then to red with increasing temperature.

7.3 Leavening
The influence of the chemical reaction aspect of our model is best
illustrated by baking cookies with varying amount of leavening
agents, as is shown in Figure 3. The top row of the cookies from
left to right contains decreasing amount of leaveners and are baked
under the same temperature. Too much leavening agent would
produce a very tall cookie, while no leavener at all yields a flat
one. The CO2 creation and the corresponding pressure is the main
contribution to the rising and expansion in our muffin (Figure 2),
lava cake (Figure 4) and bread (Figure 15) examples.

7.4 Fracture
Our simulations are particle-based from their MPM conception, but
for simulations with fracture, we construct a reference tetrahedron
mesh in the initial state for rendering purposes and adopt the post-
processing techniques from [Wang et al. 2019] to obtain clean and
consistent surfacing of the fractured material. The reference meshes
are generated with TetWild [Hu et al. 2018]. We demonstrate these
effects with tearing examples in Figure 2 and Figure 16. By modeling
the combined effect of water diffusion, temperature change and
chemical leavening, our method is able to achieve visually realistic
baking and tearing of a muffin, see Figure 2. Drawing slits on the
bread dough helps with the rising during baking as well as the
formation of a nice crust. In Figure 15we compare the baking process
of bread with and without scoring the surface beforehand. Notice
how the bread cracks in a more controlled and appealing manner
when there are slits on the surface.

7.5 Comparisons
In this section we demonstrate the strength of our model by compar-
ing with some existing techniques and/or simpler approaches. We
first compare our model against [Stomakhin et al. 2014] with baking

Fig. 18. Marshmallow comparison. The marshmallow (left column) has
a uniform texture, it gets pressed down by the cracker then springs back
a little after the pressure is released; after roasting (right column) a crust
forms on the exterior and the interior is melted. When pressed the crust
breaks and the inside oozes out.

cookies and heating a pancake. Figure 17 shows baking cookies
under different temperatures. Our model is able to produce more
realistic domed cookies with the addition of chemical reactions,
while the model from Stomakhin et al. [2014] produces cookies with
flat or even dented tops. Figure 19 depicts pouring pancake batter
into a pan, due to lack of viscoplasticity the bottom pancake batter
experiences undesirable and hard-to-control spreading, while our
model successfully captures a more realistic thick batter texture. We
further demonstrate the thermal effect of our model with Figure 18,
where we press the marshmallow between two crackers then re-
lease, the different textures of the marshmallow before and after
roasting is clearly illustrated. The marshmallow without thermal
effects is similar to the model in [Yue et al. 2015] since they do not
address the thermal change of the material during roasting. The
higher complexity of our model allow us to capture more details in
the baking and cooking processes.

8 DISCUSSION AND LIMITATIONS
We demonstrate that our method is capable of recreating a num-
ber of representative baking and cooking examples. However, our
approach has a number of limitations. First, we simplify the mix-
ture of non-water or gas constituents to be represented by a single
phase. A more principled approach could be taken by including each
of the flour, fat, egg, etc species in a mixture model. This would
undoubtably allow for a wider range of dough rheologies. Also,
our kinematic assumption that the gas does not move relative to
the solid mixture precludes diffusion of the gas through the dough.
Lastly, due to the high-complexity of our coupled porous therm-
mechanical model, we did not investigate fully implicit treatment of
water diffusion and material stiffness. While we did not experience
a need for excessively small time steps given the low stiffness and
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Fig. 19. Pancake comparison. Pancake batter is poured from a pitcher
into a pan. Top row: our model and bottom row: Stomakhin et al. [2014].

Table 1. All simulations were run on either Intel Xeon E5-2690 v4 system
with 48 threads (Machine 1) or Intel Xeon X5690 with 12 threads (Machine 2).
Simulation time is measured in average seconds per frame. Element denotes
number of tetrahedra in the volumetric mesh or number of triangles in the
surface mesh when applicable. Particle denotes the total number of MPM
particles in the simulation.

Simulation Time Machine Element Particle

Bread bake (Fig 15) 20 1 3.2M 620K
Bread tear (Fig 16) 12 1 3.2M 620K
Cookies (per cookie) (Fig 3) 48 1 6.3M 1.2M
Pancake (Fig 11) 25 1 N/A 1M
Dough (per dough) (Fig 6) 11 1 2.7M 500K
Grape dehydration (Fig 9) 100 1 96K (surface) 346K
Muffin (Fig 2) 150 2 5.4M 1.2M
Apple dehydration (Fig 13) 25 2 76K (surface) 541K
Lava cake (Fig 4) 145 2 10.8M 2M
S’more (Fig 5) 130 2 N/A 1.1M

Table 2. We provide a list of the main parameters used in the simulations.
The changes in yield stress and viscosity follow the curves in Figure 8.

Parameters Bread Cookies Pancake Muffin Lava cake S’more

Young’s 2e3 4e4 4e4 4e4 2e3 4e4
Density 500 500 500 500 500 500
Specific heat 20 20 20 20 20 200
κ 100 30 200 100 250 150
Yield surface 20 20 2 2 1 200
η 500 500 50 10 10 60
θ0 1 0 0 0 0 0
Ambient θ 100 150 N/A 105 100 400
Ambient β 100 25 N/A 75 110 120
Conductive θ 100 150 200 105 100 400
Conductive β 150 35 70 150 110 360
αд 0.03 0.015 0.02 0.03 0.025 N/A
θr 40 40 30 40 20 N/A
∆θ 20 20 20 20 10 N/A
∆x 0.01 0.0051 0.016 0.008 0.0075 0.003
∆t 4e-3 3e-4 5e-4 2e-4 4e-4 2e-4

diffusion time scales in the materials considered, baked goods with
faster water diffusion rates and material wave speeds could benefit
from a fully implicit discretization.
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