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Fig. 1. Montage. Left: Simulation of a mannequin breaking through an elastic wall. Middle: Hair of a dancer
in motion. Right: Colored sand and elastic characters are poured into a cabinet, setting rigid pinwheels in
motion.

We present a new hybrid Lagrangian Material Point Method for simulating elastic objects like hair, rubber,
and soft tissues that utilizes a Lagrangian mesh for internal force computation and an Eulerian mesh for self
collision as well as coupling with external materials. While recent Material Point Method (MPM) techniques
allow for natural simulation of hyperelastic materials represented with Lagrangian meshes, they utilize an
updated Lagrangian discretization where the Eulerian grid degrees of freedom are used to take variations of the
potential energy. This often coarsens the degrees of freedom of the Lagrangian mesh and can lead to artifacts.
We develop a hybrid approach that retains Lagrangian degrees of freedom while still allowing for natural
coupling with other materials simulated with traditional MPM, e.g. sand, snow, etc. Furthermore, while recent
MPM advances allow for resolution of frictional contact with codimensional simulation of hyperelasticity, they
do not generalize to the case of volumetric materials. We show that our hybrid approach resolves these issues.
We demonstrate the efficacy of our technique with examples that involve elastic soft tissues coupled with
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kinematic skeletons, extreme deformation, and coupling with multiple elastoplastic materials. Our approach
also naturally allows for two-way rigid body coupling.
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1 INTRODUCTION
The Material Point Method (MPM) [1994] was developed as a generalization of the Particle-In-Cell
(PIC/FLIP) [1986; 1964] method to elastoplastic materials, and like PIC/FLIP, it has proven to be
a very effective tool for many computer graphics problems. Phenomena like fracture/topological
change, multiple material interactions, and challenging self contact scenarios with complex geomet-
ric domains are all commonplace in computer graphics applications. MPM naturally handles many
of these. This was first demonstrated for snow dynamics by Stomakhin et al. [2013]. Since then a
wide variety of other phenomena, particularly those that can be described as elastoplastic, have
been simulated with MPM in graphics applications. This includes the dynamics of non-Newtonian
fluids and foams [Ram et al. 2015; Yue et al. 2015], melting [Gao et al. 2017; Stomakhin et al. 2014],
porous media [Fei et al. 2018; Gao et al. 2018a; Tampubolon et al. 2017], and frictional contact
between granular materials [Daviet and Bertails-Descoubes 2016; Klár et al. 2016; Yue et al. 2018].
MPM has also been used to simulate contact and collision with volumetric elastic objects [Jiang
et al. 2015; Zhu et al. 2017] and frictional contact between thin hyperelastic materials like clothing
and hair [Fei et al. 2018; Guo et al. 2018; Jiang et al. 2017]. In this paper, we refer to methods that
follows Sulsky et al.’s original idea to use the updated Lagrangian view and grid interpolation
functions to compute deformation as traditional MPM.

However, there are drawbacks associated with MPM collision resolution. As noted in [Fu et al. 2017;
Hammerquist and Nairn 2017; Jiang et al. 2015], information is typically lost when transferring
from particles to grid, since there are generally many more particles than grid nodes. Even when
utilizing Lagrangian meshes in the updated Lagrangian view as in [Guo et al. 2018; Jiang et al. 2017,
2015; Zhu et al. 2017] information is still lost which can lead to persistent wrinkles and apparent
interaction at a distance, as discussed in [Guo et al. 2018; Jiang et al. 2017]. Volumetric elastic
materials suffer from two additional drawbacks. First, while contact for materials such as grains
[2016; 2016], membranes/shells and fibers [Guo et al. 2018; Jiang et al. 2017] can be envisioned
as a continuum process where elastoplasticity associated with frictional contact is defined by
the directions orthogonal to the grain, curve or surface, volumetric objects have no non-elastic
directions for which to apply the condition. Hence, all self-collision resolution will result from
volumetric elasticity, which means that frictional sliding cannot be regulated in a Coulomb fashion
via plasticity. The second drawback is that the Eulerian grid spacing must be approximately the
same as the edge lengths in the volumetric Lagrangian mesh. If the Eulerian grid resolution is
significantly lower, there is non-negligible information loss in the transfer from particles to grid,
and there will be spurious interaction at a distance. If the grid resolution is significantly higher,
collisions will not be resolved (see Figure 7). This is problematic because visual separation between
elastic bodies is proportionate to the Eulerian grid spacing, which therefore mandates high spatial
resolution of the volumetric Lagrangian mesh to reduce separation thickness. This problem is not
present when simulating cloth and hair because they admit the use of elastoplasticity frictional
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Fig. 2. Coupling hair with snow. Our method captures the dynamics of a snowball falling on a head of
hair.

contact particles [Guo et al. 2018; Jiang et al. 2017] and arbitrarily many can be added on each
surface element or hair segment to accommodate high spatial grid resolution.

Our novel hybrid Lagrangian Material Point Method is designed to alleviate these drawbacks.
Our approach utilizes more of the Lagrangian degrees of freedom to minimize artifacts while
retaining aspects of MPM that allow for collision resolution without suffering from information
loss when going from particles to grid. Our approach also resolves the Eulerian grid size (and artifi-
cial separation distance) limitations associated with volumetric elasticity, allowing for Coulomb
frictional contact with volumetric elastic meshes. We support coupling with materials simulated
with standard MPM discretizations and we provide for simple two-way coupling with rigid bodies.
We demonstrate the effectiveness of our techniques with skinning, clothing, hair and multi-material
simulation examples. In summary, our contributions are:
• Novel collision impulses defined from the MPM particle to grid transfers that resolve the
drawbacks of the volumetric approaches in [Jiang et al. 2015; Zhu et al. 2017].
• A hybrid elastoplastic model for hair and strand self collision that supports bending, torsion
and stretching resistance and that does not suffer from information loss in particle to grid
transfers.
• Two-way coupling with rigid bodies.
• Removal of numerical cohesion between phases.
• Coupling with materials discretized with traditional MPM.

2 PREVIOUS WORK
Our method fits most naturally within the context of PIC/MPM methods, but also with hybrid
approaches and those that make use of Lagrangian and Eulerian techniques for self collision. Here
we discuss the relevant computer graphics techniques within these categories.

McAdams et al. [2009] use a hybrid PIC/geometric impulse technique to resolve self collision
of many thin straight hairs. They assume that hair is incompressible and interpret the PIC grid
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Fig. 3. Braids. Our method captures the dynamics of a braid by robustly resolving many collisions.

projection as a Lagrangian repulsion. They then apply the collision impulses of Bridson et al. [2002]
to catch cases not resolved on the grid. Yue et al. [2018] develop a hybrid MPM/discrete element
(DEM) technique. The DEM approach resolves frictional contact directly through constrained
optimization and is generally much more detailed, but more expensive. MPM is used where the
expense of DEM would be prohibitive, and their technique resolves the combination of these
two representations. Sifakis et al. [2007] also use multiple representations of elastic materials to
help resolve contact, including the use of a high-resolution surfacemesh to aid in collision resolution.

Pai and colleagues [2013; 2014; 2011] pioneered a class of methods using Eulerian techniques
for self collision with elastic objects. Li et al. [2013] show that the Eulerian view is useful for
resolving close self contact between skin and other soft tissues. Teng et al. [2016] show that the
approach can be naturally used to couple with incompressible fluids. Hybrid Eulerian/Lagrangian
techniques are also useful for simulating crowd dynamics [Golas et al. 2014; Narain et al. 2009].
Our method is also similar to those of Müller et al [2015], Sifakis et al. [2008] and Wu et al. [2016].
These approaches mesh the space surrounding elastic objects and enforce positive volume and/or
incompressibility constraints respectively on the air surrounding the objects to resolve collisions.

MPM techniques have proven very effective in graphics applications. Stomakhin et al. [2013]
and Gaume et al. [2018] use the method to simulate snow. Various others have simulated more
general granular materials like sand [Daviet and Bertails-Descoubes 2016; Klár et al. 2016], porous
water and sand mixtures [Gao et al. 2018a; Tampubolon et al. 2017], viscoelastic foams and sponges
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Fig. 4. MPM particle coupling. Elastic Jell-O’s with varying stiffness are two-way coupled with MPM
particles.

[Ram et al. 2015; Yue et al. 2015], coupling with rigid bodies and cutting [Hu et al. 2018], volumetric
elastic materials [Jiang et al. 2015; Zhu et al. 2017], thin elastic membranes and shells [Guo et al.
2018; Jiang et al. 2017], and even wet clothing [Fei et al. 2018]. Various improvements to the method
have been made, including removal of noise with angular momentum conservation [Fu et al. 2017;
Jiang et al. 2015], adaptive spatial discretization [Gao et al. 2017], temporally asynchronous time
stepping [Fang et al. 2018], and GPU acceleration [Gao et al. 2018b]. Also of relevance is the
approach of Huang et al. [2011] to N-body collision, which has been used for self collision for
fracture debris in graphical simulation of ductile fracture by Hegemann et al. [2013].

3 MATHEMATICAL BACKGROUND
Here we describe the governing equations for volumetric elastic solids and hair strands. We define
the deformation of an elastic body as a map from its undeformed configuration consisting of points
X to its deformed configuration consisting of points x at time t by x(t ) = ϕ (X, t ). We refer to the
spatial derivative of this map as the deformation gradient F = ∂ϕ

∂X . The deformation gradient is
used as a measure of strain, where its deviation from orthogonality indicates the local violation of
rigid body motion. For hair, we decompose the deformation gradient into elastic and plastic parts
F = FEFP , where FE is the elastic deformation and FP is the plastic deformation, as a means to
resolve stress constraints associated with frictional contact as in [Guo et al. 2018; Jiang et al. 2017;
Klár et al. 2016]. For elastic solids, we do not use an elastoplastic decomposition. Instead, we model
elastic objects using hyperelasticity [Bonet and Wood 2008], where the potential energy in the
system increases as ϕ deviates from rigid body motion. For frictional collision with hair strands,
the potential energy density penalizes FE . We adopt the fixed corotational model from [Stomakhin
et al. 2012] for elastic solids, the Discrete Elastic Rod (DER) model from [Bergou et al. 2010, 2008]
for hair and strands, and the St. Venant-Kirchhoff Hencky model from [Klár et al. 2016] for hair
collision resistance.

The governing equations for the material deformation ϕ are described from conservation of mass
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Fig. 5. Hair. A walking mannequin with a full head of hair.

and momentum
Dρ

Dt
+ ρ∇ · v = 0, ρ

Dv
Dt
= ∇ · σ + ρg (1)

where

σ =
1
J

PFE
T
, P =

∂ψ

∂FE
, J = det(F). (2)

ρ is material density, v is velocity, g is gravity constant, P is the first Piola-Kirchhoff stress, and
σ is the Cauchy stress. ψ is the potential energy density, which we assume varies with FE . For
volumetric objects we do not use an elastoplastic decomposition and can so assume FE = F in this
case.

3.1 Hyperelastic volumetric solids
For volumetric elastic objects, we adopt the fixed corotational model from [Stomakhin et al. 2012],
though any hyperelastic potential may be used. With this choice, the stress satisfies

ψ (F) = µ
∑
i

(σi − 1)2 +
λ

2
(J − 1)2,

P = µ (F − R) + λ(J − 1) JF−T .
(3)

Here µ and λ are the Lamé coefficients that express the material resistance for deformation and
volume change, and σi are the singular values of the deformation gradient F computed according
to the polar SVD convention of [Irving et al. 2004] to allow for extreme deformation.

3.2 Hair strands
We follow the codimensional approaches of [Guo et al. 2018; Jiang et al. 2017] and penalize frictional
contact between hairs and thin strands using a continuum assumption. Following their formulation,
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(a)(a)

(c)(c)

(b)(b)

Fig. 6. MPMOverview. The steps in the MPM update are: (a) The Lagrangian quantities (black and red) are
transferred to an Eulerian grid (blue), which may be viewed as a new FEM mesh. (b) Grid nodes receive new
velocities (purple) from updated Lagrangian elastic updates and are temporarily moved with those velocities.
(c) The Lagrangian quantities are updated by interpolating from the new positions and velocities of the
Eulerian grid nodes. The triangles are colored based on the amount of compression.

we decompose the deformation of the material ϕ into the deformation of the individual strands ϕs

and the deformation associated with frictional contact interactions among strands ϕd , namely

ϕ = ϕd ◦ ϕs . (4)

Consequently, the deformation gradient is decomposed into F = FdFs . We treat the deformation
of the strand Fs as purely elastic using standard rod and curve models [Bergou et al. 2010, 2008;
Bertails et al. 2006; McAdams et al. 2009], and decompose Fd into elastic and plastic components,

Fd = Fd,EFd,P (5)

to handle frictional contact among hair strands.

We utilize the continuum Coulomb friction view from [Guo et al. 2018; Jiang et al. 2017; Klár
et al. 2016] to place a constraint on admissible stress. Shear stresses resisting sliding motions
between strands cannot be larger than a frictional constant times the normal stress holding them
together. When the shear stress exceeds that threshold, the strands will start to slide against
each other, inducing plastic deformation. Mathematically, the Coulomb friction model states that
sTσn + cFnTσn ≤ 0, where n is the normal to the contact surface, s is any unit vector along the
contact surface, and cF is the friction coefficient. While Jiang et al. [2017] considers only directions
n orthogonal to the tangent of the midline of the strand, we enforce this condition for all directions.
The continuum assumption in Jiang et al. [2017] is that of a tube of parallel strands, which holds
well for simulating knits but is less effective in the more complicated contact scenarios that occur
when simulating hair and thin strands. To accomodate this more general constraint, we use an
isotropic potential to resist collision, rather than the transversely isotropic potential of Jiang et al.
[2017].

With this convention, we define the potential energy as a combination of the DER energy for
strand elasticity and the St. Venant-Kirchhoff Hencky energy from [Klár et al. 2016] to penalize
collision and shearing,

Ψ = Ψs (Fd,E ) + ΨDER (Fs ). (6)
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The St.Venant-Kirchhoff Hencky energy, chosen for the ease of plasticity return mapping, takes the
form

Ψs =

∫
Ω
ψ sdV (7)

ψ s = µtr
(
(ln Σ)2

)
+
1
2
λ

(
tr (ln Σ)2

)
(8)

where Fd,E = UΣVT is the singular value decomposition of the elastic deformation, Ω is the original
domain the material occupies, and µ and λ are Lamé parameters. The DER energy ΨDER consists of
stretching, twisting, and bending potentials. We refer readers to [Bergou et al. 2010] for details on
this energy and the time parallel transport required to calculate the force. The derivatives of the
potential with respect to deformation are needed for computation and satisfy

∂ψ S

∂FE
(FE ) = U

(
2µΣ−1 ln(Σ) + λΣ−1 ln(Σ)

)
VT . (9)

4 DISCRETIZATION: HYPERELASTIC SOLIDS
Our hybrid approach utilizes aspects of traditional Finite Element Methods (FEM) for hyperelasticity
[Sifakis and Barbic 2012]. However, our approach is largely motivated by the the MPM treatment
of volumetric objects from Jiang et al. [2015] and Zhu et al. [2017]. These methods were originally
designed to prevent the numerical fracture that would occur with volumetric objects in traditional
particle-based MPM. We first discuss this approach and how it resolves self collision, followed by
its drawbacks.

In Jiang et al. [2015] and Zhu et al. [2017], the state at time tn consists of particles with posi-
tions xnp connected with a tetrahedron mesh with elements indexed by e , as in Lagrangian FEM.
Furthermore, particles store velocities vnp and massesmp . The MPM time step from time tn to tn+1
consists of three steps: (1) mass (mp ) and momentum (mpvnp ) are transferred from particles to the
grid using weights (wn

ip = N (xnp − xi)) that describe the degree of interaction between particle p
and grid node i and which are defined by Eulerian grid interpolation functions N (x), (2) the grid
momentum (mn

i vni ) is updated in a variational way from the potential energy in the system and
finally, (3) the motion of the grid under the updated momentum is interpolated to the particles.
The process of updating the grid momentum in step (2) uses the updated Lagrangian [Belytschko
et al. 2013; Guilkey and Weiss 2003; Jiang et al. 2016] convention where the time tn configuration
serves as the reference, rather than the t = 0 configuration in a Lagrangian discretization. With
this updated Lagrangian convention, the particles xnp are moved by the grid via interpolation
xn+1p =

∑
i xn+1i wn

ip , and they change the potential energy via the per-element deformation gradient
computed as in standard FEM (see Equation (10)). The grid node vertices xi, which are allowed to
move temporarily as xn+1i = xi + ∆tvn+1i , serve as degrees of freedom. When the spatial discretiza-
tion is done variationally from the potential energy, this step is almost identically what is done
in a Lagrangian FEM discretization of elastoplasticity [Sifakis and Barbic 2012]. In this sense, the
method can be interpreted as continually remeshing the domain of the material, where the transfer
process in step (1) is all that is needed to define the mesh at a given time step (see Figure 6). We
refer the reader to [Jiang et al. 2015, 2016] for more basic MPM details.

The MPM update only considers the variation of the potential energy with respect to grid de-
grees of freedom; nothing explicit is done to model self collision. Self collision is modeled as if it
were an elastic phenomenon, and by virtue of switching between particle and grid representations.
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We describe these two aspects of collision resolution as type (i) and type (ii).

Type (i): The grid transfers in step (1) ultimately remesh the domain (see Figure 6). By trans-
ferring to the grid, and using an updated Lagrangian formulation where the grid nodes are updated
based on the variation of the potential energy in Equation (6), MPM essentially uses a new FEM
mesh (blue in Figure 6) to calculate the elastic update. This process creates new connections in the
updated Lagrangian mesh and once they are made, collision inducing modes are penalized via the
potential energy in the system (see Figure 6). For example, collision trajectories of the particles will
induce compression in elements of the Eulerian grid which would be penalized from the elastic
potential in the system.

Type (ii): In particle systems, collisions occur because of discontinuities in the velocity, e.g. consider
two particles next to each other with opposing velocities. Transferring to and from the grid smooths
the particle velocities, which ultimately prevents collision. Since the motion of the Eulerian grid
after the momentum update in step (2) is interpolated to the particles using continuous interpolating
functions, particle collisions cannot occur as long as the Eulerian mesh is not tangled by the motion.
This can be guaranteed with a CFL restriction since the tangling is a temporal discretization artifact.
In fact, an updated Lagrangian MPM simulation with no constitutive model on the particles at all
can still prevent material collision, simply by virtue of the type (ii) interactions (see Figure 7).

These modes of collision resolution are simplistic, but limited by several drawbacks. For volu-
metric objects, the type (i) interactions are unable to regulate the potential energy with a plasticity
model derived from Coulomb friction as in [Guo et al. 2018; Jiang et al. 2017]. The mesh is volumetric
and therefore does not have the flexibility of codimension that can be used to model contact through
the continuum. There are no directions left for plastic flow of the type designed in [Jiang et al. 2017]
that could be used to satisfy the Coulomb friction stress constraints. This can lead to unregulated
resistance to shearing and cohesion as the elastic potential will still increase with these modes,
even though that is not consistent with Coulomb friction (see Figure 9). Furthermore, the updated
Lagrangian treatment of the stress-based momentum leads to visual interaction at a distance and
persistent wrinkling when the grid resolution is too low [Fu et al. 2017; Hammerquist and Nairn
2017; Jiang et al. 2015]. Additionally, when the grid resolution is too high, type (i) and type (ii)
interactions have no effect and the method does not prevent collision (see Figure 7). To prevent
this, the Lagrangian mesh resolution must be about the same as the Eulerian grid resolution. This
is suboptimal when a coarse Lagrangian mesh suffices to resolve deformation.

4.1 Hybrid Lagrangian MPM for elastic solids
Our method is designed by abandoning the type (i) collision prevention for volumetric meshes
and the updated Lagrangian integration of the elastic forces in general. Instead we use a split-
ting approach where elastic forces are applied in a Lagrangian way, and type (ii) interactions
are integrated by MPM with no elastic force computation. We achieve this by introducing col-
lision particles xnq which are sampled uniformly at random on the boundary of the volumetric
elastic mesh. The mass of the collision particlemq is found by dividing the mass of the bound-
ary element by the number of collision particles on that element. These particles are not true
degrees of freedom and are tied to the mesh during the Lagrangian update. They are then used
to generate type (ii) collision prevention. We show that their response defines a type of impulse
that can be regulated by Coulomb friction and applied to the mesh at the end of the time step.
Furthermore, because the collision particles can be sampled at a density proportional to the grid
spacing, we show that they remove the effect of grid resolution on collision resolution (see Figure 8).
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Fig. 7. Type (ii) interations with different ∆x , columns indicating consecutive time steps. At appropi-
ate grid resolution (middle row), MPM prevents material collision even without constitutive model. However,
when the grid resolution is too low (top row), objects are separated at a distance, and when the grid resolution
is too high (bottom row), the MPM grids may miss a collision.

Our approach uses the same discrete state as in [Jiang et al. 2015]: time tn , particle positions
xnp connected with a tetrahedron mesh, velocities vnp , and massesmp . In addition, we store the
collision particles xnq sampled on the boundary of the tetrahedron mesh. We summarize essential
steps in the algorithm for updating our discrete state to time tn+1 below.
(1) Lagrangian update: Update particle velocities from potential-energy-based and body forces,

and interpolate velocities to collision particles. §4.2
(2) Transfer to grid: Transfer mass and momentum from collision particles to grid. §4.3.1
(3) Transfer to collision particles: Transfer velocities from grid back to collision particles.

§4.3.2
(4) Apply impulses: Calculate the impulse applied to each boundary mesh using the velocity

change in collision particles and update velocities of particles on the boundary mesh.
(5) Update positions: Update particle positions and elastic states. §4.5.

4.2 Lagrangian update
We consider the case of piecewise linear interpolation over a tetrahedron mesh. The deformation
gradient varies in a piecewise constant manner with each element, which we denote as Fe . With

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 2, Article 17. Publication date: July 2019.



A Hybrid Material Point Method for Frictional Contact with Diverse Materials 17:11

*

*
* *

*

*
*

*
*

*

*

* *

*
*

**
* * * *

*
*

*
*

*
*
* *

*
*
*
*
****

*
*

Fig. 8. Collision particles. Sampling density based on Eulerian grid ∆x .

Fig. 9. Friction. Our method (right) removes the excessive numerical friction common to traditional MPM
(left), and regulates friction with the Coulomb friction model. With low friction coefficients, the colored sand
freely slides off the bunnies.

this convention, the FEM force per particle fp can be seen as the negative gradient of the the total
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potential energy Ψ with respect to particle positions:

Fe (x) =
∑
p

xp
∂Ñp

∂X
(Xe ) (10)

Ψ(x) =
∑
e

ψ (Fe (x))V 0
e (11)

fp (x) = −
∑
e

∂ψ

∂F
(Fe (x)) :

∂Fe
∂xp

(x)V 0
e (12)

= −
∑
e

P(Fe (x))
∂Ñp

∂X
V 0
e . (13)

Here x ∈ R3np refers to the vector of all particles xp , where np is the total number of particles, Ψ is
the total potential energy which is a sum of tetrahedron element contributionsψ (Fe )V 0

e , whereψ is
the potential energy density in Equation (3), V 0

e is the volume of the element in the initial state, Ñp
is the piecewise linear interpolating function associated with particle xp , and Xe is the tetrahedron
barycenter in the time t = 0 configuration. We refer the reader to Sifakis and Barbic [2012] for a
more detailed derivation.

The FEM update uses the usual Lagrangian view of the governing physics. The internal force
is the negative gradient of the potential energy in Equation (13). Particle velocities are updated
according to forces computed at particle positions xn+αp , where symplectic Euler integration corre-
sponds to α = 0 and backward Euler corresponds to α = 1:

v∗p = vnp + ∆t
fp (xn+α )

mp
. (14)

When damping is required while using symplectic Euler integration, we construct a background
Eulerian grid with ∆x comparable to the mesh size and transfer the velocity to and then back from
the grid using APIC with RPIC damping as described in [Jiang et al. 2017]. We can even perform
the transfers multiple times when more damping is desired. For interior particles, vn+1p = v∗p . On
the other hand, for particles on the boundary mesh, we interpolate their velocities and positions to
collision particles using

v∗q =
∑
p

bpqv∗p (15)

xnq =
∑
p

bpqxnp (16)

where bpq is the barycentric weight of the point q relative to p. We also assign to each point q an
outward normal vector nq inherited from the face of the mesh that q is tied to.

4.3 Grid transfers
4.3.1 Particle to Grid. To process collision and contact, we transfer mass and momentum from
collision particles xnq to grid nodes xi using standard MPM transfers
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Fig. 10. Element inversion. MPM (left) has difficulties when elements invert, especially with low grid
resolution (yellow and red). Our method (right) handles element inversions with ease.

mn
i =

∑
q

wn
iqmq (17)

v∗i =
1
mn

i

∑
q

wn
iqmqv∗q . (18)

Here wn
iq = N (xnq − xi) is the weight of interaction between particle xnq and grid node xi, as in

standard MPM.

4.3.2 Grid to Particle. Without any constitutive model on the grid, we proceed directly to the grid
to particle step. The grid to particle transfer defines the velocity local to collision particle xnq in
terms of v⋆q from

v⋆q =
∑

i

wn
iqv∗i . (19)

4.4 Apply impulse
Since the velocity v⋆q is interpolated from an updated Lagrangian background grid, the boundary
of the mesh is safe from self-intersection if it is moved with v⋆q . However, the change may not be
consistent with a Coulomb friction interaction, and the response can even be cohesive. In the case
of a cohesive response after collision, we reject the change. That is, when

vr = v⋆q − v∗q (20)
vr · nq ≥ 0 (21)
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the updated Lagrangian mesh detects a separation instead of collision, and the collision particle
keeps the velocity from the FEM update v∗q . On the other hand, if

vr · nq < 0 (22)

we apply an elastic impulse Iqnq to the mesh at position xnq where Iq = 2mqvr · nq . We also
allow for friction using Coulomb’s model with the friction parameter µ. When an elastic impulse
of magnitude Iq would be applied based on condition (22), Coulomb friction admits a change in
magnitude of tangential velocity of at most −µ Iq

mq
. So the combined velocity change on collision

particle q is then

∆vq =
Iqnq
mq
+min

(
∥vt ∥,−µ

Iq

mq

)
vt
∥vt ∥
, (23)

where vt = vr − vr · nqnq . We then transfer this change to the particles p as

∆vp = vn+1p − v∗p =
∑
q

b̃pq∆vq (24)

where

b̃pq =
bpqmq∑
r bprmr

(25)

are the normalized weights defined from the barycentric weights used to transfer from particles to
collision particles.

4.5 Update positions and elastic state
For boundary particles, we adopt symplectic Euler time integration

vn+1p = vnp + ∆vp (26)

xn+1p = xnp + ∆tv
n+1
p (27)

For interior particles, the update is in accordance with either symplectic Euler or backward Euler,
depending on the choice of α in Equation (14):

vn+1p = v∗p (28)

xn+1p = xnp + ∆tv
n+1
p . (29)

5 DISCRETIZATION: HAIR STRANDS
As discussed in Section §3.2, we decompose the motion of the hair into that representing individual
strand deformation ϕs and that of frictional sliding and compression ϕd . As in [Guo et al. 2018;
Jiang et al. 2017], we discretize these two motions in different ways. Since ϕs only considers single
hair strands, it suffices to discretize the energy and forces with traditional FEM. We do this using
the approach of [Bergou et al. 2010, 2008]. However, unlike the approaches in [Guo et al. 2018; Jiang
et al. 2017], we do not make use of an updated Lagrangian discretization of ϕs . To do so severely
limits the ability of the hair to resolve collisions without a prohibitively high-resolution Eulerian
grid (see Figure 11). Rather, we split the updates of ϕs and ϕd , where the velocities for ϕs are first
updated in a Lagrangian manner and ϕd with a standard updated Lagrangian MPM discretization.
We then adopt the approach of McAdams et al. [2009] where the grid-based updates are interpreted
as impulsive changes in velocities on the strand that prevent self collision. However, by foregoing
the updated Lagrangian discretization of ϕs , we cannot guarantee that self collision is prevented
and thus revert to geometric impulses after the correction from ϕd .
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Fig. 11. Hair comparison with MPM. Top row: MPM simulation of hair exhibits excessive friction and
cohesion whereas our method captures the rich dynamics of individual strands.Bottom row:We demonstrate
the dynamics of two hair strands, colored black and red, at two time steps. MPM (left) results in uncontrolled
friction. Hybrid method without geometric collision (middle) misses the collision. Our method (right) captures
the sliding behavior between two strands.

The discrete state for each strand at time tn consists of centerline particle positions xnp , with
velocities vnp , massesmp , APIC matrix Cn

p , and elastic and plastic deformation gradients associated
withϕd , FE,np and FP,np . Furthermore, each edge e connecting particles xne and xne+1 stores orientation
angle θe as in [Bergou et al. 2010]. We summarize essential steps in the algorithm for updating the
discrete state to time tn+1 below.
(1) Lagrangian update: Update particle velocities from strand model of [Bergou et al. 2010].

§5.1
(2) Transfer to grid: Transfer mass and momentum from particles to grid using APIC as in

[2015].
(3) Update grid momentum: Compute effect of collision potential and friction elastoplasticity.

§5.2
(4) Apply impulses: Interpolate the change in grid velocity to particles and then apply geometric

collision handling. §5.3
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(5) Update positions: Update particle positions as in Equation (29).

5.1 Lagrangian update
We adopt a time splitting scheme for the velocity update where the velocity is first updated according
to the force induced by the energy ΨDER . Specifically, we have

v∗p = vnp + ∆t
fp
mp

(30)

where fp is calculated as in [Bergou et al. 2010]. This new velocity v∗p is then transferred to the
MPM background grid v∗i as in Section 4.3.1.

5.2 Grid momentum update
The grid momentum is then updated according to the elastoplasticity model for the ϕs motion and
associated potential energy Ψs :

v⋆i = v∗i −
dt

mn
i

∑
p

∂ψ S

∂FE
(F̃Ep (x̃

n+α )) (FE,np )T∇wn
ipV

0
P + ∆tg. (31)

Here, F̃Ep (x̃n+α ) is the trial elastic strain and x̃n+α is the vector of all Eulerian grid node positions,
moved according to

xn+αi = xi + α∆tv⋆i , F̃Ep = (I + α∆t
∑

i

v⋆i ∇w
n
ip )F

E,n
p (32)

where α = 0 corresponds to symplectic Euler and α = 1 corresponds to backward Euler for the grid
momentum update. We also update APIC matrix Cp using grid velocity v⋆i as in [Jiang et al. 2015,
2016].

5.3 Impulses
To interpret the motion in v⋆i as inducing impulsive change in momentum on the midline, we
interpolate the change in the grid velocity to the particles. However, we blend in the updated
Lagrangian response weighted with parameter ξ

v⋆p = (1 − ξ ) *
,
v∗p +

∑
i

(
v⋆i − v∗i

)
wn

ip
+
-
+ ξ

∑
i

v⋆i w
n
ip . (33)

This introduces a bit of the type (i) and type (ii) collision prevention, but without sacrificing
the geometric detail of the Lagrangian motion. This is equivalent to the PIC/FLIP blend used
in [McAdams et al. 2009]. Typically, we introduce ξ = 0.95. However, abandoning the updated
Lagrangian update can leave collisional modes unresolved for hair. We apply geometric collision
handling similar to [Bridson et al. 2002] to resolve remaining collisional modes.

Collision impulses are applied based on proximity between strand edges. We use acceleration
structures for efficient proximity queries as in [Bridson et al. 2002]. However, we use regular
grid-based structures inherent in MPM implementations. We divide the domain into calculation
pads in space with edge length l . Then we extend the pad in the positive axis direction by proximity
threshold δ so that neighboring pads have an overlap of length at least δ and thus any proximity
pair will appear in at least one pad. In parallel, each extended pad collects all segments that have at
least one endpoint contained in the pad, and then registers any proximity pairs contained in its set
of segments. We apply an impulse to any proximity pair on a colliding trajectory as determined
by relative velocity component on the direction separating the pair. The inelastic impulses from
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Fig. 12. Braiding. Two bundles of hair are interwined into a braid and then separated.

[Bridson et al. 2002] are then calculated and distributed to particles. Also as proposed in Bridson
et al. [2002], we divide the total impulse on a particle by the number of impulses it receives from
all pads and perform Jacobi iteration. After a fixed number of iterations, we obtain the particle
velocity vn+1p , and then advect particles using Equation (29).

6 RIGID BODIES
Two-way rigid body coupling may be achieved with a treatment similar to volumetric elastic
objects. We sample collision particles on the boundary in the same fashion as in Section 4.1 and
then uniformly distribute the mass of the rigid body to the collision particles. However, we found
that unlike for volumetric elastic objects, type (ii) interactions on the grid alone are not enough to
resolve collisions. Instead we endow the collision particles with the potential described in [Guo
et al. 2018; Jiang et al. 2017] to penalize contact. Specifically, we update the deformation gradient
Fq from time tn to tn+1 in the following way. Let xα and Xα , α ∈ {0, 1, 2} be the current and initial
positions of the vertices of the triangle that collision particle q is tied to. Let Dq,β = Xβ − X0 be
the undeformed mesh element edge vectors (where β = 1, 2), and d̂Eq,β = xnβ − xn0 be the deformed
edge vectors. We choose each D3 to be unit-length and normal to D1 and D2, and evolve each one
as in traditional MPM via d̂Eq,3 = ∇xqdEq,3. Then F̂Eq = d̂EqD−1q . Following [Guo et al. 2018; Jiang
et al. 2017], we let F̂Eq = QR̂ be the QR decomposition of F̂Eq and design a collision energy density
ψ (R̂) = f (R̂) + д(R̂),

f (R̂) =
{ kc

3 (1 − r̂33)3 0 ≤ r̂33 ≤ 1
0 r̂33 > 1 , д(R̂) =

γ

2
(r̂ 213 + r̂

2
23) (34)

where r̂i j is the ij-th entry of R̂. We resolve the force which is the negative derivative of this energy
on the MPM background grid, and we refer the reader to [Jiang et al. 2015, 2016] for more details.
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Fig. 13. Skin and shirt. The skin of a mannequin is coupled with clothing simulated with MPM.

Plasticity is then applied according to [Guo et al. 2018; Jiang et al. 2017] to give R

r33 =

{
r̂33 0 < r̂33 ≤ 1
1 r̂33 > 1 , rβ3 = h(r̂13, r̂23, r33)r̂β3 (35)

h(r̂13, r̂23, r33) = min
*..
,
1,
cFk

c (1 − r33)2

γ
√
r̂ 213 + r̂

2
23

+//
-

(36)

Finally, we update the deformation gradient with Fn+1q = QR.

Let v∗q =
∑

iw
n
iqv∗i , where v∗i is the grid velocity after the MPM force update, and let vr = v∗q − vq .

If vr · nq < 0, we apply an impulse Iq to the rigid bodies to update velocity v and angular velocity
ω via

Iq =mqvr · nq (37)
vt = vr − vr · nqnq (38)

Iq = Iqnq +mq min
(
∥vt ∥,−µ

Iq

mq

)
vt
∥vt ∥

(39)

vn+1 = vn +
∑
q

Iq
mq

(40)

ωn+1 = ωn +
∑
q

J−1 (r × Iq ) (41)

where r is the vector from the rigid body’s center of mass to the application point of the impulse,
and J is the inertia tensor.

7 COUPLINGWITH TRADITIONAL MPM
Our method easily couples with traditional MPM particles such as snow, sand and clothing. To
prevent numerical cohesion between phases common to MPM, we adopt two separate background
MPM grids, one for volumetric elastic and rigid objects, and the other for general MPM materials.
We denote quantities associated with the two grids with subscripts 1 and 2 respectively. We denote
quantities associated with traditional MPM particles with subscript p and quantities associated
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with quadrature points with subscript q. So we have,

mn
1, i =

∑
q

wn
iqmq ,m

n
2, i =

∑
p

wn
ipmp (42)

v∗1, i =
1

mn
1, i

∑
q

wn
iqmqv∗q (43)

vn2, i =
1

mn
2, i

∑
p

wn
ipmp

(
vp + Cp (xi − xp )

)
(44)

nni =
∑
q wiqnq

∥
∑
q wiqnq ∥

(45)

Grid velocity vn2, i is updated as in [Jiang et al. 2015, 2016] to get v∗2, i. Then the collision between
phases is handled through an inelastic collision on collocated grid nodes.

vr = v∗1, i − v∗2, i (46)
vt = vr − vr · nni nni (47)

Ii = max *
,

mn
2, im

n
1, i

mn
2, i +m

n
1, i

vr · nni , 0+
-

(48)

v∗∗1, i = v∗1, i −
Iini

mn
1, i
−min *

,

µIi
mn

1, i
, ∥vt ∥+

-

vt
∥vt ∥

(49)

vn+12, i = v∗2, i +
Iini

mn
2, i
+min *

,

µIi
mn

2, i
, ∥vt ∥+

-

vt
∥vt ∥

(50)

Finally, we interpolate the the grid velocity vn+12, i to MPM particles with APIC as in [Jiang et al.
2015, 2016], and Equation (19) is replaced with

v⋆q =
∑

i

wn
iqv∗∗1, i. (51)

8 RESULTS
We demonstrate the efficacy of our method with a number of representative examples that illustrate
the dynamics of hair and volumetric objects, and show that our method couples with granular
materials, clothing and rigid bodies. We list the runtime performance for our examples in Table 1.
All simulations were run on an Intel Xeon E5-2690 V2 system with 20 threads and 128GB of RAM.
We report the timing in terms of average seconds of computation per frame. We chose ∆t in an
adaptive manner that is restricted by a CFL condition when the particle velocities are high, i.e., we
do not allow particles to move further than the CFL number times ∆x in a time step.

8.1 Hair
We demonstrate that our method preserves the intricate dynamics of individual hair strands and
robustly handles the numerous collisions among them. In Figure 11, 32 thousand strands of hair
with 60 segments per strand are simulated subject to intense boundary motions. Our algorithm is
able to run this challenging example at 122 seconds per frame. In Figure 3 and Figure 12, we show
that our method effortlessly resolves the intense self collisions occurring in braiding examples.
In Figure 5 and Figure 1 (middle), we show a mannequin with a full head of hair in motions
common in everyday life, such as walking and dancing. In Figure 15, we compare our method
with McAdams et al. [2009] in a numerical experiment where a bundle of hair strands falls and
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Fig. 14. Walking mannequins. Our method handles the numerous collisions occurring in the scene with
walking characters.

bounces off another bundle. The experiments are run with a total of 2700 hair strands with 175
segments per strand. Five iterations of impulse application are applied to resolve the collisions
missed by advecting the segments with the velocity in Equation (33) in our method and the velocity
satisfying incompressibility condition in [McAdams et al. 2009]. Notice that our method preserves
the volume of the hair bundle and does not suffer from numerical cohesion. We run the test for
100 frames until the hair bundles are apparently separated and track the missed collisions in the
process by calculating the collision interactions between pairs of segments using the cubic solve
proposed in [Bridson et al. 2002]. The test using McAdams et al. [2009] registers more than 543
thousand missed collisions whereas the test using our method registers 120 missed collisions. Our
method runs three times faster (see Table 1). Note that our method not only avoids the expensive
Poisson solve for incompressibility, but it also serves as a better approximate collision response
and therefore reduces the runtime and number of missed collisions in the collision impulse step.
We plot the total energy in the test run with our method in Figure 16.

8.2 Volumetric objects
We demonstrate the robustness of our method for resolving collisions between volumetric objects.
Our method correctly resolves frictional sliding without artifacts. In Figure 14, we show a skin
simulation with walking characters in various body shapes. In Figure 9, we compare our approach
with updated Lagrangian MPM, which exhibits excessive cohesion and numerical friction. We also
show that our method removes the requirement of comparable grid and mesh resolution. We use a
moderate resolution Lagrangian mesh to resolve the dynamics of the bunnies and a high resolution
Eulerian grid to resolve more detailed behaviors of the sand. In contrast, updated Lagrangian MPM
would require a high resolution Lagrangian mesh for bunnies in order to resolve collisions between
phases. Furthermore, traditional MPM methods often have difficulties recovering from element
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Fig. 15. Hair tubes comparison. Comparison between McAdams et al. [2009] (top row) and our method
(bottom row) in resolving the collisions between two bundles of hair strands.

inversions, as the particle modes needed to uninvert the material are lost in the tranfers between
particles and the grid due to the type (ii) interactions discussed in Section 4. On the other hand,
our method handles extreme deformation and even element inversion as demonstrated in Figure 10.
MPM fails to recover the original shape of the object when the grid resolution is low and type (ii)
interactions are effective and exhibits high frequency noise when the grid resolution is too high
for type (ii) interactions to be effective. On the other hand, the elastic object recovers its original
shape with any grid resolutions using our method.

8.3 Coupling with MPM and rigid bodies
Our method also supports coupling with rigid bodies as well as traditional MPM particles such as
snow, sand and clothing. In Figure 13, we demonstrate the coupling of soft tissues with clothing
material simulated with MPM as in [Jiang et al. 2017]. In Figure 2, we show a hairy ball that is
first hit by a snowball and then shakes the snow off. In Figure 1 (right), elastic characters and
a column of sand are poured on a series of pinwheels simulated as rigid bodies, setting them in
motion. In Figure 4, colored sand is poured on top of three Jell-O’s with various stiffness, generating
interesting patterns.

9 DISCUSSION AND LIMITATIONS
While our approaches address many shortcomings in existing techniques, there are a number of
limitations that persist. First, while abandoning the transversely isotropic elastoplasticity assump-
tion of Jiang et al. [2017] does improve the resolution of more complicated strand interactions,
as shown in Figure 11, it also causes the potential energy associated with collision and shearing
to interfere with that of the strand. Interestingly, this does not have an effect under extension.
Only under compression of a strand will there be an additional resistance. Furthermore, while our
treatment of rigid body dynamics is useful for coupling with elastoplastic materials like sand, soft
tissues, etc., our approach is not ideally suited for interactions between rigid bodies. Our approach
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Fig. 16. Energy Plot. We plot the total energy as a function of time for the hair tubes test. The energy is
calculated as the sum of elastic and gravitational potential energy and the kinetic energy on the particles.

Time Element # Particle # ∆x CFL

Mannequin (Fig. 14 left) 39 933K 41K/41K 0.05 0.6
Mannequin (Fig. 14 right) 27 641K 31K/31K 0.05 0.6
Pinwheel (Fig. 1 right) 89 93K 930K/57K 0.5 0.6
Bunnies (MPM) (Fig. 9 left) 186 3.97M 2.67M 0.1 0.6
Bunnies (Hybrid) (Fig. 9 right) 66 201K 1.99M/25K 0.1 0.6
Hair ball (MPM) (Fig. 11 top left) 84 1.92M N/A 0.05 0.1
Hair ball (Hybrid) (Fig. 11 top right) 122/83 1.92M N/A 0.05 0.1
Hair tubes ([2009]) (Fig. 15 top) 156/56 47.5K N/A 0.08 0.6
Hair tubes (Hybrid) (Fig. 15 bottom) 55/11 47.5K N/A 0.08 0.6
Skin and shirt (Fig. 13) 3 207K 120K/40K 0.006 0.6
Braiding (Fig. 12) 87/73 372K N/A 0.15 0.2
Braids (Fig. 3) 25/9 323K N/A 0.03 0.2
Hair (Fig. 5) 127/46 1.01M N/A 0.05 0.6
Snow on hair (Fig. 2) 153/38 1.92M 2.16M 0.05 0.2
Wall breaking (Fig. 1 left) 50 933K 2.29M/41K 0.05 0.6
Dancer (Fig. 1 middle) 117/27 490K N/A 0.04 0.2

Table 1. All simulations were run on an Intel Xeon E5-2690 V2 system with 20 threads and 128GB of RAM.
Simulation time is measure in seconds per frame. Time spent on geometric collision per frame is recorded in
the second entry of the timing column where applicable. Element # denotes number of segments for hair
simulations and number of tetrahedra for volumetric simulations. Particle # denotes the total number of
MPM particles, and the number of collision particles are recorded in the second entry where applicable.

fails to resolve simple cases like stacking of a few rigid bodies without penetration and/or grid
based separation artifacts. Lastly, our collision impulses do not provide any geometric guarantees
against self collision, as in e.g. [Bridson et al. 2002]. If large time steps are taken, material will
interpenetrate. In general this can be avoided by obeying a CFL condition, as is generally true with
MPM.
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