
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)
M. Otaduy and Z. Popovic (Editors)

A parallel multigrid Poisson solver for fluids simulation on
large grids

A. McAdams1,2, E. Sifakis1,3, and J. Teran1,3

1University of California, Los Angeles
2Weta Digital 3Walt Disney Animation Studios

Abstract
We present a highly efficient numerical solver for the Poisson equation on irregular voxelized domains supporting
an arbitrary mix of Neumann and Dirichlet boundary conditions. Our approach employs a multigrid cycle as
a preconditioner for the conjugate gradient method, which enables the use of a lightweight, purely geometric
multigrid scheme while drastically improving convergence and robustness on irregular domains. Our method is
designed for parallel execution on shared-memory platforms and poses modest requirements in terms of bandwidth
and memory footprint. Our solver will accommodate as many as 7682×1152 voxels with a memory footprint less
than 16GB, while a full smoke simulation at this resolution fits in 32GB of RAM. Our preconditioned conjugate
gradient solver typically reduces the residual by one order of magnitude every 2 iterations, while each PCG
iteration requires approximately 6.1sec on a 16-core SMP at 7683 resolution. We demonstrate the efficacy of our
method on animations of smoke flow past solid objects and free surface water animations using Poisson pressure
projection at unprecedented resolutions.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; G.1.8 [Numerical Analysis]: Finite difference methods—Multigrid and mul-
tilevel methods

1. Introduction

Incompressible flows have proven very effective at generat-
ing many compelling effects in computer graphics includ-
ing free surface, multiphase and viscoelastic fluids, smoke
and fire. One of the most popular techniques for enforcing
the incompressibility constraint is MAC grid based projec-
tion as pioneered by [HW65]. They showed that for sim-
ulations on a regular Cartesian lattice, staggering velocity
components on cell faces and pressures at cell centers gives
rise to a natural means for projecting such a staggered ve-
locity field to a discretely divergence free counterpart. This
projection is ultimately accomplished by solving a Poisson
equation for the cell centered pressures. Categorization of
the Cartesian domain into air, fluid or solid cells gives rise
to what [BBB07] describe as the “voxelized Poisson equa-
tion” with unknown pressures and equations at each fluid
cell, Dirichlet boundary conditions in each air cell and Neu-
mann boundary conditions at faces separating fluid and solid

cells. This technique for enforcing incompressibility via
voxelized Poisson was originally popularized in computer
graphics by [FM96] who used Successive Over Relaxation
(SOR) to solve the system. [FF01] later showed that incom-
plete Cholesky preconditioned conjugate gradient (ICPCG)
was more efficient. This has since become a very widely
adopted approach for voxelized Poisson and has been used
for smoke [SRF05,MTPS04,FSJ01] and fire [HG09] as well
as continuum models for solids such as sand [ZB05] and
hair [MSW∗09]. The voxelized pressure Poisson equation
is also popular in free surface flows due to its efficiency and
relative simplicity [CMT04,FF01,GBO04,HK05,HLYK08,
KC07, MTPS04, NNSM07, WMT05, ZB05]. There are al-
ternatives to voxelized Poisson, e.g., [BBB07] used a vari-
ational approach that retains the same sparsity of discretiza-
tion while improving behavior on coarse grids for both
smoke and free surface. Also, many non-MAC grid based
approaches have been used to enforce incompressibility, typ-
ically for smoke rather than free surface simulations. For ex-

c© The Eurographics Association 2010.

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

ample, [MCP∗09,KFCO06,FOK05,ETK∗07] use conform-
ing tetrahedralizations to accurately enforce boundary con-
ditions, [LGF04] uses adaptive octree-based discretization,
and [CFL∗07] makes use of tetrahedralized volumes for free
surface flow.

Incomplete Cholesky preconditioned CG remains the
state of the art for voxelized Poisson. Although ICPCG cer-
tainly offers an acceleration over unpreconditioned CG, it
is still impractical at high resolutions since the required
number of iterations increases drastically with the size of
the problem, and the cost of updating and explicitly storing
the preconditioner is very high for large domains. Further-
more, since ICPCG involves sparse back-substitution, it can-
not be parallelized without further modification [HGS∗07].
Whereas multigrid methods have the potential for constant
asymptotic convergence rates, our purely geometric multi-
grid preconditioned conjugate gradient algorithm is the first
in the graphics literature to demonstrate these convergence
rates on the highly irregular voxelized domains common to
free surface simulation.

Our main contributions

We handle an arbitrary mix of Dirichlet and Neumann
boundary conditions on irregular voxelized domains com-
mon to free surface flow simulations. Previous works
proposing geometric multigrid methods for rectangular do-
mains [TO94, AF96, BWRB05, BWKS06, KH08], as well
as irregular Neumann boundaries (via a projection method)
[MCPN08], cannot handle this general case.

We use a purely geometric, matrix-free formulation and
maintain constant convergence rates, regardless of bound-
ary geometry. [BWRB05] presents a lightweight, matrix-
free geometric multigrid method for uniform rectangular do-
mains; however, extension to voxelized domains has proved
challenging. In fact, [HMBVR05] chose a cut-cell embed-
ded boundary discretization, citing non-convergence on the
voxelized Poisson discretization due to instabilities at irreg-
ular boundaries. Even higher order embeddings do not en-
sure constant convergence as noted by [CLB∗09], where
they solve the Poisson equation on a surface mesh embed-
ded in a background lattice: they noticed convergence dete-
rioration when the coarse grid could not resolve the mesh.
Furthermore, a number of works have opted to use the more
general algebraic multigrid, despite its significantly greater
set-up costs and difficult to parallelize nature [TOS01], due
to the challenges of finding a convergent geometric solu-
tion [CFL∗07, CGR∗04, PM04].

In comparison to widely-used ICPCG solvers, our method
requires less storage, is more convergent, and more paral-
lelizable. Unlike ICPCG, no preconditioning matrices are
explicitly stored. This allows us to accommodate as many
as 7682×1152 voxels with less than 16GB of memory.
Whereas ICPCG requires sparse backsubstition and cannot

be parallelized without significant modifications, this is not
the case for our solver. Finally, we demonstrate that our
solver is significantly faster than ICPCG on moderately sized
problems, and our convergence rates are independent of grid
size, so this performance comparison improves with resolu-
tion. As a result, we can solve (with residual reduction by
a factor of 104) at 1283 resolution in less than 0.75 seconds
and 7683 resolution in about a minute.

2. Related Work

Multigrid methods have proven effective for a number of ap-
plications in graphics including image processing [KH08,
BWKS06, RC03], smoke simulation [MCPN08], mesh de-
formation [SYBF06], thin shells [GTS02], cloth simula-
tion [ONW08], fluid simulation [CFL∗07, CTG10], ge-
ometry processing [NGH04], deformable solids simula-
tion [OGRG07], rendering [Sta95, HMBVR05], and have
been efficiently ported to the GPU [BFGS03, GWL∗03,
GSMY∗08]. While the majority of works in this area ei-
ther focused on rectangular domains or algebraic multigrid
formulations on irregular geometries, there are some no-
table geometric multigrid solutions for irregular domains.
[HMBVR05] and [CLB∗09] embed their irregular geome-
try into regular lattices, producing irregular stencils. [RC03,
ONW08] use a coarse-to-fine geometric hierarchy which en-
sures mesh alignment across levels, but these methods re-
quire the geometry to be fully resolved at the coarsest level
and thus are impractical for resolving fine fluid features.
[SAB∗99] show that using multigrid as a preconditioner to
CG rather rather than a stand-alone solver can alleviate in-
stability issues on some problems. Multigrid preconditioned
CG for the Poisson equation on rectangular grids can be
found in [Tat93] and the algorithm is parallelized in [TO94]
and later [AF96]. [KH08] introduced a higher-order parallel
multigrid solver for large rectangular images.

3. Method overview

We wish to solve the Poisson boundary value problem:

∆p = f in Ω⊂ R3 (1)

p(x) = α(x) on ΓD, pn(x) = β(x) on ΓN

where the boundary of the domain ∂Ω = ΓD ∩ΓN is parti-
tioned into the disjoint subsets ΓD and ΓN where Dirichlet
and Neumann conditions are imposed, respectively. For flu-
ids simulations, Ω corresponds to the body of water, while
Dirichlet boundary conditions are imposed on the air-water
interface and Neumann conditions at the surfaces of con-
tact between the fluid and immersed objects (or the walls of
a container). Without loss of generality we will assume that
the Neumann condition is zero (β(x)=0) since non-zero con-
ditions can be expressed by modifying the right hand side.

c© The Eurographics Association 2010.

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

Figure 1: Left: Example of the geometry for a Poisson prob-
lem. Right: Our voxelized representation of this computa-
tional domain.

3.1. Discretization

We discretize the Poisson equation on a uniform Cartesian
lattice, and store the unknown pressure variables pi jk at the
cell centers of this lattice. In our approach, both the com-
putational domain and boundary conditions are defined at
the resolution of this background lattice. In particular, the
computational domain is represented as a collection of grid
cells (or voxels), which we refer to as interior cells (colored
gray in the example of Figure 1, right). We express bound-
ary conditions in a volumetric, voxel-based fashion. Specifi-
cally, we define Dirichlet conditions on a voxelized volumet-
ric region, instead of imposing them strictly along ∂Ω. We
label the cells in this region as Dirichlet cells (colored red
in Figure 1, right). We similarly define regions of Neumann
cells (shown in blue in Figure 1) by rasterizing solid objects
and container walls onto the grid. Since pressures are cell-
centered, Neumann conditions are naturally imposed at the
cell faces between interior and Neumann cells. For simplic-
ity of implementation, as detailed in Section 4, we always
assume a “ghost” layer of Neumann cells surrounding our
computational domain, as illustrated in Figure 1. This as-
sumption does not hinder generality since any configuration
(e.g., a box with all Dirichlet boundaries) can be trivially
padded with an extra layer of Neumann cells without affect-
ing the solution on Ω. For every interior cell we construct a
discrete Poisson equation as:

∑
(i′, j′,k′)∈N∗i jk

pi′ j′k′ − pi jk

h2 = fi jk (2)

Ni jk = {(i±1, j,k),(i, j±1,k),(i, j,k±1)}

N ∗i jk =
{
(i′, j′,k′) ∈Ni jk : cell(i′, j′,k′) is not Neumann

}
In this definition, Ni jk are the 6 neighboring cells across
the faces of the interior cell (i, j,k), N ∗i jk is the subset of
Ni jk that excludes any Neumann neighbor cells, and h is
the grid step size. Equation (2) is derived from the stan-
dard 7-point Poisson finite difference stencil using the zero-
Neumann boundary condition (pi′ j′k′−pi jk)/h = 0 to elim-

Figure 2: Illustration of our coarsening strategy. Note the
geometric and topological discrepancy between different
resolution levels.

inate pressure values at Neumann cells from the discrete
equations. Away from the boundary of Ω this yields the stan-
dard 7-point stencil. Note that this formulation is identical
to [FM96, FF01].

3.2. Multigrid cycle

We describe a geometric multigrid method for the Poisson
problem defined in (2). Our approach uses a V-Cycle of
the Multigrid Correction Scheme [TOS01] and the pseu-
docode for each V-Cycle iteration is given in Algorithm
1. The V-Cycle procedure requires a discretization of the
Poisson problem at L+1 levels of resolution, denoted
L(0),L(1), . . . ,L(L), where level 0 is at the finest resolution
and level L is the coarsest. We also define a smoother at every
level of the hierarchy and restriction/prolongation operators
for transferring data across resolutions.

Algorithm 1 V-Cycle of the Multigrid Correction Scheme.
Setting the initial guess to zero (line 2) is only necessary
when the V-Cycle is used as a preconditioner. When the V-
Cycle is used as an iterative solver line 2 should be omitted.

1: procedure V-CYCLE(u(0),b(0)) . total of L+1 levels
2: u(0)← 0
3: for l = 0 to L−1 do
4: Smooth(L(l),u(l),b(l))
5: r(l)← b(l)−L(l)u(l)

6: b(l+1)←Restrict(r(l)), u(l+1)← 0
7: end for
8: Solve u(L)← (L(L))−1b(L)

9: for l = L−1 down to 0 do
10: u(l)← u(l)+Prolongate(u(l+1))
11: Smooth(L(l),u(l),b(l))
12: end for
13: end procedure

Our approach is purely geometric: at every level of the
multigrid hierarchy we construct a voxelized description of
our domain, classifying each cell as interior, Dirichlet or
Neumann. The procedure of Section 3.1 is then followed to
construct a discrete Poisson operator L from this voxelized
representation. The background lattice for each coarser level
of the hierarchy is constructed following a standard 8-to-1

c© The Eurographics Association 2010.

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cell coarsening procedure, generating a grid with twice the
step size. Our hierarchy is deep: the coarsest level is typically
8× 8× 8. The coarse grid is positioned in such a way that
the bounding box of the domain, excluding the ghost layer
of Neumann cells, aligns with cell boundaries at both resolu-
tions (see Figure 2). A coarse cell will be labeled Dirichlet, if
any of its eight fine children is a Dirichlet cell. If none of the
eight children is a Dirichlet cell, but at least one is interior,
then the coarse cell will be labeled as interior. Otherwise,
the coarse cell is labeled Neumann. As seen in Figure 2 this
coarsening strategy can create significant geometric discrep-
ancies when fine grid features are not resolved on the coarse,
and even change the topology of the domain, e.g., Neumann
bubbles are eventually absorbed into the interior region, and
thin interior features are absorbed into the Dirichlet region.
The impact of this discrepancy is addressed later in this sec-
tion.

We construct the restriction operator as the tensor product
stencilR=B⊗B⊗B, where B is a 1D stencil with 4 points
given by:

(Buh)(x) = 1
8 uh(x− 3h

2)+ 3
8 uh(x− h

2)+

+ 3
8 uh(x+ h

2)+ 1
8 uh(x+ 3h

2) = u2h(x)

Figure 3 (left) illustrates the 2D analogue of this tensor prod-
uct stencil, spanning 16 points (compared to 64, in 3D). Note
that since our variables are cell centered, the coarse grid vari-
ables will not coincide with a subset of the fine variables.
The prolongation operator is defined by PT =8B⊗B⊗B,
i.e., a scaled transposition of the restriction operator. We can
verify that the prolongation is exactly a trilinear interpola-
tion operator from the coarse to the fine grid variables. We
limit the output of the prolongation and restriction opera-
tors to interior cell variables only; therefore, we only restrict
into interior coarse cells, and only prolongate into interior
fine variables. Conversely, if a restriction/prolongation sten-
cil uses a non-interior cell variable as input, we substitute a
zero value instead.

Our smoother of choice is the damped Jacobi method with
parameter ω = 2/3 (see Algorithm 2), which is known to be
stable for the Poisson equation and facilitates parallelism
better than Gauss-Seidel methods. For problems with mixed
boundary conditions and irregular domain geometries it is
common practice to perform additional smoothing near the
boundary of the computational domain. Consequently, we
define a boundary region consisting of interior cells within
a certain distance of Dirichlet or Neumann cells. Figure 3
(right) illustrates the boundary region (shaded black) within
a radius of 2 of non-interior cells (measured by L1-distance).
In our approach, we perform a number of Gauss-Seidel iter-
ations (see Algorithm 2, bottom) on the boundary region in
addition to the damped Jacobi smoother applied on the entire
domain. Our complete smoothing procedure will start with
M Gauss-Seidel sweeps on the boundary region, continue
with a damped Jacobi sweep over the entire domain, and fin-

Figure 3: Left: 2D illustration of the restriction operator.
Right: Illustration of the boundary region. A band width of 2
is pictured.

ish with another N Gauss-Seidel boundary sweeps. Finally,
we can approximate the exact solution for the coarsest level
in the hierarchy by simply iterating the smoothing procedure
a large number of times.

Algorithm 2 Damped Jacobi (ω = 2/3) and Gauss-Seidel
Smoothers

1: procedure DAMPEDJACOBISMOOTH(L,u,b,I)
2: foreach I = (i, j,k) ∈ I do . I is set of cell indices
3: δI ← (bI−LIu)/LII. LI is the equation in cell I
4: foreach I = (i, j,k) ∈ I do
5: uI += 2

3 δI . δδδ is an auxiliary variable
6: end procedure
7: procedure GAUSSSEIDELSMOOTH(L,u,b,I)
8: foreach I = (i, j,k) ∈ I do
9: uI += (bI−LIu)/LII

10: end procedure

The multigrid scheme we just described is particularly
simplistic, using an elementary coarsening strategy, a very
basic smoother and without specialized transfer operators
near the boundary. Not surprisingly, attempting to use this
V-Cycle as an iterative solver for the Poisson problem re-
veals the following shortcomings:

Instability: When using multigrid as the solver instead of
a preconditioner, the iterates produced by the sequence of
V-Cycles can become highly oscillatory or divergent unless
a substantial smoothing effort is spent near the boundary.
Specifically, we found it necessary to perform at least 30-
40 iterations of boundary smoothing (15-20 iterations before
the interior sweep, and 15-20 after) on a boundary band at
least 3 cells wide, in order to make the V-Cycle iteration
stable for highly irregular domains. In contrast, a regular
rectangular box domain with all Dirichlet boundary condi-
tions required only 2-3 boundary iterations on a boundary
band just a single cell wide to remain perfectly stable with
a 0.46 convergence rate. This sensitivity to the regularity of
the domain is justified given the geometric discrepancies be-
tween different levels for irregular domains, and the impre-
cision of the transfer operators near the boundary, as dis-

c© The Eurographics Association 2010.

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

cussed in [TOS01]. We will show that this sensitivity to the
boundary treatment is removed when the V-Cycle is used as
a preconditioner.

Stagnation: Even when the V-Cycle iteration is stable, on
certain irregular domains the residual reduction rate quickly
degrades towards 1, as opposed to converging to a value
less than 0.5 as typically expected of functional multi-
grid schemes. This complication appears on irregular do-
mains where successive levels of the multigrid hierarchy
may exhibit significant topological differences, as coarse
modes may not be accurately represented. In these cases,
costly eigenanalysis or recombined iterants may prove use-
ful [TOS01]; however, the highly irregular and changing do-
mains common to fluid simulations make these methods im-
practical.

3.3. Multigrid-preconditioned conjugate gradient

The instability and slow convergence issues described in
the previous section can be efficiently ameliorated by using
the multigrid V-Cycle as a preconditioner for an appropri-
ate Krylov method. Our experiments indicated that the ele-
mentary multigrid scheme in section 3.2 can be an extremely
efficient preconditioner, achieving convergence rates compa-
rable or superior to the ideal performance of the V-Cycle on
regular domains, even if the smoothing effort vested in the
multigrid V-Cycle is significantly less than what is necessary
to make it a convergent solver on its own.

We will use the V-Cycle described in Section 3.2 as a pre-
conditioner for the conjugate gradient method. Algorithm
3 provides the pseudocode for our PCG solver. Our algo-
rithm is numerically equivalent to the traditional definition
of PCG, as stated for example in [GvL89], but certain vari-
ables are being reused for economy of storage, and opera-
tions have been rearranged to facilitate optimized execution,
as discussed in Section 4. Preconditioning operates by con-
structing a symmetric, positive definite matrixM which is
easier to invert than L, and such thatM−1L is significantly
better conditioned than L.

In our case, we will use the multigrid V-Cycle as the pre-
conditionerM−1 as described in [Tat93]. In particular, if we
define u :=M−1b, then u is the result of one iteration of the
multigrid V-Cycle for the problem Lu = b with zero initial
guess, and zero boundary conditions. We can easily verify
that under these conditions, the action of the V-Cycle indeed
corresponds to a linear operator; the requirement thatM be
symmetric and positive definite, however, is less trivial. We
refer to [Tat93] for a detailed analysis of the conditions for
symmetry and definiteness, and only present here a set of
sufficient conditions instead. The V-Cycle of Algorithm 1
will produce a symmetric and definite preconditioner if:

• The restriction/prolongation operators are the transpose of
one another (up to scaling). This is common practice, and
also the case for the V-Cycle we described.

• The smoother used in the upstroke of the V-Cycle (Algo-
rithm 1, line 11) performs the operations of the smoother
used for the downstroke (line 4) in reverse order. E.g.,
if Gauss-Seidel iteration is used, opposite traversal orders
should be used when descending or ascending the V-Cycle,
respectively. For Jacobi smoothers, no reversal is necessary
as the result is independent of the traversal order.

• The solve at the coarsest level (Algorithm 1, line 8) needs
to either be exact, or the inverse of L(L) should be approxi-
mated with a symmetric and definite matrix. If the smoother
is iterated to approximate the solution, a number of iterations
should be performed with a given traversal order, followed
by an equal number of iterations with the order reversed.

Algorithm 3 Multigrid-preconditioned conjugate gradient.
Red-colored steps in the algorithm are applicable when
the Poisson problem has a nullspace (i.e., all Neumann
boundary conditions), and should be omitted when Dirichlet
boundaries are present.
(†) u←M−1b is implemented by calling V-Cycle(u,b)

1: procedure MGPCG(r,x)
2: r← r−Lx, µ← r̄, ν←‖r−µ‖∞
3: if (ν < νmax) then return
4: r← r−µ, p←M−1r(†), ρ← pT r
5: for k = 0 to kmax do
6: z←Lp, σ← pT z
7: α← ρ/σ

8: r← r−αz, µ← r̄, ν←‖r−µ‖∞
9: if (ν < νmax or k = kmax) then

10: x← x+αp
11: return
12: end if
13: r← r−µ, z←M−1r(†), ρ

new← zT r
14: β← ρ

new/ρ

15: ρ← ρ
new

16: x← x+αp, p← z+βp
17: end for
18: end procedure

Finally, Poisson problems with all-Neumann boundary
conditions (e.g., simulations of smoke flow past objects) are
known to possess a nullspace, as the solution is only known
up to a constant. The algorithm of Algorithm 3 is modified in
this case to project out this nullspace, and the modifications
are highlighted in red in the pseudocode. No modification to
the V-Cycle preconditioner is needed.

4. Implementation and Optimizations

Minimizing boundary cost: The cost of performing 30-40
smoothing sweeps on the boundary to stabilize the V-Cycle
as a solver cannot be neglected, even though the interior
smoothing effort would asymptotically dominate. In prac-
tice, this amount of boundary smoothing would be the most
costly operation of the V-Cycle for a 2563 grid or smaller,

c© The Eurographics Association 2010.

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

assuming serial execution. For parallel execution, boundary
smoothing would be the clear bottleneck for even higher
resolutions (5123 or more in practice) since the boundary
smoother has inferior scalability to the interior smoother due
to the irregularity of the boundary band. Since in our ap-
proach the V-Cycle will only be used as a CG preconditioner,
we do not need to spend that much effort smoothing the
boundary. Our experiments indicated that even with no extra
smoothing near the boundary the PCG algorithm would be
stable and convergent, but only with a moderate acceleration
over the unpreconditioned CG method. However, the follow-
ing carefully designed boundary smoothing led to very rapid
convergence.

The extent of our boundary region depends on our pro-
longation operator as well as our standard 8-to-1 coarsen-
ing scheme. Define D(P, I(l)) as the set of coarse cells in
the prolongation stencil of an interior cell I(l). For each
I(l+1) ∈ D(P, I(l)), if any of its 8 fine children are not inte-
rior cells, I(l) is included in the boundary band. This heuris-
tic produces a boundary region with a width up to 3 cells
(near irregular interfaces) or as low as 1 cell (near walls
and boundaries resolved by all grids). Additionally, we only
perform boundary smoothing after the interior sweep on the
downstroke of the V-Cycle and before the interior sweep on
the upstroke. We found that using 2 Gauss-Seidel iterations
on the boundary band at the finest level struck the best bal-
ance of computational cost and PCG efficiency. Since the
size of the boundary band at every coarser level is reduced by
a factor of four, we increase the number of boundary sweeps
by a factor of 2 every level (i.e., performing 2l+1 sweeps at
level l), which incurs only a minimal overhead but further
accelerates convergence.

Compact representation ofL: The discrete operatorL con-
tains the standard 7-point stencil in the interior of the do-
main, with a coefficient of −6/h2 on the center cell and
1/h2 on the 6 face neighbors. We can eliminate the 1/h2

factor by observing that the preconditioning ability ofM−1

remains unchanged if the entire matrix is scaled. Thus, if we
consider the V-Cycle to be a solver for h2

∆ instead of the
unscaled Poisson operator, the operator coefficients at the
interior of the finest level simply become −6 and 1. If we
modify the prolongation operator as PT =2B⊗B⊗B, then
the integer-valued scaled-Poisson stencils (with entries −6
and 1) can be used at all levels of the hierarchy. This sten-
cil will only assume a different form near Neumann bound-
aries: the scaled 7-point stencil will have a coefficient of 1
for any non-Neumann neighbors, a value of zero for Neu-
mann neighbors, and the center coefficient will be the neg-
ative count of non-Neumann neighbors. Instead of storing
these zero Neumann coefficients, we enforce the condition
that any variables where the discrete operator L will be ap-
plied to, shall have zero values on any non-interior cells. As
a consequence, we only need to store a negative integer (the

center coefficient) to represent the Poisson operator near the
boundary.

Using zero initial guess and boundary conditions: When
the multigrid V-Cycle is used as a preconditioner, it is solv-
ing a Poisson problem with zero boundary conditions, and
uses a zero initial guess as discussed in Section 3.3. Also, ev-
ery subsequent level of the multigrid correction scheme will
also employ zero initial guess and boundary conditions. This
fact allows us to simplify and combine steps 2,4, and 5 of the
algorithm in Algorithm 1, which are the most costly compo-
nents of the V-Cycle algorithm. For simplicity, consider an
all-Dirichlet problem, where L has the same 7-point stencil
(with coefficients -6 and 1 as discussed before) everywhere
in the domain. Using the fact that u(0) = 0, line 3 of the
damped Jacobi smoother in Algorithm 2 produces δδδ =− 1

6 b
and the result of the relaxation will be u =− 1

9 b. The residual
after the relaxation will be r = b−L(− 1

9 b) = 1
9 (L+ 9I)b.

Thus, both the smoothed solution u as well as the residual
r resulting from this smoother can be computed simultane-
ously from b, in a single streaming pass over these 3 vari-
ables (δ is just temporary and need not be computed). Of
course, this procedure will be invalid near Neumann bound-
aries, where L has a modified stencil. For this reason, we
mask the output on u to exclude cells with non-standard sten-
cils, setting those values to zero instead. These cells will be
smoothed in the boundary sweep immediately afterwards.
Lastly, the Gauss-Seidel boundary sweep will invalidate the
residuals computed near the boundary band. We correct this
by updating the residuals in the 1-ring of the boundary band
at the end of the smoothing procedure.

Pipelining operations: Streaming operations in the PCG al-
gorithm were often combined in a single pass through mem-
ory. The pseudocode in Algorithm 3 has been written to indi-
cate such combinable operations on the same line, e.g., lines
2, 4, 6, 8, 13, and 16.

Multithreading: Most of the operations in our solver are
trivially parallelizable, as they are order independent (ex-
cluding the boundary smoother). In order to parallelize the
boundary Gauss-Seidel smoother, we tiled the domain with
blocks of size 4 × 4 × 4 which were subsequently red-
black colored. Subsequently, we parallelize the Gauss-Seidel
sweep over the red blocks, distributing a balanced number of
blocks to each processor, without fine-grain locking. Black
blocks are processed in a separate parallel sweep. Iterating
the Gauss-Seidel smoother as many as 10 times within each
block costs less than twice the cost of a single iteration (due
to cache effects) which further improved the efficiency of
our preconditioner.

Variable reuse and storage footprint: Our methodology
reuses vector variables to minimize the memory footprint.
We only require (and reuse) the following 5 vector variables,
defined over the entire domain: x (for initial guess and solu-
tion), r (for initial right hand side, subsequent residuals and
also the right-hand side b(0) at the top level of the V-Cycle),

c© The Eurographics Association 2010.

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

p,z (reused throughout CG, also used as the solution u(0) at
the finest V-Cycle level) and δδδ (reused to hold the residual
r within the V-Cycle). Vector variables for the coarser levels
are smaller by a factor of 8. We also represent the extent of
the interior/boundary regions using bitmaps for a minor stor-
age overhead (e.g., for the Jacobi smoother or transfer oper-
ators which are restricted to interior cells). Quantities such
as the diagonal element of L (and its inverse) are only stored
for the boundary region. Ultimately, the entire PCG solver
for a 7682× 1152 grid has a memory footprint slightly un-
der 16GB (out of which, 12.8GB used for x,r,p,z and δδδ)
and an entire smoke solver at this resolution fits easily in
32GB of memory. We note that our method maintains mini-
mal metadata, and the memory for all data variables can be
reused outside of the solver. For example, we have reused
p,z and δδδ in the advection step to store the pre-projection
velocities.

5. Examples

We demonstrate the efficacy of our solver with high reso-
lution smoke and free surface simulations. We use simple
semi-Lagrangian advection [Sta99] for the density and level
sets. Velocity extrapolation for air velocities was done as
in [ZB05] and fast sweeping [Zha04] was used for level
set reinitialization. Semi-Lagrangian advection is plagued
by substantial numerical viscosity at lower resolutions; how-
ever, the efficiency and lightweight nature of our voxelized
Poisson solver allows for sufficiently high resolution to pro-
duce detailed incompressible flows with these comparably
simple methods. Figure 6 demonstrates the effect of the
available resolution. We found a tolerance of ‖r‖∞ < 10−3

for smoke simulations and and 10−5 for free surface pro-
duced visually pleasing results. Although we used resolu-
tions substantially higher than typical, the bulk of the com-
putation was in advection and level set reinitialization rather
than the voxelized Poisson solves (see Table 2). These exam-
ples demonstrate the solver’s ability to handle rapidly chang-
ing domain geometries and to converge with just a few PCG
iterations in practical settings.

Figure 4 compares the convergence of our method with
CG and incomplete Cholesky PCG in terms of rate per iter-
ation. As incomplete Cholesky PCG involves sparse back-
substitution and cannot be parallelized without significant
effort (if at all), we compare serial runtimes for an incom-
plete Cholesky PCG implementation, a “black-box” con-
jugate gradient solver, our streamlined conjugate gradient
solver, and our multigrid preconditioned solver to a given
tolerance on the smoke past sphere domain in Table 1. Even
without the aid of parallelization, we see a 4.5× speed-up
at 1283 over ICPCG, a 10× speed-up at 2563, and a 20×
speed-up at 5123 resolution. Our ICPCG and “black-box”
CG solvers are generic implementations with explicit com-
pressed sparse row matrix representations.

Sheet3

Page 1

Incomplete Cholesky PCG (serial)

Resolution 64^3 96^3 128^3 192^3 256^3 384^3 512^3

Initialization Time (s)

Iterations to r=1e-4

Iterations to r=1e-8

Time to r=1e-4 (s)

Time to r=1e-8 (s)

0.20 0.55 1.24 4.01 9.61 32.23 76.47

36 52 72 107 138 213 278

57 78 104 149 194 295 395

0.94 5.04 17.00 88.22 283.10 1526.29 4679.32

1.50 7.56 24.55 122.85 397.98 2113.88 6648.68

Multigrid PCG (serial)

Resolution 64^3 96^3 128^3 192^3 256^3 384^3 512^3

Initialization Time (s)

Iterations to r=1e-4

Iterations to r=1e-8

Time to r=1e-4 (s)

Time to r=1e-8 (s)

0.08 0.10 0.24 0.63 1.63 5.01 12.21

9 9 11 10 12 12 13

15 16 17 18 19 20 21

0.57 2.82 3.70 10.74 25.92 89.71 211.88

0.88 4.80 5.57 18.50 39.54 144.47 332.71

"Black Box"(†) and Pipelined(*) CG (serial)

Resolution 64^3 96^3 128^3 192^3 256^3 384^3 512^3

Initialization Time (s)

Iterations to r=1e-4

Iterations to r=1e-8

Time to r=1e-4 (s)†

Time to r=1e-4 (s)*

Time to r=1e-8 (s)†

Time to r=1e-8 (s)*

0.0585 0.0617 0.1403 0.3931 1.0628 2.9837 6.9207

110 165 221 332 445 667 965

181 309 367 623 822 1261 1538

2.32 8.73 42.45 149.94 503.97 2558.44 9010.28

1.39 7.80 21.24 113.86 340.24 1999.10 5540.92

3.81 16.35 70.49 281.37 930.92 4836.87 14360.43

2.09 12.70 35.10 212.68 663.44 3524.00 8831.03

Table 1: Number of iterations and serial runtimes for our
modified conjugate gradient(*) and a “black box”(†) solver
(top), incomplete Cholesky PCG (middle), and our method
(bottom). Initialization time includes building any matri-
ces and computing incomplete Cholesky factorization for
ICPCG or building multigrid hierarchy for MGPCG.

6. Limitations and future work

Our performance at high resolutions is largely due to par-
allelization. While the convergence rate remains excellent,
parallel scalability is inferior at lower resolutions. Our
method was tuned for shared-memory multiprocessors since
we targeted problem sizes that would not fit on GPU mem-
ory. However, our method would benefit from the bandwidth
of GPU platforms and we will investigate GPU ports of our
method as future work. Methods that approximate the do-
main with sub-cell accuracy could be expected to produce
improved results for the same base resolution. The results
of [SW05] suggest methods such as [BBB07] would likely
be accelerated with a small adjustment to our method. The
resolution enabled by our method could be combined with
techniques such as wavelet turbulence [KTJG08] or vortic-
ity confinement [FSJ01] to add even more detail. In the fu-
ture, an adaptive multigrid formulation such as semicoarsen-
ing [TOS01] could also be used to precondition an adaptive
method such as [LGF04], although obtaining the same level
of scalability would be challenging in this context.

Acknowledgments

We wish to thank P. Dubey and the Intel Throughput
Computing Lab for valuable feedback and support. Special
thanks to Andrew Selle for his help with our audio-visual
materials. A.M., E.S. and J.T. were supported in part by DOE
09-LR-04-116741-BERA, NSF DMS-0652427, NSF CCF-
0830554, ONR N000140310071. We wish to acknowledge
the Stanford Graphics Laboratory and XYZrgb Inc. for the
dragon model.

c© The Eurographics Association 2010.

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids
Sheet3

Page 1

Smoke Past Sphere 768^3 PCG Iteration Breakdown

PCG Iteration Substep 1-core 16-core Speedup

(Re-)Initialization* 13s 200ms 2s 370ms 5.6

V-Cycle (finest level breakdown)

 Int. Smoothing and Residuals 7s 990ms 1s 170ms 6.8

 Bdry. Smoothing and Residuals 0s 983ms 0s 160ms 6.1

 Restriction 3s 430ms 0s 287ms 12.0

 Prolongation 2s 950ms 0s 398ms 7.4

 Bdry. Smooth (upstroke) 0s 719ms 0s 103ms 7.0

 Int. Smooth (upstroke) 11s 700ms 1s 150ms 10.2

V-Cycle total (1 iteration) 32s 200ms 3s 910ms 8.2

PCG, line 6 11s 600ms 0s 895ms 13.0

PCG, line 8 2s 270ms 0s 453ms 5.0

PCG, line 13 (inc. V-Cycle) 32s 200ms 3s 910ms 8.2

PCG, line 16 5s 160ms 828ms 6.2

PCG total (1 iteration) 51s 300ms 6s 90ms 8.4

Cost of 1 PCG Iteration By Simulation

Simulation and Resolution 1-core 16-core Speedup

Smoke flow past sphere

 64x64x64 39ms 23ms 1.7

 96x96x96 127ms 47ms 2.7

 128x128x128 299ms 67ms 4.5

 192x192x192 983ms 167ms 5.9

 256x256x256 2s 110ms 289ms 7.3

 384x384x384 7s 380ms 875ms 8.4

 512x512x512 15s 500ms 1s 930ms 8.0

 768x768x768 51s 300ms 6s 90ms 8.4

 768x768x1152 76s 800ms 9s 120ms 8.4

Smoke past car

 768x768x768 51s 200ms 6s 70ms 8.4

Free-surface water

 512x512x512 12s 900ms 1s 940ms 6.6

Table 2: Execution cost and parallel speedup for our
method. All parallel computations were carried out on a 16-
core Intel Xeon X7350 server with 32GB of RAM. (*)Initial-
ization refers to multigrid hierarchy initialization.

References
[AF96] ASHBY S., FALGOUT R.: A parallel multigrid precondi-

tioned conjugate gradient algorithm for groundwater flow simula-
tions. Nuclear Science and Engineering 124, 1 (1996), 145–159.

[BBB07] BATTY C., BERTAILS F., BRIDSON R.: A fast varia-
tional framework for accurate solid-fluid coupling. ACM Trans.
Graph. 26, 3 (2007), 100.

[BFGS03] BOLZ J., FARMER I., GRINSPUN E., SCHRÖODER P.:
Sparse matrix solvers on the GPU: conjugate gradients and multi-
grid. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers (New
York, NY, USA, 2003), ACM, pp. 917–924.

[BWKS06] BRUHN A., WEICKERT J., KOHLBERGER T.,
SCHNÖRR C.: A multigrid platform for real-time motion com-
putation with discontinuity-preserving variational methods. Int.
J. Comput. Vision 70, 3 (2006), 257–277.

[BWRB05] BARANOSKI G. V. G., WAN J., ROKNE J. G., BELL
I.: Simulating the dynamics of auroral phenomena. ACM Trans.
Graph. 24, 1 (2005), 37–59.

[CFL∗07] CHENTANEZ N., FELDMAN B. E., LABELLE F.,
O’BRIEN J. F., SHEWCHUK J. R.: Liquid simulation on lattice-
based tetrahedral meshes. In SCA ’07: Proceedings of the 2007
ACM SIGGRAPH/Eurographics symposium on Computer an-
imation (Aire-la-Ville, Switzerland, Switzerland, 2007), Euro-
graphics Association, pp. 219–228.

[CGR∗04] CLARENZ U., GRIEBEL M., RUMPF M.,
SCHWEITZER M., TELEA A.: Feature sensitive multiscale
editing on surfaces. The Visual Computer 20, 5 (2004),
329–343.

[CLB∗09] CHUANG M., LUO L., BROWN B. J., RUSINKIEWICZ
S., KAZHDAN M.: Estimating the Laplace-Beltrami operator by
restricting 3D functions. In Eurographics Symposium on Geom-
etry Processing (2009), Eurographics Assocation.

[CMT04] CARLSON M., MUCHA P., TURK G.: Rigid fluid: an-
imating the interplay between rigid bodies and fluid. In SIG-
GRAPH ’04: ACM SIGGRAPH 2004 Papers (New York, NY,
USA, 2004), ACM, pp. 377–384.

[CTG10] COHEN J. M., TARIQ S., GREEN S.: Interactive fluid-
particle simulation using translating eulerian grids. In I3D ’10:
Proceedings of the 2010 ACM SIGGRAPH symposium on Inter-
active 3D Graphics and Games (New York, NY, USA, 2010),
ACM, pp. 15–22.

[ETK∗07] ELCOTT S., TONG Y., KANSO E., SCHRÖDER P.,
DESBRUN M.: Stable, circulation-preserving, simplicial fluids.
ACM Trans. Graph. 26, 1 (2007), 4.

[FF01] FOSTER N., FEDKIW R.: Practical animation of liquids.
In SIGGRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques (New York,
NY, USA, 2001), ACM, pp. 23–30.

[FM96] FOSTER N., METAXAS D.: Realistic animation of liq-
uids. Graph. Models Image Process. 58, 5 (1996), 471–483.

[FOK05] FELDMAN B., O’BRIEN J., KLINGNER B.: Animating
gases with hybrid meshes. ACM Trans. Graph. 24, 3 (2005),
904–909.

[FSJ01] FEDKIW R., STAM J., JENSEN H.: Visual simulation of
smoke. In SIGGRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 2001), ACM, pp. 15–22.

[GBO04] GOKTEKIN T., BARGTEIL A., O’BRIEN J.: A method
for animating viscoelastic fluids. ACM Trans. Graph. 23, 3
(2004), 463–468.

[GSMY∗08] GÖDDEKE D., STRZODKA R., MOHD-YUSOF J.,
MCCORMICK P., WOBKER H., BECKER C., TUREK S.: Using
GPUs to improve multigrid solver performance on a cluster. In-
ternational Journal of Computational Science and Engineering
4, 1 (2008), 36–55. doi: 10.1504/IJCSE.2008.021111.

[GTS02] GREEN S., TURKIYYAH G., STORTI D.: Subdivision-
based multilevel methods for large scale engineering simulation
of thin shells. In Proceedings of the seventh ACM symposium on
Solid modeling and applications (2002), ACM New York, NY,
USA, pp. 265–272.

[GvL89] GOLUB G., VAN LOAN C.: Matrix Computations. The
John Hopkins University Press, 1989.

[GWL∗03] GOODNIGHT N., WOOLLEY C., LEWIN G., LUE-
BKE D., HUMPHREYS G.: A multigrid solver for boundary value
problems using programmable graphics hardware. In Proceed-
ings of the ACM SIGGRAPH/Eurographics Conf. on Graphics
Hardware (2003), pp. 102–111.

[HG09] HORVATH C., GEIGER W.: Directable, high-resolution
simulation of fire on the GPU. ACM Trans. Graph. 28, 3 (2009),
1–8.

[HGS∗07] HUGHES C., GRZESZCZUK R., SIFAKIS E., KIM D.,
KUMAR S., SELLE A., CHHUGANI J., HOLLIMAN M., CHEN
Y.-K.: Physical simulation for animation and visual effects: Par-
allelization and characterization for chip multiprocessors. In Intl.
Symp. on Comput. Architecture (2007).

[HK05] HONG J., KIM C.: Discontinuous fluids. ACM Trans.
Graph. 24, 3 (2005), 915–920.

[HLYK08] HONG J., LEE H., YOON J., KIM C.: Bubbles alive.
ACM Trans. Graph. 27, 3 (2008), 1–4.

c© The Eurographics Association 2010.

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

[HMBVR05] HABER T., MERTENS T., BEKAERT P.,
VAN REETH F.: A computational approach to simulate
subsurface light diffusion in arbitrarily shaped objects. In
GI ’05: Proceedings of Graphics Interface 2005 (School of
Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2005), Canadian Human-Computer Communications
Society, pp. 79–86.

[HW65] HARLOW F., WELCH J.: Numerical calculation of time-
dependent viscous incompressible flow of fluid with a free sur-
face. Phys. Fl. 8 (1965), 2812–2189.

[KC07] KIM T., CARLSON M.: A simple boiling module. In SCA
’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation (Aire-la-Ville, Switzerland,
Switzerland, 2007), Eurographics Association, pp. 27–34.

[KFCO06] KLINGNER B., FELDMAN B., CHENTANEZ N.,
O’BRIEN J.: Fluid animation with dynamic meshes. ACM Trans.
Graph. 25, 3 (2006), 820–825.

[KH08] KAZHDAN M., HOPPE H.: Streaming multigrid for
gradient-domain operations on large images. ACM Trans. Graph.
27, 3 (2008), 1–10.

[KTJG08] KIM T., THÜREY N., JAMES D., GROSS M.: Wavelet
turbulence for fluid simulation. ACM Trans. Graph. 27, 3 (2008),
1–6.

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Simulating water
and smoke with an octree data structure. In SIGGRAPH ’04:
ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004),
ACM, pp. 457–462.

[MCP∗09] MULLEN P., CRANE K., PAVLOV D., TONG Y.,
DESBRUN M.: Energy-preserving integrators for fluid anima-
tion. ACM Trans. Graph. 28, 3 (2009), 1–8.

[MCPN08] MOLEMAKER J., COHEN J., PATEL S., NOH J.: Low
viscosity flow simulations for animation. In Proceedings of ACM
SIGGRAPH Symposium on Computer Animation (2008), Gross
M., James D., (Eds.), Eurographics / ACM SIGGRAPH, pp. 15–
22.

[MSW∗09] MCADAMS A., SELLE A., WARD K., SIFAKIS E.,
TERAN J.: Detail preserving continuum simulation of straight
hair. ACM Trans. Graph. 28, 3 (2009), 1–6.

[MTPS04] MCNAMARA A., TREUILLE A., POPOVIĆ Z., STAM
J.: Fluid control using the adjoint method. ACM Trans. Graph.
23, 3 (2004), 449–456.

[NGH04] NI X., GARLAND M., HART J.: Fair Morse functions
for extracting the topological structure of a surface mesh. ACM
Transactions on Graphics (TOG) 23, 3 (2004), 613–622.

[NNSM07] NIELSEN M., NILSSON O., SÖDERSTRÖM A.,
MUSETH K.: Out-of-core and compressed level set methods.
ACM Trans. Graph. 26, 4 (2007), 16.

[OGRG07] OTADUY M. A., GERMANN D., REDON S., GROSS
M.: Adaptive deformations with fast tight bounds. In SCA
’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation (Aire-la-Ville, Switzerland,
Switzerland, 2007), Eurographics Association, pp. 181–190.

[ONW08] OH S., NOH J., WOHN K.: A physically faithful multi-
grid method for fast cloth simulation. Computer Animation and
Virtual Worlds 19, 3-4 (2008), 479–492.

[PM04] PAPANDREOU G., MARAGOS P.: A fast multigrid im-
plicit algorithm for the evolution of geodesic active contours.
Computer Vision and Pattern Recognition, IEEE Computer So-
ciety Conference on 2 (2004), 689–694.

[RC03] RICHARD F. J. P., COHEN L. D.: A new image regis-
tration technique with free boundary constraints: application to

1E-14

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

MGPCG 768̂ 2x1152

MGPCG 768̂ 3

MGPCG 512̂ 3

ICPCG 256̂ 3

CG 256̂ 3

Figure 4: Comparison of multigrid-preconditioned CG
(MGPCG), incomplete Cholesky PCG (ICPCG) and unpre-
conditioned CG (CG). The horizontal axis corresponds to it-
erations, the vertical indicates the residual reduction factor
|rk|/|r0| after k iterations.

mammography. Comput. Vis. Image Underst. 89, 2-3 (2003),
166–196.

[SAB∗99] SUSSMAN M., ALMGREN A. S., BELL J. B.,
COLELLA P., HOWELL L. H., WELCOME M. L.: An adap-
tive level set approach for incompressible two-phase flows. J.
Comput. Phys. 148, 1 (1999), 81–124.

[SRF05] SELLE A., RASMUSSEN N., FEDKIW R.: A vortex
particle method for smoke, water and explosions. ACM Trans.
Graph. 24, 3 (2005), 910–914.

[Sta95] STAM J.: Multiple scattering as a diffusion process. In In
Eurographics Rendering Workshop (1995), pp. 41–50.

[Sta99] STAM J.: Stable fluids. In SIGGRAPH ’99: Proceedings
of the 26th annual conference on Computer graphics and inter-
active techniques (1999), pp. 121–128.

[SW05] SINGH K., WILLIAMS J.: A parallel fictitious domain
multigrid preconditioner for the solution of Poisson’s equation
in complex geometries. Comput. Meth. Appl. Mech. Eng. 194
(2005), 4845–4860.

[SYBF06] SHI L., YU Y., BELL N., FENG W.: A fast multi-
grid algorithm for mesh deformation. ACM Trans. Graph. 25, 3
(2006), 1108–1117.

[Tat93] TATEBE O.: The multigrid preconditioned conjugate gra-
dient method. In Proceedings of the Sixth Copper Mountain Con-
ference on Multigrid Methods (1993), NASA Conference Publi-
cation 3224, pp. 621–634.

[TO94] TATEBE O., OYANAGI Y.: Efficient implementation of
the multigrid preconditioned conjugate gradient method on dis-
tributed memory machines. In Supercomputing ’94: Proceedings
of the 1994 conference on Supercomputing (Los Alamitos, CA,
USA, 1994), IEEE Computer Society Press, pp. 194–203.

[TOS01] TROTTENBERG U., OOSTERLEE C., SCHULLER A.:
Multigrid. San Diego: Academic Press, 2001.

[WMT05] WANG H., MUCHA P., TURK G.: Water drops on sur-
faces. ACM Trans. Graph. 24, 3 (2005), 921–929.

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. ACM
Trans. Graph. 24, 3 (2005), 965–972.

[Zha04] ZHAO H.: A fast sweeping method for the eikonal equa-
tion. Math. Comp. 74, 250 (2004), 603–627.

c© The Eurographics Association 2010.

McAdams et al. / A parallel multigrid Poisson solver for fluids simulation on large grids

Figure 5: Left: Simulation of smoke flow past a sphere, at 7682×1152 resolution (close-up view). Middle: A column of smoke
is stirred up by a revolving object – 7683 resolution. Right: Free surface simulation of water poured on a dragon figurine at
5123 resolution.

Figure 6: Smoke plume simulation at resolutions of 1922×288 (left), 3842×576 (middle) and 7682×1152 (right).

c© The Eurographics Association 2010.

