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Fig. 1. Left: Meshing an elastic wall shot by a projectile. Bottom: Breaking a zucchini with brute force. Top:
Twisting a cube until it breaks. Right: Ductile walls fracture as a mannequin walks through.

We present novel techniques for simulating and visualizing ductile fracture with the Material Point Method
(MPM). We utilize traditional particle-based MPM [Stomakhin et al. 2013; Sulsky et al. 1994] as well as the
Lagrangian energy formulation of [Jiang et al. 2015] that utilizes a tetrahedron mesh, rather than particle-based
estimation of the deformation gradient and potential energy. We model failure and fracture via elastoplasticity
with damage. Material is elastic until its deformation exceeds a Rankine or von Mises yield condition, at
which point we use a softening model that shrinks the yield surface until a damage threshold is reached. Once
damaged, the material Lamé coefficients are modified to represent failed material. We design visualization
techniques for rendering the boundary of the material and its intersections with evolving crack surfaces.
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Our approach uses a simple and efficient element splitting strategy for tetrahedron meshes to represent
crack surfaces that utilizes an extrapolation technique based on the MPM simulation. For traditional particle-
based MPM we use an initial Delaunay tetrahedralization to connect randomly initialized MPM particles.
Our visualization technique is a post-process and can be run after the MPM simulation for efficiency. We
demonstrate our method with a number of challenging simulations of ductile failure with considerable and
persistent self-contact.
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1 INTRODUCTION
Ductile materials behave elastically until a yield stress condition is met, at which point they yield
plastically and at some point fail completely. Whether it be the distinctive patterns exhibited while
tearing a piece of fruit or twisted metal after a high-velocity impact, the fracture and failure of
ductile materials are ubiquitous and indispensable when creating visually interesting virtual worlds
for computer graphics applications. Indeed, some of the earliest methods for simulating elasticity
in computer graphics included treatment for tearing and failure of materials [Terzopoulos and
Fleischer 1988]. O’Brien et al. [2002] demonstrated that using the Finite Element Method (FEM) with
continual domain remeshing after fracture events allowed for a wide range of ductile behaviors and
incredibly detailed simulations. Since this pioneering approach, many others have used FEM and
remeshing to achieve similar behaviors [Molino et al. 2004; Müller and Gross 2004; Wicke et al. 2010;
Wojtan et al. 2009]. Particle methods based on Smoothed Particle Hydrodynamics (SPH) [Chen et al.
2013; Gerszewski et al. 2009] and Moving Least Squares (MLS) [Müller et al. 2004; Pauly et al. 2005]
have also been used with impressive effect, since their unstructured nature naturally allows for
topological change. Procedural approaches have also achieved good results when computational
cost is limited [Choi 2014; Jones et al. 2016; Müller et al. 2007].

The Material Point Method (MPM) is another unstructured particle technique that naturally re-
solves topological changes and fracture, and also naturally accommodates elastoplastic phenomena.
Furthermore, a key advantage of MPM is that the hybrid Lagrangian/Eulerian nature of the method
naturally resolves collisions between fragments of material. These aspects make MPM an ideal
candidate for simulating fracture and failure of ductile materials. However, while MPM naturally
allows for topological changes, they can be difficult to control. Particles are connected in the domain
when they are in the support of the same Eulerian grid node interpolating function. Particles that
do not interact with the same grid nodes in this way are decoupled. This is advantageous in that
topology change requires no special treatment; however, fracture is therefore a numerical error
that is not influenced by a material property but rather by discretization-related parameters like
particle sampling density and Eulerian grid resolution.

Numerical fracture can be addressed by utilizing particle resampling techniques as in [Yue et al.
2015] or by using the Lagrangian energy technique of Jiang et al. [2015] in which a tetrahedron
mesh is used to compute deformation gradients. This treatment naturally couples meshed objects
with MPM-based materials, and also gives an automated treatment of self-collision between meshed
objects and other materials. However, in either the resampling or Lagrangian energy approaches,
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Fig. 2. A twisted cube with 8,000 particles was surfaced with Houdini particle fluid surface (left) and our
mesh visualization (right).

an additional model must be provided to allow for fracture.

A second issue hindering MPM adoption for ductile fracture is largely common to all particle-based
techniques: defining and rendering material boundary surfaces in a visually sharp manner is difficult.
While particle-based simulation techniques naturally allow for topological change, they generally
have a more vague notion of material boundaries that complicates the process of rendering. FEM
and mesh-based techniques require more intervention (remeshing) to resolve topological change,
however in the process material boundaries are sharp and well defined. This is important for
preserving the surface of objects created by users, and for transferring textures as the material fails.

The most common techniques for visualizing particle-based simulation data define the boundary
of the particle domain as the zero isocontour of a level set function, or as a threshold value of
a density function. This goes back to at least Blinn [1982]. Many other authors have provided
improvements on these techniques over the years, including sharper surface resolution, reduc-
tion of noise and temporal coherence of surfaces, resolution of anisotropic features, and many
more [Adams et al. 2007; Ando et al. 2013; Müller et al. 2003; Museth 2014; Museth et al. 2007;
Solenthaler et al. 2007; Yu and Turk 2013; Zhu and Bridson 2005]. However, these types of tech-
niques are much more appropriate for fluid simulations, and cannot support initialization from a
high-resolution textured input surface mesh without complicated texture transfer at each frame, etc.

Surface tracking techniques can provide the desired preservation of sharp features and surface
details. These techniques have been used with great effect in simulations of fluid [Brochu and
Bridson 2009; Da et al. 2014; Müller 2009; Wojtan et al. 2010; Yu et al. 2012] and viscoelastic ma-
terials [Dagenais et al. 2017; Wojtan et al. 2009]. These approaches are extremely powerful, but
computationally expensive. However, much of the implementation and computational overhead
is associated with material merging. Much simpler techniques can be used if only splitting is
required. Fracture of ductile materials typically only involves failure without cohesive merging, so
fully-general surface tracking techniques are not necessary.

Pre-scoring-based surfacing approaches are generally more efficient than surface tracking, and can
be used when merging is not needed. These techniques predefine the maximally split configuration
of the material, and only separation between components can occur. For example, the virtual node
algorithm of Molino et al. [2004] is a pre-scoring technique where each vertex in a tetrahedron mesh
represents a portion of the material in the elements in its one ring. Choi [2014] use a pre-scoring ap-
proach for visualizing shape-matching-based ductile fracture where each node is assigned material
as a union of elements, gathered via K-means, from a tetrahedron mesh. Chen et al. [2018] assign a
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Fig. 3. Four columns braided to fracture.

Fig. 4. Four stiffer columns braided to fracture.

single tetrahedron to each particle by initializing particles at the barycenters of an input tetrahedron
mesh. In these techniques, material separation is introduced when connectivity between adjacent
particle regions is severed. Crack surfaces are then defined as a subset of the boundary of the
maximally split configuration. Generally, pre-scoring techniques suffer from mesh-based aliasing,
since the crack paths must lie on the predefined maximally split configuration. Fracture surfaces are
usually much smoother than they will appear when the sampling bias in the predefined maximally
split configuration is imposed on the visualization.

We provide two options to remove the barriers preventing MPM adoption for ductile fracture
simulation in graphics applications. First, we provide an extension of the mesh based strategy of
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Fig. 5. “Hydraulic press". The orange is simulated with a meshed hollow sphere filled with guts made by
MPM particles.

Jiang et al. [2015] that removes numerical fracture and introduces failure through the elastoplastic
constitutive equations alone. Second, when traditional particle-based MPM with numerical fracture
suffices, we overcome limitations of existing surfacing strategies with a pre-scoring approach. We
note that our surfacing approach is a post-process that can be implemented on data generated from
standard MPM simulations. In summary, our contributions include:
• An elastoplasticity and damage model for ductile fracture that works easily with existing
MPM code bases.
• A generalization of the Lagrangian energy approach of Jiang et al. [2015] for removing
numerical fracture with ductile materials.
• A novel particle surfacing technique that preserves input surface details like texture and high-
curvature regions, while removing mesh-based aliasing inherent in pre-scoring surfacing
strategies.

2 PREVIOUS WORK
Here we discuss works from the computer graphics and computational physics literature related to
simulation of ductile fracture and visualization of particle-based simulation data.

Following the seminal approach of O’Brien et al. [2002], many authors have used FEM simu-
lation of elastoplasticity with continual domain remeshing for ductile fracture. Müller et al. [2004]
use warped stiffness with a Rankine condition on the principal stress to define per-tetrahedron
element fracture planes. Pfaff et al. [2014] use an adaptive mesh to simulate tearing and cracking of
thin sheets. Parker and O’Brien [2009] use the separation tensor from [O’Brien and Hodgins 1999]
but split along element boundaries rather than cutting elements for the sake of efficiency. Wicke et
al. [2010] dynamically remesh tetrahedron meshes to allow for efficient simulation of behaviors
ranging from purely elastic to extremely plastic with fracture. Other remeshing approaches include
[Bargteil et al. 2007; Busaryev et al. 2013; Wojtan et al. 2009; Wojtan and Turk 2008]. Wicke et al.
[2008; 2007] developed interpolating functions for convex polyhedral elements to allow for easy
splitting of elements in fracture simulations. Gissler et al. [2007] introduce a notion of constraint sets
for fracture simulation. Koschier et al. [2017] use XFEM and improve the mass matrix treatment by
integrating over partially empty enriched elements. Zhang et al. [2006] use tetrahedron mesh-based
FEM with elastoplasticity driven damage, element splitting (at damage threshold), and molecular
dynamics for debris simulation.

Pauly et al. [2005] use a meshfree MLS approach to simulate elastoplastic ductile fracture with
Heaviside-enriched interpolating functions, as in the XFEM approaches of Belytschko [2003]. They
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Fig. 6. Four identical cubes of different resolution undergoing twisting and pulling motions. From left to
right: 60K, 17K, 8K, 4K particles.

create domain and crack boundary surfaces at render time using the surfels approach in [Pauly
et al. 2003; Wicke et al. 2004]. Müller et al. [2004] use a similar approach. Steineman et al. [2009]
use visibility graphs to further improve the modification of MLS interpolating functions in the
presence of splitting and merging defined by explicitly tracked failure surfaces. Gerszewski et al.
[2009] also compute the deformation gradient in a weighted least squares sense.

Other notable ductile fracture techniques include the peridynamics approach of Chen et al. [2018].
Bußler et al. [2017] visualize crack surfaces in peridynamics particle data by computing Delaunay
tetrahedralizations that respect height ridges in the damage field. Choi [2014] uses shape-matching
to simulate procedural ductile fracture. Ohta et al. [2009] use an adaptive regular lattice with shape
matching-based elasticity to simulate ductile fracture. Jones et al. [2016] simulate ductile fracture
using shape matching.

Various approaches for ductile fracture with MPM exist in the computational physics literature.
Wretborn et al. [2017] simulate fracture with MPM by pre-scoring materials into pieces held to-
gether by massless particle constraints. They resolve collisions between fragments by using the
MPM N-body approach of [2011]. Nairn et al. [2006; 2003] developed the CRAMP MPM technique
for simulating velocity and displacement discontinuities on the grid. Other MPM techniques utilize
grid node duplication [2007]. They then resolve frictional contact on the duplicated Eulerian grid
nodes.

Surfacing particle-based simulation data is a long-standing problem. Most approaches define
the boundary of the particle domain as the zero isocontour of a level set function or as a threshold
value of a density function [Adams et al. 2007; Blinn 1982; Desbrun and Cani 1998; Müller et al. 2003;
Museth 2014; Solenthaler et al. 2007; Zhu and Bridson 2005]. Yu and Turk developed an anisotropic
approach to more accurately capture sharp features [2013]. Bhattacharya et al. [2015] fit signed
distance functions to particle data by minimizing a biharmonic thin shell energy over a surface
constrained between interior and exterior CSG surfaces, and support anisotropic capture of sharp
features as in [Yu and Turk 2013]. Williams [2008] similarly solves the surfacing problem with
a constrained minimization. Shen and Shah [2007] address temporal discontinuities by blending
adjacent frames. Museth et al. [2007] incorporate a variety of post-processing techniques including
temporal and spatial anti-aliasing. Adams et al. [2007] use a semi-Lagrangian contouring method
similar to that proposed by Bargteil et al. [2006]. Dagenais et al. [2017] improves and extends
surface tracking to retain surface details. Mercier et al. [2015] develop a post-process approach
for surfacing particle-based fluid simulation data. They create an up-res particle surface using a
generalization of the approach in [Williams 2008] and then apply a surface-only Lagrangian wave
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Fig. 7. Shooting projectiles at ductile walls with 5.5K (orange), 14K (yellow), 33K (blue), and 77K (red) particles.

simulation to provide realistic, detailed motion.

Pre-scoring bodies into precomputed pieces is useful for simulation and visualization. Müller
et al. [2013] decompose objects into convex pieces and generate fracture patterns of space us-
ing Voronoi diagrams. CSG operations are used to resolve the initial convex decomposition with
the fracture patterns. Su et al. [2009] also fracture all of space to generate rigid body fragment
pieces for real time simulation of brittle fracture. Liu et al. [2011] also pre-score the material along
Voronoi boundaries to add user control over fracture patterns. Schvartzman and Otaduy [2014] use
Voronoi-based pre-scoring of fracture boundaries with rigid body simulation to simulate brittle
fracture. Zheng and James [2010] use the strain energy density to adapt Voronoi fracture regions.
Raghavachary [2002] defines fragments in polygon meshes by splitting into Voronoi regions.

3 MATHEMATICAL BACKGROUND
We define the deformation of a continuum body as a map from its undeformed configuration
consisting of pointsX to its deformed configuration consisting of points x at time t by x(t ) = ϕ (X, t ).
We refer to the spatial derivative of this map as the deformation gradient F = ∂ϕ

∂X and decompose
it into elastic and plastic parts F = FEFP . Here FE is the elastic deformation and FP is the plastic
deformation associated with inelastic yielding at large stresses [Bonet andWood 2008]. The potential
energy in the system increases as FE deviates from orthogonality, meaning that the motion from
the plastic/damaged state is non-rigid. The governing equations for the deformation mapping are
derived from conservation of mass and momentum

Dρ

Dt
= −ρ∇ · v, (1)

ρ
Dv
Dt
= ∇ · σ + ρg, (2)

where σ denotes the Cauchy stress, g the gravity, and D
Dt =

∂
∂t + v · ∇ the material derivative.
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Fig. 8. Left: an armadillo twisted to fracture. Right: twisting cubes with different von Mises yield surfaces.
We use τC = E, (blue), 0.7E (cyan), and 0.5E, for Young’s modulus E.

3.1 Elastic constitutive model
We use the isotropic hyperelastic potential energy density of [Klár et al. 2016]. This model is
quadratic in elastic Hencky strain ϵE = 1

2 ln(FEF
T
E ),

ψ (FE ) = µϵ : ϵ + λ2 tr(ϵ )
2 = µ

3∑
i=1

ln(σ E
i )

2 +
λ

2
*
,

3∑
i=1

ln(σ E
i )

+
-

2

(3)

where FE = UEΣE (VE )T is the singular value decomposition of FE and σ E
i denote the entries in ΣE .

Here µ and λ are the Lamé coefficients which control the amount of resistance to deformation and
volume change. The Cauchy stress is defined in terms of the elastic potential as

σ =
1

det(F)
∂ψ

∂FE
FET , (4)

∂ψ

∂FE
= UEΣE−1

(
2µ ln(ΣE ) + λ ln(Σ)

)
(VE )T . (5)

This choice of potential energy is primarily for the sake of simplifying the return mapping process
(see [Wang et al. 2019]), as discussed in [Jiang et al. 2017; Klár et al. 2016].

3.2 Plasticity
Ductile materials behave elastically until a critical stress is reached, at which point deformation
becomes permanent and the material achieves a new local rest state. We express this notion of
critical stress in terms of a yield surface in stress space defined implicitly as y (σ ) = 0 using a yield
function y. When y (σ ) < 0, the critical stress has not been achieved and the material behaves
elastically. When y (σ ) = 0, the elastic limit is reached and the plastic deformation defined via FP
becomes non-trivial. Mathematically, we can view the dynamics of FP as being chosen to satisfy
the stress constraint y (σ ) = 0 through its dependence on FE .
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Fig. 9. Left: Rankine yield surface and its return mapping. Right: von Mises yield surface and its return
mapping.

Although the Cauchy stress σ is more physically intuitive, the Kirchhoff stress τ = det(F)σ
is often more convenient when working with plasticity. It is particularly convenient for defining
the plastic deformation in a manner that is consistent with the second law of thermodynamics and
when enforcing the yield condition discretely during time stepping, a process which is typically
referred to as the return mapping (see [Wang et al. 2019]). Henceforth, we will assume the yield
surface is defined in terms of the Kirchhoff stress y (τ ).

3.2.1 Yield surface. We use two different yield surfaces to model different fracture modes. The
Rankine yield surface [Anderson 2017] is given by

y (τ ) = max
∥u∥=∥v∥=1

uTτv − τC ≤ 0, (6)

where τC is a scalar parameter that represents the maximum allowed tensile strength, since the
expression max∥u∥=∥v∥=1 uTτv measures the tensile stress among all directions and corresponds to
the largest eigenvalue of τ . Constraining the maximal tension in all directions enables the material
to go throughmode I yielding, where permanent deformation is induced in response to local tension.

The von Mises yield surface given by
y (τ ) = ∥τ − tr(τ )I∥F − τC ≤ 0 (7)

provides plastic response to mode II and mode III shearing deformations by constraining the de-
viatoric (shear) stress; here ∥A∥F =

√
A : A denotes the Frobenius norm. By combining the two

yield surfaces or using them independently, we can simulate a wide range of fracturing and plastic
materials.

In practice, the yield condition y (τ ) ≤ 0 is enforced per time step. In this process, the trial
strain (ϵ̃E ) is mapped from a state whose corresponding stress violates the condition to one whose
corresponding stress is on the boundary of the yield surface (ϵE,n+1) in a process referred to as the
return mapping. We illustrate the different yield surfaces and the associative direction for return
mappings in Figure 9. We provide detailed derivation in [Wang et al. 2019].

3.2.2 Softening and damage. As the material undergoes plastic deformation, we decrease τC to
shrink the yield surface towards the origin. This limits the strength of the material as smaller and
smaller stresses are admissible. For each projection ϵ̃E → ϵE,n+1 in the return mapping (see [Wang
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et al. 2019]), we decrease τC by θ ∥ϵ − proj(ϵ )∥F , where θ > 0 is a material constant that defines the
rate of softening. When τC reaches zero, we model the material as completely damaged and set the
Lamé coefficients to zero.

4 NUMERICAL METHOD
We use MPM to discretize the governing equations and cover both standard particle-based MPM
as in [Stomakhin et al. 2013; Sulsky et al. 1994] as well as the mesh-based Lagrangian energy
techniques used to prevent numerical fracture [Jiang et al. 2015]. In the Lagrangian energy case,
we modify the approach of Jiang et al. [2015] to include the effects of plasticity and damage.

In MPM, the discrete state consists of a collection of particles that partition the domain based
on initial volumes V 0

p , with time tn positions xnp and with massesmp computed from the initial
mass density as ρ (x0p , t0)V 0

p and linear and affine time velocities vnp , Cn
p used for APIC particle/grid

transfers [Jiang et al. 2015]. In the case of traditional particle-based MPM, each particle additionally
stores the elastic portion of the deformation gradient FE,np and yield surface size τCp . In the case of
mesh-based MPM, we assume there additionally exists a tetrahedron mesh connecting the particles
xnp . We use e to denote elements in the mesh and store FE,ne and τCe per tetrahedron element, rather
than per particle. Furthermore, in the mesh-based case, we must also store the plastic part of the
deformation gradient FP,ne .

An MPM time step from time tn to tn+1 typically consists of three steps: (1) mass (mp ) and momen-
tum (mpvnp ) are transferred from particles to the grid using weights (wn

ip = N (xnp − xi)) defined by
Eularian grid interpolating functions N (x) that describe the degree of interaction between particle
p and grid node i, (2) the grid momentum (mn

i v
n
i ) is then updated in a variational way from the po-

tential energy in the system, and finally (3) the motion of the grid under the updated momentum is
interpolated to the particles. In step (2), the discretization is done differently in the cases of standard
particle-based MPM versus the mesh-based approach. The difference lies in how the deformation
gradient is computed. In the case of standard particle-based MPM, the deformation gradient is
stored per particle and is updated using an updated Lagrangian view. With this assumption the
deformation gradient is computed as the product of the time tn deformation gradient Fnp and the
deformation of the grid (evaluated at the particle) over the time step F̂n+1p = (I + ∆t

∑
i vn+1i ∇w

n
ip )

where ∇wn
ip =

∂N
∂x (x

n
p − xi) is the derivative of the grid interpolating functions. In the case of mesh-

based elasticity, the deformation gradient is computed using mesh connectivity as in standard FEM
[Jiang et al. 2015; Sifakis and Barbic 2012] Fn+1e =

∑
p xn+1p ∇Ñp (Xe ) where Ñp (X) is the piecewise

linear interpolating function associated with particle p evaluated at the tetrahedron barycenter in
the initial configuration of the mesh. We summarize this below as
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mn
i =
∑
p

wn
ipmp (8)

vni =
1
mn

i

∑
p

wn
ipmp (vnp + C

n
p (xi − x

n
p )) (9)

vn+1i = vni +
dt

mn
i
fi + ∆tg (10)

xn+1p = xnp + ∆t
∑
i

vn+1i wn
ip (11)

vn+1p =
∑
i

vn+1i wn
ip (12)

C̃n+1
p =

12
∆x2 (b + 1)

∑
i

wn
ipv

n+1
i ⊗ (xi − xnp ) (13)

Cn+1
p = (1 − ν ) C̃n+1

p +
ν

2
(
C̃n+1
p − C̃n+1T

p

)
(14)

F̃Ee =
*.
,

∑
p

xn+1p ∇Ñp (Xe )
+/
-
(FP,ne )−1 (15)

F̃Ep = (I + ∆t
∑
i

vn+1i ∇w
n
ip )F

E,n
p (16)

FE,n+1q = returnMap(F̃Eq ). (17)

Here the transfer to grid in step (1) consists of Equations (8)-(9), the grid-based momentum update
in step (2) consists of Equations (10)-(12) and the interpolation from grid to particles in step (3)
consists of Equations (12)-(14). This is using APIC transfers [Jiang et al. 2015] for Equations (9)
and (13) as well as the RPIC damping of [Jiang et al. 2017] in Equation (14) where ν controls the
amount of damping. Note that in Equation (10), α = 0 corresponds to symplectic Euler for the grid
momentum update and α = 1 corresponds to backward Euler. Equations (15) and (16) represent
the deformation gradient update in the cases of mesh-based and standard MPM respectively. Equa-
tion (17) projects the elastic state to satisfy the plasticity constraints. The equation is indexed by q
to indicate that it is either e for mesh-based or p for particle-based MPM.

In Equation (10), fi is the force on grid node i which is computed as the variation of the total
potential with respect to grid nodes moving as xi +∆tvn+αi , where α = 0 corresponds to symplectic
Euler and α = 1 corresponds to backward Euler time stepping. The value varies based on the choice
of mesh- or particle-based MPM as

fi =



∑
p w

n
ip fp (x

n+α ) + ∆tg,

−
∑
p

∂ψ
∂FE (F̃

E
p (x̃

n+α )) (FE,np )T∇wn
ipV

0
P + ∆tg

(18)

respectively, where xn+α ∈ R2nP is the vector consisting of all particle time tn+α positions xn+αp
according to Equation (11). In the case of standard particle MPM, x̃n+α is the vector of all Eulerian
grid node positions, moved according to

xn+αi =

{
xi, α = 0
xi + ∆tvn+1i , α = 1 (19)
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1                            2                            3                           4                            5                                6

Fig. 10. Mesh cutting. From left to right: 1: Initial simplex mesh (Delaunay or quality mesh generated for
Lagrangian simulation). 2: Particle core partitioning. 3: Identify failed edges (marked red). 4: The corresponding
partially split mesh to the set of failed edges in 3. 5: A different set of failed edges (marked red). 6: The
corresponding split mesh to the set of failed edges in 5.

In the case of mesh-based MPM, the particle force fp in Equation (18) is related to the variation of
the potential as estimated over the tetrahedron mesh, rather than the particles

fp =
∑
e

∂ψ

∂FE
(F̃Ee (x

n+α ))∇Ñ (Xe ) (20)

where F̃Ee (xn+α ) is given by Equation (16).

5 MATERIAL SURFACE DEFINITION AND VISUALIZATION
We provide a novel pre-scoring strategy for visualization of material boundary and crack surfaces as
a post-process for ductile fracture simulations. Our approach can easily be used for most standalone
MPM solvers. Our technique works with either traditional particle-based MPM, or Lagrangian
energy mesh-based MPM [Jiang et al. 2015]. In the case of mesh-based MPM, we assume the user
provides a tetrahedron mesh of quality suitable for FEM simulation of elasticity. In the case of
traditional particle-based MPM, we assume the user provides interior points that are sampled
with a Poisson disc, or similar initial random spacing. We also assume that the user provides a
triangulation of the boundary of the domain from which the internal particles are sampled. The
vertices of the boundary (triangle) mesh and the randomly sampled interior particles are treated as
MPM particles for simulation. If the user does not provide a triangle mesh, we can generate one by
surfacing the interior particles using an existing technique like [Yu and Turk 2013]. We assume
that most users will define the boundary of the initial domain for ductile materials using a triangle
mesh, typically with texture etc. and our approach is designed to preserve those details throughout
the simulation. Once in possession of the boundary triangle mesh and the interior particles, we
create a Delaunay tetrahedralization connecting the interior and boundary points and preserving
triangles on the original boundary.

1                                 2                                   3                                   4                                   5

Fig. 11. Extrapolation. From left to right: 1. Initial particle core partition. 2. Velocity field defined on grid.
3. Particle cores positioned and oriented by local rigid body transform. 4. Sewing connected cells. 5. Final
deformed fractured mesh.
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5.1 Visualization mesh topology
With our initialization strategy, in either the traditional particle-based MPM or Lagrangian energy
mesh-based MPM cases, we can assume we have a tetrahedralization of the particles used in the
MPM calculation. The mesh is used to define a particle-wise partition of the material domain.
Each tetrahedron in the mesh is split into four cuboids, one for each of its particles. To create the
particle-wise partitioning, each particle in the MPM calculation receives a cuboid from each of the
tetrahedron elements it belongs to. We note that this is essentially the same as the per-particle
cores of material used in the virtual node approach of Molino et al. [2004]. We adopt this name
and refer to the particle’s union of cuboids as its core of the domain. With this convention, each
particle is responsible for updating its core over the course of the simulation.

The boundary of each particle core initially shares faces with cores of particles that it is connected
to in the tetrahedron mesh. We define material failure on a per-initial-tetrahedron-mesh-edge
basis. That is, common faces on cores of material associated with particles initially connected
in the tetrahedron mesh are treated as identical until material failure occurs. To define material
failure, we label core faces between particles connected along an edge in the tetrahedron mesh
as broken. We use a simple union-find data structure to manage the topological connectivity and
create a hexahedron mesh that respects the failed core faces. To do this we start with a mesh that
is completely broken into the maximally split configuration and merge unbroken faces using the
union-find data structure. See Figure 10 for details. One could use an element wise splitting strategy
where core faces within a damaged element are broken, but we found that this gave inferior results
to this edge-wise criterion.

We manage all topological aspects of the material and crack surface visualization with this simple
strategy. Next we discuss our criteria for deciding when an edge (and its associated core faces) are
broken as well as the geometric aspects of the crack surface evolution.

5.2 Topology evolution
We use a history-based maximal stretching criteria to define broken edges. We define the maximum
relative stretching of an edge for times before a given time t as

ζt = max
s<t

∥ϕ (X1, t ) − ϕ (X2, t )∥

∥X1 − X2∥
. (21)

When this value is larger than a threshold, we consider the cores associated with X1 and X2 as
separated from each other and break the edge connecting them. Note that if any edge is broken at
a given time t̂ it will be broken for all times t > t̂ .

5.3 Visualization mesh geometry: extrapolation
Each particle is responsible for updating the geometry of its core. We do this with a simple
extrapolation strategy. We use a rigid transform local to each particle to extrapolate the motion of
the particle to the rest of its core. For each core vertex ynp associated with a particle center xnp , we
compute the time tn position as

ynp = Rnp (y
0
p − x

0
p ) + x

n
p , (22)
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1                                    2                                    3                                    4                                  5

Fig. 12. Crack boundary curve smoothing. From left to right: 1: Identify broken edges (red dashed line).
2: Identify boundary curve of the crack surface (purple solid line). 3-4: Smooth crack boundary curve while
remaining on the original boundary surface: triangle centers move to average of neighbors, edge centers
move to the intersection of its associated edge and the path joined by its neighbors. 5: Crack boundary curve
after one iteration of smoothing.

where Rnp is the rotation associated with the simulated particle p at time tn . We use the MPM grid
velocity to update the local rotation matrix on each particle

Zn+1p = *
,
I +
∑
i

ṽni ∇ω
n
ip
+
-
Rnp , (23)

Rn+1p Sn+1p = Zn+1p . (24)

where the polar decomposition (Rn+1p )TRn+1p = I, Sn+1p = (Sn+1p )T is used to enforce orthogonality.
This creates a rigid core translating and rotating with the particle. However, when the vertices on
the boundary of the core are associated with multiple cores, we take the average of the extrapolated
positions given by each core. This introduces visually realistic deformation when material is not
fully failed, while reverting to translation and rotation in the event of a fully separated core.

The accuracy of the update in Equation (23) is affected by the particle sampling density. If the
grid resolution is too high relative to the particle density, the update can be noisy. For traditional
particle-based MPM this is not an issue, however for Lagrangian energy MPM we found it advanta-
geous to add traditional MPM particles in each element to help resolve update in Equation (23).
These particles are not used to compute forces until their parent elements fail. In the event of
failure, they function as standard elastic MPM particles. See Figure 13 on the right for details.

5.4 Visualization mesh geometry: crack smoothing
There is considerable flexibility when defining the initial geometry of each particle core. The geom-
etry of the cuboid is most naturally chosen by setting its vertices as the edge, face and tetrahedron
centers. However, these points may be chosen anywhere in their respective submanifolds. The only
points on the cuboids without flexibility are those corresponding to MPM particles (tetrahedron
mesh vertices). We take advantage of this flexibility to remove sampling based biasing in the crack
paths. Note that the flexibility is only in the initial geometry of the cuboids. Once set, they must
always evolve according to the per-particle extrapolation in Section §5.3.

A limitation of our pre-scoring visualization approach is that all possible crack paths are de-
termined from the initial particle partitioning of the domain. This will lead to sampling bias of the
crack surface in general. This tends to make the crack surfaces appear more jaggy in the case of
randomly sampled initial points. In the case of structured initial points, the structure is imposed on
the crack paths. In order to remove initial sampling bias, we iteratively smooth the crack surface in
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the initial configuration. Smoothing the surface tends to remove sampling bias as is usually visible
through regions of locally high curvature. Because our visualization technique is a post-process,
we can assume that we know the topology of the crack surface at the final time from the condition
in Section §5.2. We can therefore smooth the entire surface in the initial configuration, as required.

The first step of our approach smoothes the intersection of the initial material boundary sur-
face and the crack surface. Care must be taken in this step to ensure that the boundary crack curves
remain on the initial boundary during the smoothing process. See Figure 12 for details. Next, we
smooth the crack surface interior by assigning each vertex to the average of its neighbors while
the curve processed in the first step remains unchanged. We do this in a Gauss-Seidel fashion. Our
approach quickly removes high-frequency noise while preserving the general shape of the crack
pattern.

6 RESULTS
We demonstrate our ductile fracture simulation and surface visualization techniques with a variety
of simulations exhibiting a wide range of representative behaviors. We list our computational
performance and simulation details in Table 1. We note that in many of our examples, remarkably
detailed fracture patterns are produced with comparatively low resolutions. This is advantageous
because surfacing limitations often require simulations with artificially high resolution in many

Fig. 13. Left: original crack surface (yellow), crack surface smoothed with 2 iterations (green), crack surface
smoothed with 20 iterations (cyan). Right: we sample extra particles in each quadrilateral/cuboid to help
reduce noise.
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MPM applications. Our results were run on an Intel Xeon E5-2687W v4 with 48 threads. Time
stepping was adaptively chosen according to the CFL condition, i.e. ∆t was set so no particle travels
more than a portion of a grid cell in each time step. For particle-based MPM, the grid resolution was
chosen so that there are initially approximately six particles per grid cell. For Lagrangian energy
MPM, the grid resolution reflects the tetrahedron mesh resolution, i.e. grid ∆x was chosen roughly
the same as the average edge length of the tetrahedron mesh. In our examples, we used TetWild to
generate the tetrahedron mesh for Lagrangian MPM [Hu et al. 2018].

6.1 Capturing different fracture modes
We test our method with fracture simulations in which excessive tension or shear force is applied.
In Figure 14, we simulate the process of pulling on a cube and demonstrate how Lagrangian MPM
prevents numerical fracture caused by excessive deformation. In Figure 6, we twist and pull a cube
until the shearing forces cause material failure and the material becomes disconnected. On the
left of Figure 8, we pull the 4 limbs of the armadillo until they break and observe how the fracture
introduces momentum to the torso. On the right of Figure 8, we added the von Mises plasticity
model to the particles to capture more shear-induced plastic deformation.

6.2 Texturing objects
Our mesh visualization technique has the advantage that it naturally accommodates texturing
based on an input mesh. E.g. all particles from the initial mesh are in the cut mesh and it is trivial
to obtain a consistent vertex ordering based on the initial mesh for simplified texturing. In Figure 1,
we simulated a zucchini being broken in half and demonstrated that its detailed texture is preserved.
Also in Figure 1, we textured the ductile walls broken by the walking mannequin with SCA logos.
In Figure 5, we textured the ductile sphere and created convincing details in the fracture scene.

6.3 Relaxed resolution requirements
In Figure ??, we simulated twisting of a cube with 8,000 particles. We compared two different
renders: conventional particle fluid surface reconstruction and our approach. Our result captures
significantly more detail and does not suffer from reconnection due to proximity. We also provide
similar resolution comparison in Figure 6, and Figure 7. With our meshing technique, the results
still look comparable even with comparatively low resolution.

Fig. 14. We illustrate our treatment of numerical fracture with three simulations using the same particles.
The red cube and blue cubes are simulated using traditional particle-based MPM with fine grid resolution
(approximately 1 particle per grid cell) and coarse grid resolution (approximately 6 particles per grid cell)
respectively. The green cube is simulated with our Lagrangian approach and fine grid resolution.
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Fig. 15. We compare the same twisting cube simulation with different particle count and grid size. The sims
with smaller grid dx to particle count ratio experience more fracture than the ones with larger ratio in the
same frame.

7 DISCUSSION AND LIMITATIONS
Many existing FEM approaches for simulating ductile materials rely on the creation of a sufficiently
high quality tetrahedron mesh to be used in the simulation. In the case of traditional particle based
MPM, our mesh quality demands are practically non-existent. Indeed we simply use Delaunay
tetrahedralization. In the case of Lagrangian mesh-based MPM our approach requires a mesh
with the same quality constraints as traditional FEM. In either case, the MPM conception of
our approach automatically resolves self-collision allowing us to simulate ductile fracture with
comparably low implementation and computational complexity. Our approach does have a number
of clear limitations. First, crack patterns are affected by particle sampling density/tetrahedron mesh
topology and grid resolution. See Figure 15. Also, choosing appropriate parameters for edge splitting
thresholds and crack surface smoothing iteration counts can vary from example to example.
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Sim Post-process Res
Pull - MPM (Fig. 14 red and blue) 0.6 0.5 8K
Pull - Lagrangian (Fig. 14 green) 0.6 0.5 8K
Projectile - 77K (Fig. 7 red) 2 5 77K
Projectile - 33K (Fig. 7 blue) 0.9 2 33K
Projectile - 14K (Fig. 7 yellow) 0.4 0.7 14K
Projectile - 5.5K (Fig. 7 orange) 0.2 0.3 5.5K
Twist - 60K (Fig. 6 blue) 11 5 60K
Twist - 17K (Fig. 6 purple) 4 1 17K
Twist - 8K (Fig. 6 green) 2 0.4 8K
Twist - 4K (Fig. 6 red) 2 0.2 4K
Twist von Mises (Fig. 8) 11 4 60K
Pulling with angle - 60K (Fig. 6 blue) 11 5 60K
Pulling with angle - 17K (Fig. 6 purple) 8 1 17K
Pulling with angle - 8K (Fig. 6 green) 8 0.4 8K
Pulling with angle - 4K (Fig. 6 red) 5 0.2 4K
Braiding Columns (see supplementary video) 2 3 50K
Braiding Columns (Fig. 3 and Fig. 4) 35 16 200K
Crushing Orange (Fig. 5) 15 8 130K
Zucchini (Fig. 1 bottom) 16 13 207K
Stretching Armadillo (see supplementary video) 49 27 299K
Tearing Armadillo (Fig. 8 left) 48 26 299K
Wall breaking (Fig. 1 right) 50 5 933K

Table 1. Our simulations and post-processes were run with 48 threads and 128 GB of RAM. Simulation and
post-process time are measured in averaged seconds per frame, and resolution is measured by particle count.
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