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Dynamic Simulation of Articulated Rigid Bodies
with Contact and Collision

Rachel Weinstein, Joseph Teran, and Ron Fedkiw

Abstract— We propose a novel approach for dynamically
simulating articulated rigid bodies undergoing frequent
and unpredictable contact and collision. In order to
leverage existing algorithms for nonconvex bodies, mul-
tiple collisions, large contact groups, stacking, etc., we
use maximal rather than generalized coordinates and
take an impulse based approach that allows us to treat
articulation, contact and collision in a unified manner.
Traditional constraint handling methods are subject to
drift, and we propose a novel pre-stabilization method
that does not require tunable potentially stiff parameters
as does Baumgarte stabilization. This differs from post-
stabilization in that we compute allowable trajectories
before moving the rigid bodies to their new positions,
instead of correcting them after the fact when it can be
difficult to incorporate the effects of contact and collision.
A post-stabilization technique is used for momentum and
angular momentum. Our approach works with any black
box method for specifying valid joint constraints, and no
special considerations are required for arbitrary closed
loops or branching. Moreover, our implementation is linear
both in the number of bodies and in the number of
auxiliary contact and collision constraints, unlike many
other methods that are linear in the number of bodies but
not in the number of auxiliary constraints.

Index Terms— I.3 Computer Graphics, I.3.5.i Physically
based modeling,, I.6.8.a Animation, I.2.9.d Kinematics and
dynamics

I. INTRODUCTION

ARTICULATED rigid bodies have wide ranging
applications across fields including molecular dy-

namics, robotics, machine assembly, human motion, and
computer graphics for video games and feature films.
In many applications, the focus is on kinematics or
inverse kinematics, and dynamic behavior is of sec-
ondary or limited interest with only a few instances of
predictable contact and collision, e.g. consider manip-
ulating a robotic arm in a controlled environment with
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contact occurring only with the end effector as planned.
However, more typically in computer animation for film
and games, simulated dynamic behavior of articulated
rigid bodies undergoing intricate interactions (via contact
and collision) with arbitrary, complex environments is of
interest. We present an articulated rigid body simulation
framework that is more appropriate for graphics appli-
cations involving such complex scenes, and provide a
number of examples that demonstrate our ability to attain
visually plausible, compelling results.

There are traditionally two choices for maintaining
the constraints that articulate a group of rigid bodies.
The first class of algorithms are reduced coordinate (or
generalized coordinate) formulations that parameterize
the degrees of freedom in a manner consistent with the
constraints of articulation, effectively reducing the over-
all degrees of freedom by eliminating those that could
violate the constraints. Unless there are many closed
loops or frequent and unpredictable contact and collision,
generalized coordinates are typically preferred due to the
increased efficiency. In the absence of closed loops and
unpredictable contact and collision, any choice of the
system state is admissible (i.e. satisfies the constraints).
However, consistency conditions are required to ensure
that closed loops are actually closed adding a nonlocal
constraint to the system, and many popular methods
violate this constraint proceeding as though there were
no closed loops and applying penalty forces at loop
closures. Note that limits on the range of allowable
degrees of freedom are local constraints easily enforced
by clamping, but adding a global closed loop constraint
can complicate the treatment of these local constraints
as well. Contact and collision provide even more chal-
lenging scenarios, since one cannot tell if a contact point
is active or nonactive (separating velocity) until after the
problem is solved. Moreover, active points essentially
behave as new articulations so that frequent contact and
collision effectively increase the number of closed loops.

[1] pointed out that linear complexity can readily be
achieved using maximal coordinates. Closed loops and
contact were incorporated drawing on the earlier work
of [2] (see also [3]–[6]), but the proposed algorithm
does not retain linear complexity with regards to the
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Fig. 1. The use of prismatic (translational) constraints forces
“magnetic” letters to stay constrained to the surface of a refrigerator.

number of loop closures and contact points (although
[7], [8] worked to treat closed loops iteratively some-
what improving the situation). [9], [10] reformulated the
algorithm of [1] in the context of generalized coordinates
showing that one obtains essentially the same equations
and complexity, but with less degrees of freedom since
some of them are automatically eliminated. We have
found that it has been easier to design algorithms to treat
closed loops and frequent contact and collision in max-
imal coordinates using a unified treatment, and propose
a novel maximal coordinates approach that builds on the
previous work of [11] to treat large contact groups and
stacking with linear complexity in both the number of
bodies and the number of auxiliary constraints. However,
it might be advantageous to subsequently reformulate
our algorithm in generalized coordinates where gains
can be achieved by reducing the number of variables
in the problem. We note that the extension of our
work to generalized coordinates is promising (but not
obvious) in light of [12] showing that [13], [14] could
be used to process collisions with an articulated rigid
body simulated in generalized coordinates (see also [9]).

A number of energy minimization techniques were
explored for constraint handling, see e.g. [15]–[18], and
[19] (see also [20]) outlined a general methodology for
handling constraints. Basically, if the constraint and its
derivative are satisfied initially, one needs to ensure that
the net force does not act to violate the constraint. Also,
to combat constraint violation due to numerical drift,
Baumgarte stabilization [21] is typically used applying
penalty forces based on the error in the constraint
and its derivatives. This amounts to a damped spring
type of force, and there can be difficulties associated
with choosing the proper parameters. The differential
algebraic equations (DAE) community has pointed out
many flaws with this technique recommending post-
stabilization techniques instead, see e.g. [22]–[24]. These

Fig. 2. The net represents a significant number of closed loops, but
maintains stability even when weighed down by blocks.

techniques project the solution back onto the acceptable
constraint manifold after each time step. Ad hoc meth-
ods for correcting the positions and orientations were
proposed in [25] (see also the procedural approach in
[26]) correcting the velocities based on the final state,
and an improved iterative method was proposed in [27]
(see also [8]). Our approach has notable differences
such as solving a set of nonlinear equations locally
and using impulses (as opposed to displacements) so
that the approach can be combined with state of the
art contact and collision algorithms. [28] introduced
post-stabilization into the LCP formulation of [1], [2]
requiring the solution of a second LCP (although they
state that this is not necessary). They noted stability
problems when there were large errors in the constraints
causing their linearization to be invalid. We avoid these
difficulties by using pre-stabilization on a joint by joint
basis whereby we only evolve the bodies after our
iterative solver finds impulses that yield an acceptable
state. Moreover, as stated above, our algorithm retains
linearity in the number of auxiliary constraints allowing
us to solve large problems with many closed loops,
collisions, and large contact groups.

Our pre-stabilization method relies on solving three
by three nonlinear systems of equations that allow us
to target any desired joint state. One simply temporarily
evolves a pair of rigid bodies forward in time to obtain
a predicted joint state, and then uses any black box joint
model (see for example [29]–[31] and the references
therein) to determine the closest allowable or desired
joint state as input to our nonlinear solver. While pre-
stabilization is used for the positions and orientations,
a more standard post-stabilization technique is used for
the velocities. Our impulse based framework allows us
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Fig. 3. These bridges demonstrate the stability of multiple closed loops as shown by the loops created in the base and those between the
ropes and the bridge itself. The closed loops maintain their stability even when subjected to collisions from falling articulated blocks (top)
or closed loops of non-convex rigid bodies (bottom).

to fully couple our new treatment of articulated rigid
bodies to the rigid body contact and collision handling
algorithms proposed in [11] including contact graphs,
shock propagation, staggered integration of position and
velocity with contact and collision, etc.

II. PREVIOUS WORK

Although we have discussed the works needed to put
our contributions in context, we discuss a few historical
works below focusing on dynamic simulation of articu-
lated rigid bodies as our algorithm is specific to that area.
The problem of simulating articulated rigid bodies is a
long-standing problem, e.g. see [32]. [33] built legged
figures incorporating some simplified dynamics, [34],
[35] simulated articulated rigid bodies using applied
torques to control joint angles, and [36], [37] used similar
techniques including spring forces to enforce joint limits
and collisions with the ground. Spring based joint forces
were also used in [38], which was later extended to
handle closed loops and collisions using Lagrange mul-
tipliers including penalty terms to combat drift [39]. [40]
dynamically simulated rigid bodies including contact and
collision, as well as kinematically controlled articulated
bodies that dynamically responded to joint motion and
collisions with other objects (behaving as a single rigid
body for these interactions). [41] proposed an impulse
based approach to collisions between rigid bodies and
articulated rigid bodies (not in generalized coordinates)
solving a single matrix equation to find the impulses
which handle collisions as well as those that properly
constrain the velocities at articulation points (holding the

joints together). See also [42].
[43] proposed spacetime constraints for controlling

articulated characters. This has turned out to be quite
useful for character animation, see e.g. [44], but departs
from our focus on dynamic simulation. In the area of
simulation, [45], [46] implemented recursive algorithms
with [46] able to handle closed loops, [47] used a
Lagrange multiplier approach for protein modeling, [48]
proposed using impulses to treat collisions while insert-
ing springs to model contact, and [7] used a mix of
impulses, temporary joint constraints, and the method
of [49] to model collision, contact and friction. [50],
[51] proposed an O(n) method although it required
loop decomposition, dealt with only a handful of rigid
bodies, and presented no clear method for handling large
numbers of unpredictable contact and collision events.
See also the Lagrange multiplier approach to rigid (and
deformable) bodies in [52]. [53] extended the contact
graph proposed in [40] for rigid body collisions to the
mixed articulated rigid body and free rigid body case
using it to assemble the global linear system of equations
for the impulses. In the area of contact and collision
detection, we follow the work of [11], but refer the
interested reader to [54] and the references therein.

III. EQUATIONS

A rigid body is characterized by its world frame
Fw = {x,q} consisting of position and orientation, and
is evolved in time via xt = v, qt = (1/2)ωq, vt = f/m
and Lt = τ where v and ω are the velocity and angular
velocity, f is the net force, m is the mass, L = Iω is the
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Fig. 4. Dynamic constraints between the treads and gears give control over the movement of the tank. The tank’s differential steering allows
for controllable turning (top), and the treads remain firmly attached to the gears even when gravity no longer holds them on (bottom).

angular momentum with inertia tensor I = RDRT (R
is the orientation matrix and D is the diagonal inertia
tensor in object space), and τ is the net torque. The
position and orientation are time integrated according to

xn+1 = xn +4tvn, qn+1 = q̂ (4tωn)qn (1)

where q̂(ω) = (cos(|ω|/2), sin(|ω|/2)ω/|ω|) is a unit
quaternion so no extra normalization step need be ap-
plied (although occasional normalization combats drift).
This particular form of the position and orientation
time integration is quite important, since it is used in
our stabilization procedure. The velocity and angular
momentum are updated with standard forward Euler time
integration.

Consider an articulation between a parent and
child rigid body with world frame states Fw

p

and Fw
c respectively. We denote the joint centers

rigidly attached to each body by Fj
p and Fj

c, and
the joint state J = {xj ,qj} by J = Fj

pF
p
wFw

c Fc
j

where we define Fb
a = (Fa

b )
−1 and multiplication

by {x1,q1}{x2,q2} = {x1 + q1[x2],q1q2}. The
articulation constraint comes from limiting the class of
acceptable joint frames, e.g. purely revolute joints have
constant xj and purely prismatic joints have constant
qj . Given a current joint state Jn, equation 1 evolves
the bodies forward in time to obtain a new joint state
Jn+1 = Fj

p(F
p
w)n+1(Fw

c )n+1Fc
j . The predicted joint

state Jn+1 is typically not in the feasible region, and
any black box joint model (see e.g. [29]–[31]) can be
used to project Jn+1 to the desired state Jtarget. The
goal of our pre-stabilization method is to apply impulses

to the rigid bodies before integrating with equation 1
with the intention of achieving Jtarget after integrating
with equation 1. Since we exactly target the desired
Jtarget every time step, there are no cumulative errors
(no drift) as the simulation proceeds in time. All errors
at a given time step are incurred from tolerances on the
iterative schemes applied in that time step.

We apply an impulse j to a pair of bodies via

vnew = vn ± j/m, ωnew = ωn ± I−1 (r× j) (2)

where r is the vector from the rigid body’s center of
mass to the application point of the impulse. For artic-
ulation, we apply the impulse at the midpoint between
xw

p + qw
p [xp

j + qp
j [x

target]] and xw
c + qw

c [xc
j ] at time n

noting that these two points are coincident when the
constraint is satisfied (see equation 5). For the orientation

d d

B1 B2

B2B1

Point of application

Fig. 5. The application point of impulses is the mid-
point (shown as a white circle) of the two articulation points
xw

p + qw
p [xp

j + qp
j [xtarget]] and xw

c + qw
c [xc

j ] (shown as black cir-
cles). In the top image, the constraint is not satisfied and the distance
d to each articulation point is the same. In the bottom image, the
constraint is satisfied so the two articulation points are coincident.
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Fig. 6. We stacked 360 rings, each constructed by point constraining 6 non-convex objects together, for a total of 2160 rigid bodies and
2.9 million triangles.

constraint, we use a purely angular impulse setting the
linear impulse j to zero. If the point of application (and
thus r) goes to infinity as j goes to zero, the quantity
jτ = r× j can remain finite. Then we obtain

vnew = vn ± 0, ωnew = ωn ± I−1jτ (3)

which is a solely angular impulse. Note that we use the
convention that the positive (negative) impulse is applied
to the parent (child) rigid body.

IV. ENFORCING ARTICULATION CONSTRAINTS

In order to maintain the proper articulation, we apply
impulses at each joint at time n so that after time
integration with equation 1 we obtain(

Fw
p

)n+1
Fp

jJ
target = (Fw

c )n+1 Fc
j (4)

where we have moved the frames related to the parent
to the left hand side. This entails solving a 6n degree
of freedom nonlinear equation where n is the number
of joints in the articulated rigid body, and the situation
becomes worse for contact and collision. Thus, we take
an iterative approach similar to and commensurate with
the approach for contact and collision proposed in [11],
i.e. we apply impulses one joint at a time. Furthermore,
we iteratively solve the 6 degree of freedom nonlinear
system for each joint by first finding and applying a
linear impulse to satisfy the positional constraint, and
then finding and applying an angular impulse to satisfy
the orientation constraint.

We define the desired target position of the joint via(
xw

p

)n+1
+
(
qw

p

)n+1 [
xp

j + qp
j

[
xtarget

]]
= (xw

c )n+1 + (qw
c )n+1

[
xc

j

]
(5)

from equation 4. We first apply an impulse to the time
n states according to equation 2, and then integrate in
time according to equation 1, plugging the results into
equation 5 and rearranging to obtain

f (j) =
(
xw

p

)n + ∆t
(
vw

p

)n +
∆t

mp
j

+q̂
(
4t
(
ωw

p

)n +4tI−1
p r∗pj

) [(
qw

p

)n [
xp

j + qp
j

[
xtarget

]]]
− (xw

c )n −∆t (vw
c )n +

∆t

mc
j

−q̂
(
4t (ωw

c )n −4tI−1
c r∗cj

) [
(qw

c )n [xc
j

]]
= 0.

Note that this equation is nonlinear, since points on rigid
bodies follow nonlinear paths. We solve this equation
with Newton iteration where each consecutive iterate
jm+1 is obtained by solving the 3x3 linear system
(∂f/∂j)|jm 4j = −f(jm) for 4j = jm+1 − jm (as an
initial guess, we use j0 = 0). The computation of ∂f/∂j
can be found in the appendix.

We define the desired target orientation of the joint

Fig. 7. Dynamic constraints between the treads and the front and
back gears are updated each frame (added or deleted as necessary).
The middle gear is passively attached to the base of the tank with a
twist joint. A hinge constraint keeps the lid attached, and a constraint
between the gun and the base allows for gun movement.
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via (
qw

p

)n+1
qp

jq
target = (qw

c )n+1 qc
j (6)

from equation 4. We first apply an impulse to the time
n states according to equation 3, and then integrate in
time according to equation 1, plugging the results into
equation 6 and rearranging to obtain

f (jτ ) = q̂
(
4t
(
ωw

p

)n
+4tI−1

p jτ
) (

qw
p

)n
qp

jq
target

−q̂
(
4t (ωw

c )n −4tI−1
c jτ

)
(qw

c )n qc
j = 0.

We again use Newton iteration noting that (∂f/∂jτ )|jm
τ

is a 4x3 matrix, since equation 6 has an equation for
each of the 4 components of the quaternion. We use
the normal equations to solve the linear system for 4jτ
at each step. The computation of ∂f/∂jτ for angular
constraints can be found in the appendix.

Since we iterate through all the joints correcting errors
in the individual joint states one at a time, we obtain
higher accuracy by correcting each joint a small amount
at a time. To accomplish this, we accept a solution if the
error is reduced by ε times the initial error amount where
the parameter ε gradually increases from a small positive
number to 1 as the iterations proceed. This targets zero
error in the final sweep through the joints, but allows for
larger errors in initial sweeps. A similar technique was
used in [11] to improve the accuracy of the impulses
used when processing contacts. Also, to increase robust-
ness and accuracy while solving each small nonlinear
system, we slightly modify the Newton iteration via
jm+1 = jm + ε4j (and jm+1

τ = jmτ + ε4jτ ). A second
technique we employ is to use 4j (and 4jτ ) as a search
direction employing the golden section search method
to compute a more robust minimum. This also typically
reduces the number of Newton iterations required.

V. VELOCITY POST-STABILIZATION

We use impulses to enforce the position and orienta-
tion based articulation constraints so that the technique
can be mixed in directly with contact and collision. If
post-stabilization (instead of pre-stabilization) was used,
we would have to correct the positions of objects after
integrating them forward in time, and these corrections
would need to be contact and collision aware both
causing errors and reducing accuracy. Moreover, it is
not clear how this could be accomplished. However,
once the objects have been moved to their new positions
in a contact, collision and articulation constraint aware
fashion, we can apply a post-stabilization technique to
project the velocities onto the desired manifold. In fact,
we apply this technique quite often whenever consistent
velocity values are needed.

Given current values for the velocities, we project
them to acceptable values by applying impulses in an
iterative fashion one joint at a time. The desired value
is found in a straightforward manner by projecting the
velocity in the constrained degrees of freedom leaving
the other degrees of freedom unchanged. For example, a
point constraint dictates that the relative linear velocity
should be identically zero while the angular velocities
should remain unchanged. For a completely rigid joint,
both the linear and angular relative velocities should be
identically zero.

The relative velocities at an articulation point are
given by urel = up − uc and ωrel = ωp − ωc where
u = v + ω × r for each body. If both a linear and an
angular impulse are simultaneously applied we obtain
updated values for the relative linear and angular veloc-
ities as given by equations 2 and 3, i.e.

unew
rel = urel

+

((
1

mp
+

1
mc

)
δ + r∗Tp I−1

p r∗p + r∗Tc I−1
c r∗c

)
j

+
(
r∗Tp I−1

p + r∗Tc I−1
c

)
jτ

ωnew
rel = ωrel +

(
I−1
p r∗p + I−1

c r∗c
)
j +

(
I−1
p + I−1

c

)
jτ .

This is a linear system of two vector equations in two
vector unknowns (j and jτ ), and can be solved by solving
one equation for j, plugging the results into the second
to obtain jτ , and then using jτ to find j (as is typical).

Once again, these corrections can be applied a small
amount at a time by using a parameter ε that gradually
increases from a small positive number to 1 as the iter-
ations proceed. That is, instead of projecting velocities
from their current value to their target value, one projects
them by an ε fraction amount towards their target value.

VI. HYBRIDIZATION WITH CONTACT AND

COLLISION

The primary benefit of our impulse based pre-
stabilization technique is that the impulses used to en-
force the position and orientation articulation constraints
can be seamlessly integrated with those in an impulse
based contact and collision algorithm such as that pro-
posed in [11]. We integrate our algorithm with theirs as
follows.

• Process Collisions (and Velocity Post-Stabilization)
• Integrate Velocities (and Velocity Post-

Stabilization)
• Resolve Contacts & Articulation Pre-Stabilization
• Integrate Positions (and Velocity Post-Stabilization)
Since processing collisions and integrating the velocity

forward in time both change the values of the velocity
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Fig. 8. Twenty skeletons, each consisting of over 1 million triangles, were stacked on top of each other. The largest computational cost
was in resolving contact and collision, while the overhead of articulation constraints was nearly negligible in comparison.

field, the velocity post-stabilization technique is used
after each of these steps. Pre-stabilization is tightly
integrated with the contact processing algorithm. First
a contact graph is constructed as usual, and impulses
are used to resolve contact one level of the graph at a
time. After processing all the contacts of all the bodies
in a certain level with bodies at lower levels (as usual),
the articulation constraints between any body in that
level with a body of a lower level are processed. Shock
propagation is the last step of contact handling, and
a similar process can be used. However, we noticed
non-intuitive results processing articulation constraints
between two bodies when one of them temporarily has
infinite inertia, so we remove the infinite inertia aspect of
the shock propagation algorithm only when computing
the impulses due to articulation (otherwise, it is used
as usual). Alternatively, the articulation constraints can
be ignored completely during the shock propagation
phase. Then an optional sweep through the contact graph
processing only the articulation constraints can be added
after shock propagation. While this is not necessary,
we have found that it improves the accuracy of the
articulation constraints.

Finally, the positions and orientations are integrated
forward in time using the velocities calculated by ap-
plying all the impulses necessary to handle both the
contact and articulation constraints. This has allowed us
to treat large stacks of articulated bodies with robust
contact and articulation handling. Note that we do not
apply velocity post-stabilization before integrating the
positions forward in time, since the velocities obtained
during contact processing and pre-stabilization should
not be modified until the positions and orientations
are corrected for contact and constraint enforcement.
However, after moving the bodies, we once again apply

velocity post-stabilization. In order to further increase the
robustness of the optional final sweep through the contact
graph processing only articulation constraints (i.e. after
shock propagation), we optionally save the velocities
before doing this step. Then these saved velocities are
restored after integrating the positions but before the final
application of velocity post-stabilization. This further
insulates the articulation constraints from the shock
propagation for added stability.

VII. EXAMPLES

Although a theoretical proof is beyond the scope
of this paper, the implementation of our algorithm is
provably linear in complexity. We take a finite number
of sweeps through all the bodies (always less than 10)
for all examples. The number of iterations was typically
chosen based on running an example for several frames.
For example, 9 iterations was sufficient for over 2,000
contact/collision coupled bodies, while 5 iterations was
insufficient and 15 iterations gave results visually identi-
cal to 9 iterations. During each sweep, each articulation
and auxiliary constraint is considered exactly once, and
thus each sweep is O(n) in these constraints.

We assessed our algorithm using a series of examples
which demonstrate typical articulated rigid bodies as
well as those which are traditionally more difficult. Ex-
amples with complex articulation, branching and closed
loops ran nearly in interactive time as long as the rigid
bodies themselves were simple. For more complex rigid
bodies, the main computational cost was incurred during
the contact and collision handling with the articulation
enforcement adding only a small overhead. For the
problems we consider with many contacts and collisions,
the articulation constraints only required about 5% of
the CPU time. We used the friction model described in
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Fig. 9. Any black box joint type which can produce a desired joint
frame from a given joint frame may be used with our algorithm.
Examples of such joint types are point constraint joints with three
degrees of freedom (top left), hinge joints with one degree of freedom
(top right), twist joints with one degree of freedom (bottom left) and
rigid joints with no degrees of freedom (bottom right).

[11] for friction during contact and collision. In addition,
we used quite large time steps without limits based on
contact and collision events or joint stability.

Our algorithm works with any black box definition
for the joints and constraints, and we demonstrate some
of the most basic joints in figure 9. A simple joint
with three degrees of angular freedom is created by
constraining two points to always remain in contact
(upper left). A hinge joint may be formed by specifying
that movement only be along an axis aligned with two
edges (upper right). Similarly, a twist joint can be formed
by placing the axis of rotation to pass through two faces
(lower left). Finally, a rigid joint constrains all linear and
angular movement, and holds up even when one body
is much larger than the other (lower right). Prismatic
joints which constrain movement in one or more of
the three axial directions are demonstrated by the 210
magnets sliding down the refrigerator in figure 1. Each
letter is constrained by a joint which allows prismatic
movement on the face of the refrigerator as well as
twisting in that plane, but no other degrees of freedom.
Since the algorithm allows for any joint model, the user
may choose one which incorporates internal friction or
any sort of restricted movement.

Our algorithm requires no special treatment for
branching or closed loops, and we show many examples
of the typically more difficult closed loop case. See for
example the tank in figure 7, the net in figure 2, and

the bridge in figure 3 which all contain a number of
closed loops and undergo frequent contact and collision.
The bridge in figure 3 contains 102 rigid bodies and
multiple closed loops between the different rungs in the
base of the bridge as well as between the ropes and
the bridge itself. To demonstrate the stability of the
bridge and the efficacy of closed loops in our system,
we dropped a number of objects on the bridge including
81 pairs of articulated blocks (figure 3 top) and 60 closed
loop chains each containing 6 non-convex rigid bodies
(figure 3 bottom). Typical simulation times for the bridge
were 30 seconds per frame. Another example of complex
closed loops was the net in figure 2, which is essentially
a 15 by 15 lattice of rigid bodies (736 total bodies).
Using over 960 constraining joints, this net was able to
pick up and hold boxes or other bodies with simulation
times under one minute per frame.

We also developed a tank model which took about
thirty seconds a frame to simulate. The treads were
each constructed as a single closed loop of 34 links
using hinge joints and were wrapped around the gears.
The tank uses differential steering so that the treads on
each side can be moved independently allowing it to
turn in place as shown in figure 4 (top). In order to
prevent the treads from slipping off the gears as well
as give the gears more control over the treads, we use
dynamic constraints. In each frame, we use proximity
to create or delete new attachment joints between the
treads and the gears. Note that this is only done for
the far front and far back gears which drive the tank
motion, and the middle gear on each side is passively
connected to the tank with a simple twist joint. Moreover,
to provide for natural joint release as tread links separate
from the gears, we examined each tread for unattached
links and also unattached the neighbors of each of these.
We experimented with driving the tank in numerous
situations, such as off of a refrigerator in figure 4
(bottom), and observed good performance for the gear
and tread mechanism. (Note that as the tank is falling,
the spinning of the treads in one direction causes the
tank to rotate in the opposite direction.)

Finally, we explored simulations involving large stacks
of articulated rigid bodies. We dropped 2160 rigid bodies
(with 2160 articulation constraints) modeled as 360
closed loops onto 25 poles, letting them come to rest as
demonstrated in figure 6. The scene consisted of approx-
imately 2.9 million triangles and the simulation time was
approximately one day. Furthermore, we dropped twenty
skeletons into a pile as shown in figure 8. Each skeleton
consisted of 21 bones and 19 articulated joints for a total
of 420 rigid bodies and 380 joints. With over 20 million
triangles in the simulation, this scene required two days
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to simulate.

VIII. CONCLUSIONS AND DISCUSSION

We proposed a novel pre-stabilization technique that
iteratively finds and applies impulses to enforce articula-
tion constraints. Moreover, we integrated this approach
with a state of the art contact and collision processing
algorithm illustrating the ability to robustly handle large
stacks of articulated objects and complicated contact
and collision scenarios such as that exhibited by a tank
with gears driving treads. An additional post-stabilization
technique was proposed for the velocities and angular ve-
locities. No special treatment was required for branching,
closed loops, contact, collision, friction, stacking, etc.

Our pre-stabilization method parallels [55] which ad-
dresses cloth self-collision by starting with an interfer-
ence free state, and adjusting velocities to ensure that the
next state will also be interference free. Post-stabilization
parallels [56] which first evolves the cloth to its new pos-
sibly self-interfering state, and then attempts to untangle
the resulting self-intersection. As can be seen from [56],
projecting to a collision free state can be difficult or
even impossible. That is, there are configurations such
as edge intersections that their method does not handle.
The same is true for post-stabilization of articulated rigid
bodies where it is not clear how to project back onto
the constraint satisfying manifold while handling contact,
collisions, and interference.

A simple illustration of the difference between pre-
stabilization and post-stabilization is shown in figure 10.
In the left figure, the bodies are in a valid configuration.
In the next time step, continuing along their current
trajectories, they enter the configuration on the right.
Post-stabilization allows the bodies to enter this invalid
configuration on the right and then attempts to project
back onto the constraint manifold. However, this requires
moving body B3 out of the way in order to satisfy
contact and collision constraints. Looking only at the
figure on the right, it’s not clear whether B3 should
be moved to the right or to the left, and one needs
to consider the figure to the left in order to see that
B3 should be moved to the right in order to avoid
the appearance of passing through the other bodies.
General post-stabilization methods that can project onto
the constraint manifold while handling the complicated
path planning needed to avoid collisions and interference
as the objects are moved around do not exist. Although
taking small time steps can alleviate the problem to
some degree by providing less complicated states that
are closer to the acceptable manifold, small time steps
increase the computational burden. Instead, our presta-
bilization allows for big time steps and avoids this path

B2
n

B1
n

B3

B2
n+1

B1
n+1

B3
n

v

v

n+1

Fig. 10. This example situation highlights a difficulty with post-
stabilization. The left diagram shows bodies B1, B2, and B3 in a
valid configuration. The bodies are moving with the given velocities
at time n as shown on the left. Post-stabilization techniques will
move the bodies to the positions shown on the right at time n + 1
and then attempt to bring the articulation points, shown as black dots,
back together. Our technique avoids this situation altogether by not
allowing the bodies to enter the configuration on the right in the first
place.

planning scenario by staying on (or quite close to) the
constraint manifold to begin with. Thus, we avoid the
situation on the right of the figure, instead pushing B3

to the right while maintaining the constraint between the
other two bodies.

As future work, we will consider adapting our impulse
based approach to a generalized coordinates model for
the articulated bodies.
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APPENDIX

Computing the partial derivative for linear constraints

Computing ∂f/∂j for the terms involving mp and mc is
trivial, but dealing with the appearance of j in the functional
argument for q̂ is more involved. To do this, first consider the
action of the quaternion q̂(ω) on a vector r, indicated by the
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notation q̂(ω)[r],

q̂ (ω) [r] = r
(
cos2 θ − sin2 θ

)
− 2r∗w cos θ sin θ

+2 (r ·w)w sin2 θ

where θ = |ω|/2 and w = ω/|ω|. This can be differentiated
to obtain

∂

∂j
q̂(ω)[r] = −4rθ̇ cos θ sin θ − 2r∗wθ̇ cos2 θ + 2r∗wθ̇ sin2 θ

−2r∗ẇ cos θ sin θ + 4(r·w)wθ̇ sin θ cos θ

+2wrT ẇ sin2 θ + 2(r·w)ẇ sin2 θ

where θ̇ = ∂θ/∂j and ẇ = ∂w/∂j. For both the parent and
the child terms, ω has the form 4t(ωw)n ± 4tI−1r∗j, and
thus

θ̇ = ±
(
4t

2

)
wT I−1r∗

ẇ = ±
(
4t

2θ

)(
δ −wwT

)
I−1r∗

where δ is the identity matrix. Note that r is
(qw

p )n[xp
j + qp

j [x
target]] for the parent and (qw

c )n[xc
j ]

for the child.

Computing the partial derivative for angular constraints

To compute ∂f/∂jτ , we first consider the action of the
quaternion q̂(ω) on another quaternion q = (a,b), i.e.

q̂ (ω)q = (A,B)

= (a cos θ − (w · b) sin θ,

b cos θ + aw sin θ − (b×w) sin θ)

where θ = |ω|/2 and w = ω/|ω|. It is more convenient to
differentiate the first component separately from the last three.
Thus,

∂A

∂jτ
= −aθ̇ sin θ − (b ·w) θ̇ cos θ − (b · ẇ) sin θ

∂B
∂jτ

= −θ̇b sin θ + aθ̇w cos θ + aẇ sin θ

−θ̇b∗w cos θ − b∗ẇ sin θ

where θ̇ = ∂θ/∂jτ and ẇ = ∂w/∂jτ . For both the parent and
the child terms, ω has the form 4t(ωw)n±4tI−1jτ , and thus

θ̇ = ±
(
4t

2

)
wT I−1

ẇ = ±
(
4t

2θ

)
(δ −wwT )I−1.

Note that q is (qw
p )nqp

jq
target for the parent and (qw

c )nqc
j for

the child.
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