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Abstract. We consider a family of approximations of a Hecke L-function Lf (s) attached
to a holomorphic cusp form f of positive integral weight k with respect to the full modular
group. These families are of the form

Lf (X; s) :=
∑
n≤X

a(n)

ns
+ (−1)k/2(2π)−(1−2s) Γ

(
k+1
2
− s
)

Γ
(
k−1
2

+ s
) ∑

n≤X

a(n)

n1−s
,

where s = σ+ it is a complex variable and a(n) is a normalized Fourier coeffient of f . From
an approximate functional equation one sees that Lf (X; s) is a good approximation to Lf (s)
when X = t/2π. We obtain vertical strips where most of the zeros of Lf (X; s) lie. We study
the distribution of zeros of Lf (X; s) when X is independent of t. For X = 1 and 2 we prove
that all the complex zeros of Lf (X; s) lie on the critical line σ = 1/2. We also show that as

T → ∞ and X = T o(1), 100% of the complex zeros of Lf (X; s) up to height T lie on the
critical line. Here by 100% we mean that the ratio between the number of simple zeros on
the critical line and the total number of zeros up to height T approaches 1 as T →∞.

1. Introduction

Let N ≥ 1 be an integer. Define

FN (s) :=
∑
n≤N

n−s and ζN (s) := FN (s) + χ(s)Fn(1− s),

where χ(s) = πs−1/2Γ((1 − s)/2)/Γ(s/2). Spira [18, 19] appears to be the first author who
considered the functions ζN (s) and investigated the zeros of these functions. The behavior
of the functions ζN (s) is not completely unknown. From an approximate functional equation
we have

ζ(s) = ζN (s) +O(|t|−σ/2),

where s = σ + it, |t| ≥ 1, |σ − 1/2| ≤ 1/2, and N =
√
|t|/2π (see Titchmarsh[20]). In [18],

Spira proved that all the complex zeros of ζ1(s) and ζ2(s) lie on the line σ = 1/2. In [19],
he presented a numerical computation which suggests that infinitely many zeros are off the
line σ = 1/2 for N ≥ 3. In the same paper, based on numerical evidence, he suggested the
following:

The zeros within the critical strip appear to lie outside the t range
√

2πeN ≤
t ≤ 2πeN for each N . There is also a second, less obvious, t range free
of zeros, corresponding to where the Riemann- Siegel formula is used, N ≤
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(t/2π)1/2 < N + 1. In this second region, gN (s) approximates ζ(s), while in
the first region, gN (s) is approximately 2ζ(s). . .

Here ζN (s) = gN (s). Since then very few related results have appeared in the literature.
Very recently, Gonek and Montgomery [10] studied thoroughly the zero distribution of ζN (s).
First they provided a proof of Spira’s aforementioned claim. In the same paper, Gonek
and Montgomery found a zero free region for ζN (s) and also obtained further results on the
numbers of zeros of ζN (s). They proved the striking result that 100% of the complex zeros
of ζN (s) lie on the critical line, provided N is not too large with respect to the height T . We
will discuss this fact later.

Gonek and Ledoan [9], Langer [13], and Wilder [23] proved asymptotic results for the
number of zeros of FN (s). If NF (T ) is the number of zeros of FN (T ) up to height T , then
they found that

NF (T ) =
T

2π
logX +O(X).

This result is an indispensable ingredient to obtain good lower bound for the number of zeros
of ζN (s) on the critical line. In fact the growth rate of the error term offers a comparison
between the growth rate of the number of zeros on the critical line up to height T and the
total number of zeros of ζN (s) up to height T . It is worthy to mention that, in [14], Ledoan
and last two authors presented some instances where the error term can be improved.

Let Γ = SL(2,Z) be the full modular group. Let f ∈ Sk(Γ) be a holomorphic cusp form
of even integral weight k > 0 for Γ, with Fourier series given by

f(z) =
∞∑
n=1

af (n)e2πinz.

We also assume that f is a normalized primitive Hecke form with af (1) = 1. Let a(n) :=

af (n)n(1−k)/2 and let Lf (s) be the L-function associated to f , defined by

Lf (s) :=
∞∑
n=1

a(n)n−s, (1.1)

for Re s > 1.
In [12], Knopp, Kohnen, and Pribitkin studied the sign changes of the Fourier coefficients

a(n) of a cusp form f for SL(2,R). They showed that these coefficients a(n) change sign
infinitely often. For more about the coefficients a(n), one may consult the monograph of
Berndt and Knopp [4].

Next, we consider the partial sums ∑
n≤X

a(n)

ns
.

Let N(X;T ) denote the number of complex zeros of
∑

n≤X a(n)n−s up to height T . Then as

a special case of Theorem 3 in [13], one obtains the following result.

Proposition 1.1. Let M be the largest integer less than or equal to X such that a(M) 6= 0.
Then we have

N(X;T ) =
T

2π
logM +Of (X).
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From Deligne’s proof [6, 7] of the Ramanujan-Peterson conjecture, which is a consequence
of the Riemann Hypothesis for varieties over finite fields, the coefficients a(n) satisfy the
bound

|a(n)| ≤ d(n), (1.2)

where d(n) is the divisor function. In particular

|a(p)| ≤ 2, (1.3)

for all primes p. The divisor function satisfies [1, p. 296]

d(n) ≤ cδnδ ≤ n, (1.4)

for any δ > 0, and moreover by a result of Wigert [22],

log(d(n)) ≤ log 2 log n

log log n
+O

(
log n

(log log n)2

)
.

The L-function Lf (s) has an analytic continuation throughout the complex plane as an entire
function, by

(2π)−s−
k−1
2 Γ

(
s+ k−1

2

)
Lf (s) =

∫ ∞
0

f(iy)ys+
k−1
2 −1 dy,

and it satisfies the functional equation

Lf (s) = χf (s)Lf (1− s), (1.5)

where

χf (s) := (−1)k/2(2π)−(1−2s)
Γ
(
k+1
2 − s

)
Γ
(
k−1
2 + s

) . (1.6)

A straightforward computation shows that

χf (s)χf (1− s) = 1. (1.7)

The Euler product representation of Lf (s) is

Lf (s) =
∏
p

(
1− a(p)p−s + p−2s

)−1
, (1.8)

where Re s > 1. The non-trivial zeros of Lf (s) lie within the critical strip 0 < Re s < 1,
symmetrically with respect to the real axis and the critical line Re s = 1/2. The Riemann
hypothesis for Lf (s) states that, all the non-trivial zeros of Lf (s) lie on the critical line
Re s = 1/2.

Let Nf (T ) denote the number of non-trivial zeros ρ of Lf (s) for which 0 < Im ρ < T , for
T not equal to any Im ρ; otherwise we put

Nf (T ) = lim
ε→0

1

2
{Nf (T + ε) +Nf (T − ε)}.

Then one can show that [15]

Nf (T ) =
T

π
log

T

2π
− T

π
+O(log T ).

An approximate functional equation of Lf (s) (see Apostol and Sklar [2], Chandrasekharan
and Narasimhan [5], and Good [11]) is given by

Lf (s) =
∑
n≤X

a(n)

ns
+ χf (s)

∑
n≤X

a(n)

n1−s
+O(|t|1/2−σ+ε), (1.9)
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for ε > 0, |t| � 1, |σ − 1/2| ≤ 1/2 and X = |t|
2π . Let us define

Lf (N ; s) :=
∑
n≤N

a(n)

ns
+ χf (s)

∑
n≤N

a(n)

n1−s
. (1.10)

From (1.6) and (1.10), we have the following functional equation,

Lf (N ; s) = χf (s)Lf (N ; 1− s). (1.11)

Since f ∈ Sk(Γ) is a primitive Hecke form, then all a(n) ∈ R. Therefore Lf (N ; s) is real for
all real values of s. So the zeros of Lf (N ; s) are symmetric with respect to the real axis. Also
from the functional equation (1.11) we find that the zeros of Lf (N ; s) are symmetric with
respect to the critical line σ = 1/2. By a generalization of Descartes’s Rule of Signs (see Pólya
and Szegö [16], Part V, Chapter 1, No. 77),

∑
n≤N a(n)n−s has at most finitely many real

roots for real values of s. Also from (1.6), χf (s) has simple poles at all half-integers greater
than or equal to (k + 1)/2. Therefore there exists a real number α, so that all half-integers
greater than α are simple poles of Lf (N ; s). Hence Lf (N ; s) is analytic everywhere except
possibly for simple poles at half-integers.

From (1.9) and (1.11), we observe that Lf (N ; s) approximates Lf (s) for N < |t|
2π < N + 1,

except possibly at the critical line. From [2, Theorem 2] we have

Lf (s) =
∑
n≤N

a(n)

ns
+O(N1/4−σ), (1.12)

uniformly for σ ≥ σ1 > −1/4, provided N > B
(
t
4π

)2
for some B > 1. From Stirling’s formula

we know that in vertical strips,

|χf (s)| =
(
|t|

2πe

)1−2σ (
1 +Of

(
1

|t|

))
, (1.13)

|t| → ∞ (see (6.8) for a proof). From (1.10), (1.12), (1.7), and (1.13) we find that

Lf (N ; s) = 2Lf (s) +O(N1/4−σ) +O(|t|1−2σNσ−3/4), (1.14)

uniformly for min(σ, 1 − σ) ≥ σ1 > −1/4, provided N > B
(
t
4π

)2
for some B > 1. Since

|t| �
√
N , the error terms in (1.14) are � |t|−min(1/2,2σ−1/2), uniformly for 1/4 < σ < 3/4.

Hence

Lf (N ; s) = 2Lf (s) +O(|t|−min(1/2,σ−1/4)), (1.15)

uniformly for 1/4 < σ < 3/4 and |t| �
√
N . This shows that Lf (N ; s) approximates 2Lf (s)

near the critical line for sufficiently large t in the range |t| �
√
N .

For Re s > 1, let

Lτ (s) =
∞∑
n=1

τ(n)

ns
,

where τ(n) is the Ramanujan τ -function. In [3], Berndt obtained the inequality

|Lτ (12− s)| > |Lτ (s)|,

for |t| ≥ 6.8 and when Lτ (s) 6= 0. In [17], Spira proved the same inequality but improved the
bound to |t| ≥ 4.35. Very recently in [21], Trudgian improved this bound for t to |t| ≥ 3.8085.
In this article, we show that a similar inequality also holds for Lf (N ; s). We have the following
theorem.
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Theorem 1.2. Let N be a positive integer. Then the inequality |Lf (N ; 1− s)| > |Lf (N ; s)|
holds for all s with t > tk and 1/2 < σ < 1, if and only if all the zeros β + iγ of Lf (N ; s)
with β ∈ (0, 1) and γ > tk lie on the critical line. Here tk is a real number depending on the
weight k of the cusp form f . In particular, t12 = 3.8027, t14 = 1.8477, and tk = 0 for k ≥ 16.

As with the results in [18], one can prove that the non-trivial zeros of Lf (1; s) and Lf (2; s)
lie on the critical line. In the case of primitive Hecke forms the coefficients could be as big as
the divisor function d(n), and we will prove our theorem for some restricted primitive Hecke
forms.

Theorem 1.3. All the zeros of Lf (1; s) with |t| > max(k, e16) lie on the critical line. More-
over, if |a(2)| ≤ 1 then all the zeros of Lf (2; s) with |t| > max(k, e16) also lie on the critical
line.

Remark: Numerical computation shows that a(2) = τ(2)2−11/2 = −.53033, thus the
L-function attached to the Ramanujan τ -function satisfies the above theorem.

We are interested to see whether for N ≥ 3, the non-trivial zeros of Lf (N ; s) lie on the
critical line or not. Although it is not clear whether all the non-trivial zeros of Lf (N ; s) for
N ≥ 3 lie on the critical line or not, one can prove that a positive proportion of the non-trivial
zeros of Lf (N ; s) lie on the critical line, provided N is not too large relative to the height T
of the ordinates of the non-trivial zeros.

In the following theorem we obtain a ‘critical’ strip for Lf (N ; s). More precisely,

Theorem 1.4. Let λ > 1/2. There exists a constant N0 such that if N ≥ N0 and β + iγ is
a zero of Lf (N ; s) with |γ| ≥ 2πeNλ, then∣∣β − 1/2

∣∣ ≤ { 1
2λ−1

(
1
2 + 4λ log logN

logN

)
, if 1/2 < λ ≤ 1

1
2 + 4 log logN

logN , if λ ≥ 1.
(1.16)

One also obtains a critical strip for N ≤ N0, provided that the ordinates of the zeros are
sufficiently large. We have

Theorem 1.5. There exists a constant T0 such that if N ≥ 1 and β+ iγ is a zero of Lf (N ; s)
with |γ| ≥ max(2πeN, T0), then ∣∣β − 1/2

∣∣ ≤ 3.

Next we will estimate the number of zeros of Lf (N ; s) where the ordinates of the zeros lie
in an interval of the form (T, T + U ]. We define

N(T ) = #{ρ = β + iγ : 0 < γ < T and Lf (N ; ρ) = 0}
and

N0(T ) = #{ρ = 1/2 + iγ : 0 < γ < T and Lf (N ; ρ) = 0}.
We have the following theorem.

Theorem 1.6. Let λ > 1/2. There exists a constant N0 such that if N > N0, T > 2πeNλ

and U ≥ 2, then

N0(T + U)−N0(T ) ≥ N(T + U)−N(T ) +Of (U logN) +Of (N)

+Of

((
λ

2λ− 1

)3

log(T + U)

)
. (1.17)

Furthermore there exists a constant T0 such that if N ≥ 1 and T > max(2πeN, T0) then
(1.17) holds with the last error term replaced by Of (log(T + U)).
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We end the introduction with the following result.

Theorem 1.7. As T →∞ and N = T o(1) , 100% of the non-trivial zeros of Lf (N ; s) up to
height T are simple and lie on the critical line.

A natural question that we pose to interested readers would be to find an appropriate
axiomatic context where one can treat the problems discussed above (which may or may not
be the same for each of the above theorems). In what follows we restrict ourselves to the
context presented in this introduction and derive the very concrete results stated above.

2. Preliminary Results

The following lemmas which may be of independent interest are instrumental in the proof
of the theorems.

Lemma 2.1. For σ > 1 we have(
σ − 1

σ

)2

< |Lf (s)| <
(

σ

σ − 1

)2

. (2.1)

Proof. Let σ > 1. From (1.1) and (1.2) we have

|Lf (s)| ≤
∞∑
n=1

|a(n)|
nσ

≤
∞∑
n=1

d(n)

nσ
=

( ∞∑
n=1

1

nσ

)2

<

(
1 +

∫ ∞
1

x−σ dx

)2

=

(
σ

σ − 1

)2

. (2.2)

For the other inequality in (2.1) we use the Euler product (1.8). From (1.2) we have

|Lf (s)| =
∏
p

|
(
1− a(p)p−s + p−2s

)
|−1 ≥

∏
p

(
1 + d(p)p−σ + p−2σ

)−1
.

Since d(p) = 2, we find that

|Lf (s)| ≥
∏
p

(
1 + 2p−σ + p−2σ

)−1
=
∏
p

(
1 + p−σ

)−2
=

(
ζ(2σ)

ζ(σ)

)2

>

( ∞∑
n=1

1

nσ

)−2

>

(
σ − 1

σ

)2

,

where in the ultimate step we used the last three inequalities in (2.2). This completes the
proof of the lemma. �

Lemma 2.2. For σ > 1,∣∣∣∣∣∑
n>N

a(n)

ns

∣∣∣∣∣ ≤ N1−σ

σ − 1

(
logN + 2γ +

1

σ − 1

)
+O

(
1√
N

)
. (2.3)

For σ ≤ 0 we have the following:∣∣∣∣∣∣
∑
n≤N

a(n)

ns

∣∣∣∣∣∣ ≤ N1−σ(logN + 2γ − 1) +O(N−σ+1/2). (2.4)

Proof. Let σ > 1. From (1.2) and by partial summation we have∣∣∣∣∣∑
n>N

a(n)

ns

∣∣∣∣∣ ≤ ∑
n>N

d(n)

nσ
= σ

∫ ∞
N

D(t)t−1−σ dt−D(N)N−σ, (2.5)
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where

D(t) =
∑
n≤t

d(n) = t(log t+ 2γ − 1) +O(
√
t). (2.6)

Combining (2.5) and (2.6) we obtain the bound in (2.3).
For the second part of the lemma, let σ ≤ 0. We have∣∣∣∣∣∣

∑
n≤N

a(n)

ns

∣∣∣∣∣∣ ≤
∑
n≤N

d(n)

nσ
(2.7)

By using (2.6) one sees that∑
n≤N

d(n)

nσ
≤ N−σ

∑
n≤N

d(n) = N1−σ(logN + 2γ − 1) +O(N−σ+1/2), (2.8)

where in the penultimate step we use the fact that x−σ is increasing for σ ≤ 0. One finishes
the proof of the lemma by combining (2.7) and (2.8). �

Lemma 2.3. If |t| > k and 1/2 < σ < (k − 1)/2 then

∂

∂σ

(
log

1

|χf (s)|

)
> 2 log |t| − 3.7.

Proof. By Stirling’s formula [8], we have

log Γ(s) = (s− 1/2) log s− s+
1

2
log 2π +

1

12s
− 2

∫ ∞
0

P3(x)

(s+ x)3
dx, (2.9)

where P3(x) is a function of period 1 and given by

P3(x) =
x

12
(2x2 − 3x+ 1),

for x ∈ [0, 1]. A straightforward computation shows that

|6P3(x)| ≤
√

3

36
, (2.10)

for x ∈ [0, 1]. Since

∂

∂σ

(
log

1

|χf (s)|

)
= − Re

(
∂

∂σ
logχf (s)

)
= − Re

(
∂

∂s
logχf (s)

)
,

then from (1.6) and (2.9) we find

∂

∂σ

(
log

1

|χf (s)|

)
= Re

(
− 1

2s+ k − 1
− 1

3(k + 2s− 1)2
+

1

2s− k − 1
− 1

3(k − 2s+ 1)2

+ log

(
k − 1

2
+ s

)
+ log

(
k + 1

2
− s
)
− 2 log(2π)

+6

∫ ∞
0

P3(x)

(s+ (k − 1)/2 + x)4
dx+ 6

∫ ∞
0

P3(x)

((k + 1)/2− s+ x)4
dx

)
.

(2.11)

From the hypothesis we have t > k and 1/2 < σ < (k − 1)/2. Then from (2.11) we derive

∂

∂σ

(
log

1

|χf (s)|

)
> 2 log |t| − 2 log 2π − k

t2
−
√

3π

72|t|3
> 2 log |t| − 3.7.
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Here we use the fact that k ≥ 12. This proves the lemma.
�

Lemma 2.4. If |t| > 20 and σ > 1/2 then

|χf (s)| < 1.02

(
|s|
2πe

)1−2σ
.

Proof. From [18, 17], we have

|Γ(s)| = (2π)1/2e−σ|s|σ−1/2e−t arg s| exp(R1(s) + 1/(12s))|, (2.12)

where R1(s) < 1/(6|s|). Hence by (1.6) and (2.12) we find

|χf (s)| =
(
|s|
2πe

)1−2σ
exp(t(arg((k + 1)/2− s) + arg((k − 1)/2 + s))))×∣∣1− k+1

2s

∣∣k/2−σ∣∣1 + k−1
2s

∣∣(k−2)/2+σ | exp(R1((k + 1)/2− s) + 1/12((k + 1)/2− s))|
| exp(R1(((k − 1)/2 + s)) + 1/12((k − 1)/2 + s))|

. (2.13)

Next we set

z = R1

(
k − 1

2
+ s

)
−R1

(
k + 1

2
− s
)

+
1

12
(
k−1
2 + s

) − 1

12
(
k+1
2 − s

) .
Therefore

|z| ≤ 1

12
∣∣k−1

2 + s
∣∣ +

1

12
∣∣k+1

2 − s
∣∣ +

1

6
∣∣k−1

2 + s
∣∣ +

1

6
∣∣k+1

2 − s
∣∣ ≤ 1

2|t|
≤ 1

40
.

Since |z| ≤ 1/40 < 1, we have

|ez| ≥ 1− |z|
(

1

1− |z|

)
≥ 38/39. (2.14)

Clearly

t

(
arg

(
k + 1

2
− s
)

+ arg

(
s+

k − 1

2

))
< 0. (2.15)

Combining (2.13), (2.14), and (2.15), we obtain

|χf (s)| < 1.02

(
|s|
2πe

)1−2σ
,

which proves the lemma. �

3. Proof of Theorem 1.2

We first prove the following theorem.

Theorem 3.1. There exists a number tk, such that for 1/2 < σ < 1 and |t| > tk we have

|Lf (N ; 1− s)| > |Lf (N ; s)|,

whenever Lf (N ; s) 6= 0. Moreover the above holds with t12 = 3.8027, t14 = 1.8477 and tk = 0
for t ≥ 16.
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Proof. From (1.11) we have

Lf (N ; 1− s) = g(s)Lf (N ; s), (3.1)

where g(s) = 1/χf (s). From (1.6) one can see that g(s) is analytic for all s with t 6= 0 and
hence continuous for such s. Define h(s) := log |g(s)|. It suffices to prove that h(s) > 0 for
1/2 < σ < 1 provided |t| ≥ tk. We have

h(s) = log

∣∣∣∣∣(2π)−(2s−1−2it)
Γ
(
k−1
2 + s

)
Γ
(
k+1
2 − s

)∣∣∣∣∣
= −(2σ − 1) log 2π + log

∣∣Γ (k−12 + s
)∣∣− log

∣∣∣Γ (k+1
2 − s

)∣∣∣
= −(2σ − 1) log 2π + log

∣∣Γ (k−12 + σ + it
)∣∣− log

∣∣Γ (k+1
2 − σ + it

)∣∣
= −(2σ − 1) log 2π + (2σ − 1)

∂

∂σ
log |Γ (σ + it)||σ=σ1 , (3.2)

for some σ1 between k−1
2 and k+1

2 . Thus it suffices to prove that

∂

∂σ
log |Γ (σ + it)||σ=σ1 − log 2π > 0,

for all k−1
2 ≤ σ1 ≤

k+1
2 . Now from (2.9) we have

∂

∂σ
log |Γ (σ + it)| = ∂

∂σ
Re log Γ (σ + it)

= Re
∂

∂σ
log Γ (σ + it)

= Re
∂

∂s
log Γ (s)

= Re

(
log s− 1

2s
− 1

12s2
+ 6

∫ ∞
0

P3(x)

(s+ x)4
dx

)
= log

√
σ2 + t2 − σ

2(σ2 + t2)
− σ2 − t2

12(σ2 + t2)2

+ 6

∫ ∞
0

P3(x)((σ + x)4 − 6(σ + x)2t2 + t4)(
(σ + x)2 + t2

)4 dx. (3.3)

Using (2.10) in combination with the inequality (σ+x)4−6(σ+x)2t2+ t4 ≤
(

(σ + x)2 + t2
)2

and (3.3), we derive

∂

∂σ
log |Γ (σ + it)| ≥ log

√
σ2 + t2 − σ

2(σ2 + t2)
− σ2 − t2

12(σ2 + t2)2
−
√

3

36

∫ ∞
0

dx(
(σ + x)2 + t2

)2
=: G(σ)− I(σ), (3.4)

where I(σ) is the last term and G(σ) is the first three terms of (3.4). Here I(σ) is a decreasing
function of σ and hence

I(σ) ≤
√

3

36

∫ ∞
0

dx((
x+ k−1

2

)2
+ t2

)2 =

√
3

72t3

(
tan−1

(
2t

k − 1

)
− 2t(k − 1)

4t2 + (k − 1)2

)
.
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Next

G′(σ) =
σ3
(
6σ2 + 3σ + 1

)
+ 3σ

(
4σ2 − 1

)
t2 + (6σ − 3)t4

6 (σ2 + t2)3
,

thus G(σ) is increasing on k−1
2 ≤ σ ≤

k+1
2 for k ≥ 12. Hence

∂

∂σ
log |Γ (σ + it)| − log 2π ≥ G

(
k − 1

2

)
−
√

3

72t3

(
tan−1

(
2t

k − 1

)
− 2t(k − 1)

4t2 + (k − 1)2

)
− log 2π

≥ 4(4− 3k)t2 − (k − 1)2(3k − 2)

3 ((k − 1)2 + 4t2)2
+

1

2
log

(
1

4
(k − 1)2 + t2

)
−
√

3

72t3

(
tan−1

(
2t

k − 1

)
− 2t(k − 1)

4t2 + (k − 1)2

)
− log 2π

=: H(t, k). (3.5)

Let us fix t > 0 and consider k as a real variable for a moment. Then

∂

∂k
H(t, k) =

9(k − 2)
(
(k − 1)2 + 4t2

)2
+ 2

(
9(k − 3)k +

√
3 + 18

) (
(k − 1)2 + 4t2

)
+ 24(k − 1)3

9 ((k − 1)2 + 4t2)3
≥ 0,

(3.6)

for k ≥ 12. Hence for every fixed t > 0, H(t, k) is monotonically increasing with respect to
the variable k. Next let k ≥ 12 be a fixed number and vary t. Let

M(t, k)

t4
:=

∂

∂t
H(t, k)

=
384(3(k − 1)k − 1)t6 + 16(k − 1)

(
9k((k − 1)k + 1)− 5

√
3− 9

)
t4

36t3 ((k − 1)2 + 4t2)3

− 32
√

3(k − 1)3t2 + 3
√

3(k − 1)5 − 2304t8

36t3 ((k − 1)2 + 4t2)3
+

6
√

3

144t4
tan−1

(
2t

k − 1

)
. (3.7)

One finds that

∂

∂t
M(t, k)

=
4t4
(
48
(
33k2 − 60k + 25

)
t4 + 4(k − 1)

(
3k
(
39k2 − 81k + 25

)
+ 8
√

3 + 51
)
t2
)

9 ((k − 1)2 + 4t2)4

+
4t4
(
(k − 1)3

(
45k((k − 1)k + 1) + 8

√
3− 45

)
+ 1728t6

)
9 ((k − 1)2 + 4t2)4

≥ 0, (3.8)

for all t > 0. Therefore combining (3.7), (3.8) and the fact that M(0, k) = 0, we conclude
that H(t, k) is monotonically increasing with respect to t for t > 0 and fixed k ≥ 12. One
can check that H(3.8027, 12) > 0, H(1.8477, 14) > 0 and H(t, 16) > 0 for all t > 0, which
completes the proof of Theorem 3.1.

�

By the functional equation (1.11), Lf (N ; s) and Lf (N ; 1 − s) have the same zeros for
0 < σ < 1. Hence Theorem 3.1 implies Theorem 1.2.
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4. Proof of Theorem 1.3

The proof follows closely the approach from [18]. For the sake of completeness we provide
the details below. From (1.10) we have

Lf (1; s) = 1 + χf (s). (4.1)

Now from the proof of Theorem 3.1 we have for t > 3.8027 and σ > 1/2

|χf (s)| < 1. (4.2)

Therefore from (4.1) and (4.2) we find that for t > 3.8027 and σ > 1/2,

|Lf (1; s)| ≥ 1− |χf (s)| > 0. (4.3)

From Theorem 1.7 and Theorem 1.2 we conclude that, all the complex zeros of Lf (1; s) lie
on the line σ = 1/2 for t > 3.8027.

Again from (1.10) we see that

|Lf (2; s)| ≥
∣∣∣∣1 +

a(2)

2s

∣∣∣∣− |χf (s)|
∣∣∣∣1 +

a(2)

21−s

∣∣∣∣ . (4.4)

So it suffices to prove that for large enough t and σ > 1/2,

1/|χf (s)| >

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣ . (4.5)

Let

g1(s) = χf (s)
1 + a(2)

21−s

1 + a(2)
2s

. (4.6)

Then |g1(1/2 + it)| = 1. Define

l(s) = log

∣∣∣∣ g1(s)

g1(1/2 + it)

∣∣∣∣ . (4.7)

Proceeding as in the proof of Theorem 3.1 one can derive that

l(s) =

(
σ − 1

2

)
∂

∂σ

(
log

1

|χf (s)|
− log

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣
)∣∣∣∣∣

σ=σ1

, (4.8)

for some σ1 in [1/2, 1]. We want to show that

∂

∂σ

(
log

1

|χf (s)|

)∣∣∣∣
σ=σ1

>
∂

∂σ

(
log

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣
)∣∣∣∣∣

σ=σ1

, (4.9)

for some σ1 ∈ (1/2, 1). We distinguish two cases according as to when 1/2 < σ ≤ 3/4 and,
respectively, when 3/4 < σ < 1. We have

∂

∂σ

(
log

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣
)

= Re
∂

∂σ

(
log

1 + a(2)
21−s

1 + a(2)
2s

)

= a(2) log 2 Re

(
a(2) + 2s−1 + 2−s

(1 + a(2)2s−1)(1 + a(2)2−s)

)
. (4.10)
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Then for 1/2 < σ ≤ 3/4, using (1.3) we have

∂

∂σ

(
log

∣∣∣∣∣1 + a(2)
21−s

1 + a(2)
2s

∣∣∣∣∣
)
≤ log 2

(
1 + 2σ−1 + 2−σ

(1− 2σ−1)(1− 2−σ

)
< 27. (4.11)

Therefore for 1/2 < σ ≤ 3/4, by Lemma 2.3 and (4.11) we find that the inequality (4.9) holds
when 2 log |t| > 27 + 3.7. In particular one can take t > e16. Now consider the case when
3/4 < σ < 1. One can see by (1.3) that∣∣∣∣∣1 + a(2)

21−s

1 + a(2)
2s

∣∣∣∣∣ ≤
∣∣∣∣1 + 2σ−1

1− 2−σ

∣∣∣∣ ≤ 1 + 2

1− 2−3/4
< 5. (4.12)

Then from (4.12) and Lemma 2.4, it is enough to show that

.98

(
|s|
2πe

)2σ−1
> 5 (4.13)

in order to prove the inequality (4.5). Here (4.13) holds true for t > 445. For σ ≥ 1,
1 + 2σ−1 ≤ 2σ and (4.13) transforms to

.98

(
|s|

2
√

2πe

)2σ−1
>

√
2

1− 2−3/4
. (4.14)

Numerical computation shows that t > 86 satisfies (4.14) for σ ≥ 1. This completes the proof
of the theorem.

5. Proof of Theorems 1.4 and 1.5

Let ρN = βN + iγN be a complex zero of Lf (N ; s) with |γN | ≥ 2πeNλ. We will show that
Lf (N ; s) never vanishes for

βN >
λ

2λ− 1

(
1 +

4 log logN

logN

)
,

when 1/2 < λ ≤ 1 and is nonzero for

βN > 1 +
4 log logN

logN
,

when λ > 1. Then one concludes the proof of the theorem by using the functional equation
(1.11). Let s be such that |t| ≥ 2πeNλ with λ > 1/2 and

σ > max

(
1,

λ+ ε

2λ− 1

)(
1 +

c log logN

logN

)
, (5.1)

where ε > 0 is arbitrary and c is a positive constant which will be determined later. From
(1.10) we have

|Lf (N ; s)| ≥

∣∣∣∣∣∣
∑
n≤N

a(n)

ns

∣∣∣∣∣∣− |χf (s)|

∣∣∣∣∣∣
∑
n≤N

a(n)

n1−s

∣∣∣∣∣∣ . (5.2)
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Consider the right-hand side of (5.2). We will obtain an upper bound for the first sum and
a lower bound for the second sum. By Lemmas 2.1 and 2.2 we see that∣∣∣∣∣∣

∑
n≤N

a(n)

ns

∣∣∣∣∣∣ ≥ |Lf (s)| −

∣∣∣∣∣∑
n>N

a(n)

ns

∣∣∣∣∣
>

(
σ − 1

σ

)2

− N1−σ

σ − 1

(
logN + 2γ +

1

σ − 1

)
+O

(
1√
N

)
. (5.3)

Since by (5.1) we always have

σ > 1 +
c log logN

logN
,

then from (5.3) we have∣∣∣∣∣∣
∑
n≤N

a(n)

ns

∣∣∣∣∣∣ >
(

c log logN

logN + c log logN

)2

− 1

logcN

(
logN

c log logN

)(
logN + 2γ +

logN

c log logN

)
+O

(
1√
N

)
.

Therefore for c = 4 one finds that∣∣∣∣∣∣
∑
n≤N

a(n)

ns

∣∣∣∣∣∣ >
(

log logN

logN

)2

, (5.4)

for sufficiently large N . Now by Lemmas 2.2, 2.4, for |t| > 2πeNλ, and |t| > 20, we find that

|χf (s)|

∣∣∣∣∣∣
∑
n≤N

a(n)

n1−s

∣∣∣∣∣∣ < 1.02

(
|s|
2πe

)1−2σ
Nσ

(
logN + 2γ − 1 +O(N−1/2)

)
. (5.5)

Then from (5.5), for a fixed ε > 0 and large N we may write

|χf (s)|

∣∣∣∣∣∣
∑
n≤N

a(n)

n1−s

∣∣∣∣∣∣ < 2.04

(
|s|
2πe

)1−2σ
Nσ+ε < 2.04Nλ(1−2σ)+σ+ε. (5.6)

If 1/2 < λ < 1 + ε, then by (5.1) the exponent of N in (5.6) can be written as

λ(1− 2σ) + σ + ε = λ+ ε− σ(2λ− 1) < −c(λ+ ε)
log logN

logN
< −c(1 + 2ε)

log logN

2 logN
.

If λ ≥ 1 + ε, then the exponent of N in (5.6) is

λ(1− 2σ) + σ + ε ≤ (1 + ε)(1− 2σ) + σ + ε = (1− σ)(1 + 2ε) < −c(1 + 2ε)
log logN

logN
.

By combining the above two cases and using (5.6), we derive∣∣∣∣∣∣χf (s)
∑
n≤N

a(n)

n1−s

∣∣∣∣∣∣ < 2.04

logc/2N
. (5.7)
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Finally choose c = 4. Then from (5.4) and (5.7) we have

|Lf (N ; s)| >
(

log logN

logN

)2

− 2.04

log2N
> 0, (5.8)

for N large enough. Therefore there exists a N0 > 0 such that when N > N0, then Lf (N ; s) 6=
0 in the region

σ > max

(
1,

λ+ ε

2λ− 1

)(
1 +

4 log logN

logN

)
, |t| ≥ 2πeNλ,

for λ > 1/2 and any number ε > 0. Which completes the proof of Theorem 1.4.
We now prove Theorem 1.5. It is enough to consider the case N ≥ 2. Suppose T > T0 for

some large constant T0. Let σ ≥ 2 and |t| > max(2πeN, T0). From (5.2) and using the trivial
bound d(n) ≤ n we have

|Lf (N ; s)| ≥ |Lf (s)| −
∑
n>N

d(n)

nσ
− |χf (s)|

∑
n≤N

d(n)

n1−σ

>

(
σ − 1

σ

)2

− N2−σ

σ − 2
− 1.02

(
|s|
2πe

)1−2σ (
Nσ +

N1+σ

1 + σ

)
>

(
σ − 1

σ

)2

− 22−σ

σ − 2
− 1.02(2)1−2σ

(
2σ +

21+σ

1 + σ

)
, (5.9)

where in the penultimate step we used Lemma 2.4. We assume in what follows that T0 > 20.
A numerical computation shows that the right-hand side of (5.9) is positive when σ ≥ 3.5.
Thus Lf (N ; s) 6= 0 for σ ≥ 3.5 and |t| > max(2πeN, T0). Also by the functional equation we
see that Lf (N ; s) 6= 0 when σ ≤ −2.5, which concludes the proof of the theorem.

6. Proof of Theorems 1.6 and 1.7

Let T > 0 be a large number. Then by Theorem 1.4, we conclude that the zeros of Lf (N ; s)
with ordinates T < γN < T + U , for some positive constant U , must lie in a rectangle with
width 2d − 1, where d = max(1, λ/(2λ − 1)). The following theorems will are the main
ingredients in the proof of Theorem 1.7.

Theorem 6.1. Let λ > 1/2. There exists a constant N0 such that for N > N0, T > 2πeNλ,
and U ≥ 2, we have

N(T + U)−N(T ) =
T + U

π
log

T + U

2π
− T

π
log

T

2π
− U

π
+Of

((
λ

2λ− 1

)3

log(T + U)

)
.

(6.1)

Furthermore there exists a constant T0 such that (6.1) holds with λ = 1 for all N ≥ 1 and
T > max(2πeN, T0).

Proof. Let λ > 1/2 and w = max
(

3, 2λ
2λ−1

)
. Let R be a positively oriented rectangle with

vertices w+ iT , w+ i(T +U), 1−w+ i(T +U) and 1−w+ iT . From Theorem 1.4, we observe
that the complex zeros will be inside the rectangle R for sufficiently large N . Without loss
of generality we assume that the edges of the rectangle do not pass through any zeros of
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Lf (N ; s). Then by Littlewood’s lemma [20, Section 9.9] we have

2π
∑
ρ∈R

(βN − 1 + w) =

∫ T+U

T
(log |Lf (N ; 1− w + it)| − log |Lf (N ;w + it)|) dt

+

∫ w

1−w
(argLf (N ;σ + i(T + U))d− argLf (N ;σ + iT )) dσ, (6.2)

where the argument of Lf (N ; s) is obtained by continuation of logLf (N ; s) leftward from the
value 0 at σ =∞. From (1.10) we have

Lf (N ; s) = 1 +
∑

2≤n≤N

a(n)

ns
+ χf (s)

∑
1≤n≤N

a(n)

n1−s
.

Then from (1.2) we may write

|Lf (N ; s)− 1| ≤
∑

2≤n≤N

d(n)

nσ
+ |χf (s)|

∑
1≤n≤N

|a(n)|
n1−σ

.

Since T ≥ 2πeNλ, applying (1.4) and (5.6) we find that

|Lf (N ; s)− 1| ≤
∑

2≤n≤N

1

nσ−1
+O

(
Nλ(1−2σ)+σ+ε)

≤ 1

2σ−1
+

∫ N

2

1

xσ−1
dx+O

(
Nλ(1−2σ)+σ+ε)

≤ σ

(σ − 2)2σ−1
+O

(
Nλ(1−2σ)+σ+ε)

<
4

5
, (6.3)

for σ ≥ w and large N . Therefore from (6.3), logLf (N ; s) is analytic and non-zero for σ ≥ w.
Then by Cauchy’s theorem,∫ T+U

T
logLf (N ;w + it) dt =

∫ ∞
w

logLf (N ;σ + iT ) dσ −
∫ ∞
w

logLf (N ;σ + i(T + U)) dσ.

(6.4)

Again from (6.3), the integrals on the right-hand side of (6.4) are bounded. Therefore

−
∫ T+U

T
log |Lf (N ;w + it) |dt = − Re

∫ T+U

T
logLf (N ;w + it) dt = O(1). (6.5)

Using the functional equation (1.11) we may write∫ T+U

T
log |Lf (N ; 1− w + it)| dt =

∫ T+U

T
log |Lf (N ;w + it)| dt−

∫ T+U

T
log |χf (w + it)| dt.

(6.6)

Recall Stirling’s formula in the form

log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log 2π +O

(
1

|s|

)
, (6.7)
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as |s| → ∞ and | arg s| ≤ π − ε. Then from (1.6) and (6.7) we have

logχf (s) = (2s− 1) log 2π + log Γ

(
k + 1

2
− s
)
− log Γ

(
k − 1

2
+ s

)
= (2s− 1) log 2π +

(
k

2
− s
)(

log s− iπ − k + 1

2s
+O

(
1

|s|2

))
−
(
k + 1

2
− s
)

−
(
k

2
− 1 + s

)(
log s+

k − 1

2s
+O

(
1

|s|2

))
+

(
k − 1

2
+ s

)
+O

(
1

|s|

)
= (1− 2s) log

s

2π
− iπ

2
(k − 2s) + 2s+Ok

(
1

|s|

)
(6.8)

Note that∫ T+U

T
log |χf (w + it)| dt = Re

∫ T+U

T
logχf (w + it) dt = Im

∫ w+i(T+U)

w+iT
logχf (s) ds.

(6.9)

Also for t→∞

Re (log s) = log t+O

(
σ2

t2

)
and Im (log s) =

(π
2
− σ

t

)
+O

(
σ3

t3

)
. (6.10)

Therefore from (6.8), (6.9), (6.10), a straightforward computation shows that∫ T+U

T
log |χf (w + it)| dt = (1− 2w)(T + U) log

T + U

2π
− (1− 2w)T log

T

2π

− (1− 2w)U +Of (w3 log(T + U)). (6.11)

Hence from (6.5), (6.6) and (6.11) we find that∫ T+U

T
log |Lf (N ; 1− w + it)| dt = (2w − 1)(T + U) log

T + U

2π
− (2w − 1)T log

T

2π

− (2w − 1)U +Of (w3 log(T + U)). (6.12)

Next we consider the change in argLf (N ; s) along the bottom edge of R. Let q be the
number of zeros of Re (Lf (N ;σ + iT )) on the interval (1 − w,w). Then there are at most
q + 1 subintervals of (1 − w,w) in each of which Re (Lf (N ;σ + iT )) is of constant sign.
Therefore the variation of argLf (N ;σ + iT ) is at most π in each subinterval. So we have

argLf (N ;σ + iT )|w1−w ≤ (q + 1)π. (6.13)

To estimate q, first we define

g(z) := Lf (N ; z + iT ) + Lf (N ; z̄ + iT ). (6.14)

If z = σ is a real number then we have

g(σ) = Re (Lf (N ;σ + iT )). (6.15)

Let R = 2(2w − 1) and consider the disk |z − w| < R centered at w. Choose T large so that

Im (z + iT ) > T −R > 0.

Thus, Lf (N ; z + iT ), and hence also g(z), are analytic in the disk |z − w| < R. Let n(r) be
the number of zeros of g(z) in the disk |z − w| < r and R1 = R/2. Then we have∫ R

0

n(r)

r
dr ≥ n(R1)

∫ R

R1

dr

r
= n(R1) log 2. (6.16)



ZEROS OF A FAMILY OF APPROXIMATIONS OF HECKE L-FUNCTIONS 17

By Jensen’s theorem,∫ R

0

n(r)

r
dr =

1

2π

∫ 2π

0
log
|g(w +Reiθ)|
|g(w)|

dθ =
1

2π

∫ 2π

0
log |g(w +Reiθ)| dθ − log |g(w)|.

(6.17)

From (6.3) we have

| Re (Lf (N ;w + iT ))| > 1

5

and hence from (6.15) we find

|g(w)| > 1

5
.

From the definition (1.10) we have

|Lf (N ; s)| ≤
∑
n≤N

d(n)

nσ
+ |χf (s)|

∑
n≤N

d(n)

n1−σ
.

By Lemma 2.4, we have

χf (s)� |s|(1−2σ).
One can show ( similar to Lemma 2.2) that∑

n≤N

d(n)

nσ
�
{
N1−σ logN if σ 6= 1
log2N if σ = 1

.

Thus,

|Lf (N ; s+ iT )| � logN(N1−σ + logN + T 1−2σNσ).

Therefore from (6.14), we have

|g(s)| ≤ |Lf (N ; s+ iT )|+ |Lf (N ; s− iT )| � logN(N1−σ + logN + T 1−2σNσ). (6.18)

Since |s−w| < R = 2(2w − 1), then 2− 3w < σ < 5w − 2. Also T ≥ 2πeNλ for λ > 1/2. So
the expression on the right-hand side of (6.18) is largest when σ = 3− 2w. Therefore

|g(s)| � logN(N3w−1 + logN + TN (2λ−1)(3w−2)

� log T (T (3w−1)/λ + T 1+(2λ−1)(3w−2)/λ)

� T 6w. (6.19)

Finally

|g(w +Reiθ)| � T 6w.

Hence from (6.16) and (6.17), it follows that n(R1)� w log T . Now, the zeros of Lf (N ;σ+iT )
for 1− w < σ < w correspond to, and their number equals the number of, the zeros of g(σ)
in the same interval. Since the interval (1−w,w) is contained in the disk |s−w| < R1, then
q ≤ n(R1). Since

w = max

(
3,

2λ

2λ− 1

)
≤ 6λ

2λ− 1
,

then from (6.13) we conclude that∫ w

1−w
argLf (N ;σ + iT ) dσ �

(
λ

2λ− 1

)3

log T. (6.20)
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Similarly, ∫ w

1−w
argLf (N ;σ + i(T + U)) dσ �

(
λ

2λ− 1

)3

log(T + U). (6.21)

For smaller values of N one can obtain similar results as (6.3) to (6.21) by choosing the
rectangular contour R = [3.5 + iT, 3.5 + i(T + U),−2.5 + i(T + U),−2.5 + iT ] and T >
max(2πeN, T0). Here T0 is the same as in Theorem 1.5. Combining (6.2), (6.5), (6.12),
(6.20), and (6.21), we have the following result.

Theorem 6.2. For λ > 1/2, N ≥ N0, and T ≥ 2πeNλ, we have

2π
∑
ρ∈R

(βN − 1 + w) = (2w − 1)(T + U) log
T + U

2π
− (2w − 1)T log

T

2π
− (2w − 1)U

+Of

((
λ

2λ− 1

)3

log(T + U)

)
. (6.22)

Furthermore there exists a constant T0 such that (6.22) holds with λ = 1 for all N ≥ 1 and
T > max(2πeN, T0).

Now increasing w to w+ 1 in Theorem 6.2 and subtracting (6.22) from the corresponding
relation where w is replaced by w + 1 gives the conclusion of Theorem 6.1.

�

Theorem 6.3. There exists a constant T0 such that if N ≥ 1, T > max(2πeN, T0), and
U ≥ 2, then

N0(T + U)−N0(T ) ≥ T + U

π
log

T + U

2πMa
− T

π
log

T

2πMa
− U

π
+Of (N) , (6.23)

where 0 ≤ a ≤ 1 is such that the number of zeros of
∑

n≤N a(n)n−s with real parts strictly

greater than 1/2 is

≤ aT

2π
logM +Of (N).

Also, the right-hand side of (6.23) is a lower bound for the number of distinct zeros of Lf (N ; s)
on the critical line with T < t ≤ T + U . Here M is defined in Proposition 1.1.

Proof. First of all we introduce some notation to simplify the proof. Rewrite (1.10) in the
form

Lf (N ; s) = F (s)

(
1 + χf (s)

F (1− s)
F (s)

)
= F (s)Z(s), (6.24)

where

F (s) :=
∑
n≤N

a(n)

ns

and

Z(s) = 1 + χf (s)
F (1− s)
F (s)

.
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Define

NF (T ) = #{ρ : F (ρ) = 0 and 0 < Im ρ ≤ T},
NZ(T ) = #{ρ : Z(ρ) = 0 and 0 < Im ρ ≤ T},
N0
F (T ) = #{ρ : F (ρ) = 0, Re ρ = 1/2 and 0 < Im ρ ≤ T},

N0
Z(T ) = #{ρ : Z(ρ) = 0, Re ρ = 1/2 and 0 < Im ρ ≤ T},

N+
F (T ) = #{ρ : F (ρ) = 0, Re ρ > 1/2 and 0 < Im ρ ≤ T},

and

N+
Z (T ) = #{ρ : Z(ρ) = 0, Re ρ > 1/2 and 0 < Im ρ ≤ T}.

Clearly N(X;T ) = NF (T ) for X = N . Also N0(T ) = N0
F (T ) + N0

Z(T ). From (6.24) we see

that Lf (N ; 1
2 + it) = 0 if and only if F (12 + it) = 0 or Z(12 + it) = 0. If 1/2 + ig is a zero of

F (s) then we write

Z(1/2 + ig) = 1 + χf (1/2 + ig) lim
t→g

F (1/2− it)
F (1/2 + it)

.

Our next goal is to provide a lower bound for N0
Z(T + u)−N0

Z(T ), or equivalently, obtain a
lower bound for the umber of solutions of

χf (1/2 + it)
F (1/2− it)
F (1/2 + it)

= −1,

for T ≤ t ≤ T + U . Note that if

χf (1/2 + it)
F (1/2− it)
F (1/2 + it)

= −1,

then

arg

(
χf (1/2 + it)

F (1/2− it)
F (1/2 + it)

)
= (2m+ 1)π

and hence

argχf (1/2 + it)− 2 argF (1/2 + it) = (2m+ 1)π

for some integer m. Let

G(s) := argχf (s)− 2 argF (s).

Fix ε > 0. Construct a continuous curve L(ε) from 1/2 + iT to 1/2 + i(T + U) directed
upward, which is the union of line segments belonging to the same vertical line and any two
consecutive segments joint by a small semicircle of radius ε as follows. The semi circles have
the same radius ε > 0, are centered exactly at the zeros 1/2 + ig of F (s), and lie to the right
of the critical line. Here we chose ε small enough so that the semicircles do not overlap. Next
consider a straight line segment of L(ε) between two consecutive zeros of F (s), excluding
the semicircle part. Each time the image under G(s) of this straight line segment crosses
the horizontal lines y = (2m + 1)π for m ∈ Z, it gives rise to a distinct zero of Z(1/2 + it).
Furthermore, by the argument principle, as ε → 0+ the image of the small semicircle under
G(s) is a vertical line segment of length πm(g), where m(g) is the multiplicity of the zero
1/2+ig of F (s). In the limit, the function G(s) has a jump discontinuity at each zero 1/2+ig
of F (s) with jump πm(g).



20 JUNXIAN LI, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

Consider a rectangle of height H with horizontal grid lines, such that the distance between
any two consecutive lines is equal to 2π. If a continuous curve intersects all the horizontal grid
lines then the minimum number of points of intersection is H/2π. Using this geometrical fact,
we see that the number of zeros of Z(s) arising from the image of the straight line segment
of L(ε) crossing the lines y = (2m+ 1)π is at least

lim
ε→0+

1

2π
|∆L(ε)(argχf (s)− 2 argF (s)|+O(1).

In particular, if J is the total number of crossings of the set of jumps by the lines y = (2m+1)π
then

lim
ε→0+

1

2π
|∆L(ε)(argχf (s)− 2 argF (s)| − J +O(1) (6.25)

gives a lower bound for the number of distinct zeros of Z(1/2 + it) with T ≤ t ≤ T + U . We
take this quantity as a lower bound for N0

Z(T + u)−N0
Z(T ). Since any vertical line of length

πm(g) crosses the lines y = (2m+ 1)π at most m(g) times then we have

J ≤
∑

T≤g≤T+U
m(g).

Hence

J ≤ N0
F (T + U)−N0

F (T ). (6.26)

To estimate 4L(ε) argF (s), we will consider a clockwise oriented contour C(ε) from by L(ε)

and the line segments (12 + i(T +U), 3.5 + i(T +U)], [3.5 + iT, 3.5 + i(T +U)], and (12 + i(T +
U), 3.5 + iT ]. We have

∆C(ε) argF (s) = −2π(N+
F (T + U)−N+

F (T )).

From the definition of F (s) and an argument similar to (6.3) we find

|F (s)− 1| < 1.

Hence

argF (3.5 + it)|T+UT = O(1).

Note that

Im (F (σ + iT )) = −
∑
n≤N

a(n) sin(T log n)

nσ
.

By a generalization of Descartes’s Rule of Signs (see Pólya and Szegö [16], Part V, Chapter
1, No. 77), the number of real zeros of Im (F (σ + iT )) in the interval 1/2 ≤ σ ≤ 3.5 is less
than or equal to the number of sign changes in the sequence a(n) sin(T log n), 1 ≤ n ≤ N ,
which in turn is less than or equal to the number of nonzero coefficients of a(n) sin(T log n).
Therefore

argF (σ + iT )|w1/2 = Of (N).

Similarly

argF (σ + i(T + U))|w1/2 = Of (N).

Thus

4L(ε) argF (s) = −2π(N+
F (T + U)−N+

F (T )) +Of (N). (6.27)
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Again by (6.8),

∆L(ε) argχf (s) = − argχf (1/2 + it)|T+UT +Of (1)

= −2(T + U) log
T + U

2π
+ 2T log

T

2π
+ 2U +Of (1). (6.28)

Finally combining (6.25), (6.26), (6.27), and (6.28) we obtain

N0
Z(T + u)−N0

Z(T ) ≥ T + U

π
log

T + U

2π
− T

π
log

T

2π
− U

π
− 2(N+

F (T + U)−N+
F (T ))

− (N0
F (T + U)−N0

F (T )) +Of (N).

Now by Proposition 1.1 there exists a positive number a with 0 ≤ a ≤ 1 such that

N+
F (T + U)−N+

F (T ) ≤ a U
2π

logM +Of (N).

Thus

N0(T + U)−N0(T ) = N0
Z(T + u)−N0

Z(T ) +N0
F (T + U)−N0

F (T )

≥ T + U

π
log

T + U

2π
− T

π
log

T

2π
− U

π
− aU

π
logM +Of (N), (6.29)

which proves Theorem 6.3.
�

For λ > 1/2, one derives from (6.1) that

N0(T + U)−N0(T ) ≥ T + U

π
log

T + U

2πeMa
− T

π
log

T

2πeMa
− U

π
+Of (N)

=
T + U

π
log

T + U

2π
− T

π
log

T

2π
− U

π
+Of (U logN) +Of (N)

= N(T + U)−N(T ) +O(U logN) +Of (N) +Of

((
λ

2λ− 1

)3

log(T + U)

)
,

(6.30)

which completes the proof of Theorem 1.6. Now for N ≤ T o(1) and For U ≥ T β for some
positive constant β, we have

lim inf
T→∞

N0(T + U)−N0(T )

N(T + U)−N(T )
= 1. (6.31)

Since the right-hand sides of (6.29) and (6.30) are also lower bounds for the number of simple
zeros of Lf (N ; 1/2 + it) with T ≤ t ≤ T + U , then the lim inf in (6.31) continues to equal
1 when one replaces N0(T + U) − N0(T ) on the left-hand side of (6.31) by the number of
simple zeros of Lf (N ; 1/2 + it) with T ≤ t ≤ T + U . This implies that as T → ∞, 100%
of the zeros of Lf (N ; s) are simple and lie on the critical line, which concludes the proof of
Theorem 1.7.
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