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The definition Four motivations Variations C∗-algebras Loose ends

What is a quantum metric?
(In our sense)

Let M⊆ L(H) be a von Neumann algebra. A quantum metric on
M is a weak-* algebra filtration of L(H) given by
d : L(H)→ [0,∞], such that the 0-term is M′. More precisely:

• Each term Vt
def
= d−1([0, t]) is an operator system in L(H)

which is closed in the weak-* topology. I.e., d is lower
semicontinuous and

d(a∗) = d(λa) = d(a) d(a + b) ≤ max(d(a), d(b)).

• Also VsVt ⊆ Vs+t . I.e., d(ab) ≤ d(a) + d(b).

• Also V0 =M′.
Behold! (But note other definitions, in particular Rieffel’s.)
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Independence of H

Doesn’t a filtration of L(H) ⊇M depend on H?

Theorem
No.

To understand this, consider more generally operator spaces

V ⊆ L(H1,H2).

which are bimodules of M′1 ⊆ L(H1) and M′2 ⊆ L(H2). These are
quantum relations between M1 and M2. The lattice of quantum
relations is stable with respect to ⊗L(H), and tensoring also
preserves *, and composition of relations. This move unites all
faithful representations of M1 and M2.
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First motivation: Classical metrics

If (X , d) is a metric space, let M = `∞(X ) and H = `2(X ).

Theorem
Quantum metrics on M are equivalent to classical metrics on X .

We define a filtration of L(H) by letting d(ex ,y ) = d(x , y) for
elementary matrices. In general d(a) is the displacement of a, the
supremal “distance” of its “motion” as a superposition of x 7→ y .

This construction is reversible, because all bimodules of M′ =M
are spanned by elementary matrices:0 ∗ ∗

0 ∗ 0
∗ 0 ∗

 .
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Classical metrics, continued

In the case M = `2(X ), our quantum axioms correspond well with
the axioms of a classical metric space:

d(x , y) = 0 iff x = y ⇐⇒ M′ = V0

d(x , y) = d(y , x) ⇐⇒ Vt = V∗t
d(x , z) ≤ d(x , y) + d(y , z) ⇐⇒ VsVt ⊆ Vs+t .

The only discrepancy is that we allow infinite displacements. This
is because the displacement is a supremum, for example:

a ∈ L(`2(Z)) a[f ](n) = f (n3) d(a) =∞.

Besides, we can allow d(x , y) =∞ classically.
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Second motivation: The double commutant theorem

Another alignment: Passing to a subalgebra N ⊆M generalizes
the quotient operation X � X/ ∼ induced by a pseudometric.

• If M = `∞(X ), then every subalgebra is N = `∞(X/ ∼).

• If d is a pseudometric on X , we can define a filtration on
L(`2(X )) as usual. Then V0 = N ′, where N = `∞(X/ ∼)
and x ∼ y when d(x , y) = 0.

• In general a quantum pseudometric on M is one with
V0 ⊇M′ and is viewed as a metric on N = V ′0 ⊆M.

• A quantum metric on any M⊆ L(H) is, first, a quantum
pseudometric on L(H).
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Third motivation: Quantum error correction
(My motivation)

In quantum computation, there is an essential theory of quantum
error correction.

• Take M = L(H), with dimH <∞. Usually
L(H) = M2(C)⊗n, meaning “a register with n qubits”.

• The errors (to be corrected or detected) are an operator
system E ⊆ L(H). An E-detecting code is a subspace
HC ⊆ H such that pap = ε(a)p for a ∈ E . Here p is
projection onto HC and ε : E → C is a slope.

• We generalize this to all M⊆ L(H) by letting p ∈M be a
self-adjoint idempotent and pap = ε(a)p, with ε : E →M′.

• This is a mutual generalization with classical error detection,
in the sense of independent sets in graphs.
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Quantum error correction (continued)

Given a quantum code p ∈M ⊆ L(H) with pap = ε(a)p for
a ∈ E , we could take E = Vt for a quantum metric on M. Then p
is a quantum minimum distance code.

• An example: There is a trivial quantum metric
d : M2(C)→ {0, 1} with d(A) = 0 iff A ∝ I . Then
(M2(C), d)⊗n is quantum Hamming space. (Despite the use
of quantum Hamming space from the beginning, a general
definition of quantum metrics was overlooked!)

• More examples: Every quantum metric on a qubit M2(C) is
given by d(X ), d(Y ), and d(Z ), up to conjugation, where X ,
Y , and Z are the Pauli spin matrices. Also
d(X ) ≤ d(Y ) + d(Z ), etc. A metric qubit is like a classical
triangle.
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Fourth motivation: Measurable metric spaces
(Nik’s motivation)

Weaver [J. Funct. An., 1996] defined measurable metric spaces.
Given an abstract σ-algebra Σ, one defines a distance function
d(a, b) for booleans a, b ∈ Σ. The distance function satisfies some
delicate axioms. Measurable metric spaces have various favorable
properties.

Happily, the axioms can be made less delicate. A measurable
metric space is exactly a quantum metric on M = L∞(Σ), if this is
a von Neumann algebra.
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Quantum graphs, posets, uniform spaces, ...

Suppose that M⊆ L(H) and E ⊆ L(H) is an M′-bimodule, a
quantum relation.

• If E is an operator system, then (M, E) is a quantum graph.

• If E is an algebra with E ∩ E∗ =M′, then (M, E) is a
quantum poset.

• If {E} is a family of quantum graphs satisfying the
Weil-Bourbaki axioms, then each E is a quantum entourage
and (M, {E}) is a quantum uniform space.
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Quantum graph theory

Theorem
If a graph Γ has valence v and n vertices, then the independence
number α(Γ) ≥ dn/(v + 1)e.
We can define the valence of a quantum graph (M, E) as
v = r − 1, where r is the rank of E as a left M′-module.

Theorem (Knill-Laflamme-Viola [1999])

If Γ = (Mn(C), E) is a finite, purely quantum graph, then

α(Γ) ≥
⌈⌈n

v

⌉ 1

v + 1

⌉
.

The quantum independence number is exactly the maximal
M′-rank of a quantum code. The proof uses Tverberg’s theorem
from convex geometry.
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Quantum graphs (continued)

Theorem
If Γ is a graph with valence v, then the chromatic number
χ(Γ) ≤ v + 1.

But here there is a surprise...

Theorem (Steven Lu)

There exists a quantum graph Γ = (Mn(C), E) with valence one,
and with

χ(Γ) ≥ dlog2(n)e.

Here a quantum coloring is a homomorphism f : `2(S)→M,
where S is a set of colors and each f (s) is a quantum code.
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Topologies from metrics

• Rieffel begins with a C ∗-algebra A and considers compatible
quantum metrics in his sense. This is fine, but backwards
relative to undergraduate analysis.

• Traditionally, a set X is a canvas, a metric d(x , y) is a
painting on the canvas, and the topology T induced by d is
the painting’s impression.

• A quantum topology on M is a weakly dense C ∗-subalgebra
A ⊆M, an algebra of bounded, “continuous” elements. If
M = `∞(X ), then A ⊆M comes from a topology on X with
a compactification.

• If M = `∞(X ) and X has a metric d , then there a C ∗-algebra
A of bounded, uniformly continuous functions. We want a
quantum version of this.
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The continuous C ∗ algebra

Given M⊆ L(H) and {Vt}, an element a ∈ L(H) is commutation
uniform if for every ε > 0, there exists a δ > 0, such that

x ∈ Vδ =⇒ ||[x , a]|| < ε||x ||.

Let A be the set of commutation-uniform a.

Theorem
A is a C ∗-subalgebra of M and is weak-* dense.

The construction generalizes to quantum uniformities.

Example: Rieffel tori.
One can also make a Lipschitz algebra by taking δ ∝ ε.
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Tropicalization

• The tropicalization of the semiring R+ is the limit

log(exp(ta) + exp(tb))/t −→ max(a, b)

log(exp(ta) exp(tb))/t2 −→ a + b

as t →∞. This limit is recently important in algebraic
geometry...

• And was always important in error correction. Minimum
distance is the tropicalization of error likelihood:[

exp(−t||x ||2) . exp(−t)
]
−→ [||x || > 1] .

• The heat equation or Brownian motion on a manifold also
tropicalizes to minimum distance.
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Rigidity

• Von Neumann quantum metrics are “rigid” while Rieffel
metrics are “soft”. Our definition is “tropical”.

• Our definition is clearly correct for quantum error correction.

• Rieffel obtains Gromov-Hausdorff convergence

[SO(3)→ M2`+1(C)] −→ C (S2).

We do not know whether our quantum metrics can do this.

• Unf. we have two definitions of Gromov-Hausdorff limits.

• A natural map like this also seems possible:

{Von Neumann quantum metrics}
−→ {Rieffel quantum metrics}.

What is the quality of this correspondence?
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A factory for C ∗-algebras

• The single most important use of classical metrics is to
construct topological spaces.

• Von Neumann quantum metrics are a way to construct
C ∗-algebras from Von Neumann algebras. Is this a useful
source of C ∗-algebras?
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