A homology theory for Smale spaces

Ian F. Putnam, University of Victoria

Hyperbolicity

An invertible linear map $T: \mathbb{R}^d \to \mathbb{R}^d$ is *hyperbolic* if $\mathbb{R}^d = E^s \oplus E^u$, T-invariant, $C>0, 0<\lambda<1$,

$$||T^n v|| \le C\lambda^n ||v||, \quad n \ge 1 \quad v \in E^s,$$

 $||T^{-n} v|| \le C\lambda^n ||v||, \quad n \ge 1 \quad v \in E^u,$

Same definition replacing \mathbb{R}^d by a vector bundle (over compact space).

M compact manifold, $\varphi:M\to M$ diffeomorphism is Anosov if $D\varphi:TM\to TM$ is hyperbolic.

Smale: M, φ Axiom A: replace TM above by $TM|_{NW(\varphi)} = E^s \oplus E^u$, where $NW(\varphi)$ is the set of non-wandering points. But $NW(\varphi)$ is usually a fractal, not a submanifold.

Smale spaces (D. Ruelle)

(X,d) compact metric space,

 $\varphi: X \to X$ homeomorphism $0 < \lambda < 1$,

For x in X and $\epsilon > 0$ and small, there is a local stable set $X^s(x,\epsilon)$ and a local unstable set $X^u(x,\epsilon)$:

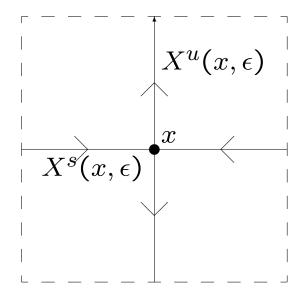
- 1. $X^s(x,\epsilon) \times X^u(x,\epsilon)$ is homeomorphic to a neighbourhood of x,
- 2. φ -invariance,

3.

$$d(\varphi(y), \varphi(z)) \leq \lambda d(y, z), \quad y, z \in X^{s}(x, \epsilon),$$

$$d(\varphi^{-1}(y), \varphi^{-1}(z)) \leq \lambda d(y, z), \quad y, z \in X^{u}(x, \epsilon),$$

That is, we have a local picture:



Global stable and unstable sets:

$$X^{s}(x) = \{ y \mid \lim_{n \to +\infty} d(\varphi^{n}(x), \varphi^{n}(y)) = 0 \}$$

$$X^{u}(x) = \{ y \mid \lim_{n \to +\infty} d(\varphi^{-n}(x), \varphi^{-n}(y)) = 0 \}$$

These are equivalence relations.

$$X^s(x,\epsilon) \subset X^s(x)$$
, $X^u(x,\epsilon) \subset X^u(x)$.

Example 1

The linear map $A=\begin{pmatrix}1&1\\1&0\end{pmatrix}$ is hyperbolic. Let $\gamma>1$ be the Golden mean,

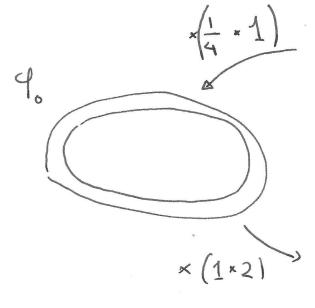
$$(\gamma, 1)A = \gamma(\gamma, 1)$$

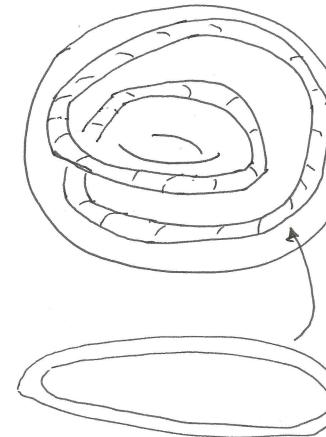
$$(-1, \gamma)A = -\gamma^{-1}(-1, \gamma)$$

As det(A) = -1, it induces a homeomorphism of $\mathbb{R}^2/\mathbb{Z}^2$ which is Anosov.

 X^s and X^u are Kronecker foliations with lines of slope $-\gamma^{-1}$ and γ .

$$X_0 = \overline{D} \times S^1$$





$$X = \bigcap_{n \geq c} \varphi_o(X_o), \quad \varphi = \varphi_o(X)$$

$$X^{s}((x,y), \varepsilon) \cong \overline{\mathbb{D}} \times \{y\} \cap X$$
 Canter
$$X^{u}((x,y), \varepsilon) \cong \{x\} \times (y-\varepsilon, y-\varepsilon)$$

Example 3: Shifts of finite type (SFTs)

Let $G = (G^0, G^1, i, t)$ be a finite directed graph. Then we have the shift space and shift map:

$$\Sigma_G = \{(e^k)_{k=-\infty}^{\infty} \mid e^k \in G^1,$$

$$i(e^{k+1}) = t(e^k), \text{ for all } n\}$$

$$\sigma(e)^k = e^{k+1}, \text{ "left shift"}$$

The local product structure is given by

$$\Sigma^{s}(e,1) = \{(\dots, *, *, *, *, e^{0}, e^{1}, e^{2}, \dots)\}$$

$$\Sigma^{u}(e,1) = \{(\dots, e^{-2}, e^{-1}, e^{0}, *, *, *, \dots)\}$$

Example 4

Let m < n be relatively prime, and

$$X = \mathbb{Q}_m \times \mathbb{R} \times \mathbb{Q}_n / \mathbb{Z}[1/mn]$$

and

$$\varphi(a,r,b) = \left(\frac{n}{m}a, \frac{n}{m}r, \frac{n}{m}b\right).$$

The $\mathbb{Q}_m \times \mathbb{R}$ coordinates are expanding while the \mathbb{Q}_n coordinate is contracting.

Smales spaces have a large supply of periodic points and it is interesting to count them.

Adjacency matrix of G: $G^0 = \{1, 2, \dots, N\}$, A_G is $N \times N$ with

$$(A_G)_{i,j} = \# \text{edges from } i \text{ to } j$$

Theorem 1. Let A_G be the adjancency matrix of the graph G. For any $p \ge 1$, we have

$$\#\{e \in \Sigma_G \mid \sigma^p(e) = e\} = Tr(A_G^p).$$

This is reminiscent of the Lefschetz fixed-point formula for smooth maps of compact manifolds.

Question 2. Is the right hand side actually the result of σ acting on some homology theory of (Σ_G, σ) ?

Positive answers by Bowen-Franks and Krieger.

Krieger's invariants for SFT's

W. Krieger defined invariants, which we denote by $D^s(\Sigma_G, \sigma), D^u(\Sigma_G, \sigma)$, for shifts of finite type by considering stable and unstable equivalence as groupoids and taking its groupoid C^* -algebra:

$$K_0(C^*(X^s)), K_0(C^*(X^s))$$

In this case, these are both AF-algebras and

$$D^s(\Sigma_G, \sigma) = \lim \mathbb{Z}^N \xrightarrow{A_G} \mathbb{Z}^N \xrightarrow{A_G} \cdots$$

(For the unstable, replace A_G with A_G^T .) Each comes with a canonical automorphism.

Returning to Smale spaces . . .

Bowen's Theorem

Theorem 3 (Bowen). For a non-wandering Smale space, (X, φ) , there exists a SFT (Σ, σ) and

$$\pi: (\Sigma, \sigma) \to (X, \varphi),$$

with $\pi \circ \sigma = \varphi \circ \pi$, continuous, surjective and finite-to-one.

First, this means that SFT's have a special place among Smale spaces. Secondly, one can try to understand (X,φ) by investigating (Σ,σ) . For example, they will have the same entropy. Of course, (Σ,σ) is not unique.

A. Manning used Bowen's Theorem to provide a formula counting the number of periodic points for (X, φ) .

For $N \geq 0$, define

$$\Sigma_N(\pi) = \{(e_0, e_1, \dots, e_N) \mid \\ \pi(e_n) = \pi(e_0), \\ 0 \le n \le N\}.$$

For all $N \geq 0$, $(\Sigma_N(\pi), \sigma)$ is also a shift of finite type. Observe that S_{N+1} acts on $\Sigma_N(\pi)$.

Theorem 4 (Manning). For a non-wandering Smale space (X, φ) , (Σ, σ) as above and $p \ge 1$, we have

$$#\{x \in X \mid \varphi^p(x) = x\}$$

$$= \sum_{N} (-1)^N Tr(\sigma_*^p : D^s(\Sigma_N(\pi))^{alt})$$

$$\to D^s(\Sigma_N(\pi))^{alt}).$$

Question 5 (Bowen). Is there a homology theory for Smale spaces $H_*(X,\varphi)$ which provides a Lefschetz formula, counting the periodic points?

In fact, the groups $D^s(\Sigma_N(\pi))^{alt}$ appear to be giving a chain complex.

Idea: for $0 \le n \le N$, let $\delta_n : \Sigma_N(\pi) \to \Sigma_{N-1}(\pi)$ be the map which deletes entry n.

Let $(\delta_n)_*: D^s(\Sigma_N(\pi))^{alt} \to D^s(\Sigma_{N-1}(\pi))^{alt}$ be the induced map and $\partial = \sum_{n=0}^N (-1)^n (\delta_n)_*$ to make a chain complex.

This is wrong: a map

$$\rho: (\Sigma, \sigma) \to (\Sigma', \sigma)$$

between shifts of finite type does *not* always induce a group homomorphism between Krieger's invariants.

While it is true that ρ will map $R^s(\Sigma)$ to $R^s(\Sigma')$ the functorial properties of the construction of groupoid C^* -algebras is subtle.

Let $\pi: (Y, \psi) \to (X, \varphi)$ be a factor map between Smale spaces. For every y in Y, we have $\pi(Y^s(y)) \subseteq X^s(\pi(y))$.

Definition 6. π is s-bijective if $\pi: Y^s(y) \to X^s(\pi(y))$ is bijective, for all y.

Theorem 7. If π is s-bijective then $\pi: Y^s(y, \epsilon) \to X^s(\pi(y), \epsilon')$ is a local homeomorphism.

Theorem 8. Let $\pi:(\Sigma,\sigma)\to(\Sigma',\sigma)$ be a factor map between SFT's.

If π is s-bijective, then there is a map

$$\pi^s: D^s(\Sigma, \sigma) \to D^s(\Sigma', \sigma).$$

If π is u-bijective, then there is a map

$$\pi^{s*}: D^s(\Sigma', \sigma) \to D^s(\Sigma, \sigma).$$

Bowen's $\pi: (\Sigma, \sigma) \to (X, \varphi)$ is not s-bijective or u-bijective if X is a torus, for example.

A better Bowen's Theorem

Let (X, φ) be a Smale space. We look for a Smale space (Y, ψ) and a factor map

$$\pi_s: (Y, \psi) \to (X, \varphi)$$

satisfying:

1. π_s is s-bijective,

2. $dim(Y^{u}(y, \epsilon)) = 0$.

That is, $Y^u(y, \epsilon)$ is totally disconnected, while $Y^s(y, \epsilon)$ is homeomorphic to $X^s(\pi_s(y), \epsilon)$.

This is a "one-coordinate" version of Bowen's Theorem.

Similarly, we look for a Smale space (Z,ζ) and a factor map $\pi_u:(Z,\zeta)\to (X,\varphi)$ satisfying $\dim(Z^s(z,\epsilon))=0$, and π_u is u-bijective.

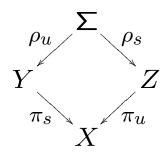
We call $\pi = (Y, \psi, \pi_s, Z, \zeta, \pi_u)$ a s/u-bijective pair for (X, φ) .

Theorem 9. If (X,φ) is a non-wandering Smale space, then there exists an s/u-bijective pair.

Consider the fibred product:

$$\Sigma = \{(y, z) \in Y \times Z \mid \pi_s(y) = \pi_u(z)\}$$

with



 $\rho_s(y,z) = z$ is s-bijective, $\rho_u(y,z) = y$ is ubjective. Hence, Σ is a SFT.

For $L, M \geq 0$, we define

$$\Sigma_{L,M}(\pi) = \{(y_0, \dots, y_L, z_0, \dots, z_M) \mid y_l \in Y, z_m \in Z, \\ \pi_s(y_l) = \pi_u(z_m)\}.$$

Each of these is a SFT.

Moreover, the maps

$$\delta_{l,}: \; \Sigma_{L,M} \rightarrow \; \Sigma_{L-1,M}, \ \delta_{,m}: \; \Sigma_{L,M} \rightarrow \; \Sigma_{L,M-1}$$

which delete y_l and z_m are s-bijective and u-bijective, respectively.

This is the key point! We have avoided the issue which caused our earlier attempt to get a chain complex to fail.

We get a double complex:

$$D^{s}(\Sigma_{0,2})^{alt} \leftarrow D^{s}(\Sigma_{1,2})^{alt} \leftarrow D^{s}(\Sigma_{2,2})^{alt} \leftarrow D^{s}(\Sigma_{2,2})^{alt} \leftarrow D^{s}(\Sigma_{0,1})^{alt} \leftarrow D^{s}(\Sigma_{1,1})^{alt} \leftarrow D^{s}(\Sigma_{2,1})^{alt} \leftarrow D^{s}(\Sigma_{0,0})^{alt} \leftarrow D^{s}(\Sigma_{1,0})^{alt} \leftarrow D^{s}(\Sigma_{2,0})^{alt} \leftarrow D^{s}(\Sigma_{2,0})^{alt} \leftarrow D^{s}(\Sigma_{0,0})^{alt} \leftarrow D^{s}(\Sigma_{0,0})^{alt}$$

$$\partial_N^s$$
: $\bigoplus_{L-M=N} D^s(\Sigma_{L,M})^{alt}$
 $\to \bigoplus_{L-M=N-1} D^s(\Sigma_{L,M})^{alt}$

$$\partial_N^s = \sum_{l=0}^L (-1)^l \delta_{l,}^s + \sum_{m=0}^{M+1} (-1)^{m+M} \delta_{m,m}^{s*}$$

$$H_N^s(\pi) = \ker(\partial_N^s) / Im(\partial_{N+1}^s).$$

Recall: beginning with (X,φ) , we select an s/u-bijective pair $\pi=(Y,\psi,\pi_s,Z,\zeta\pi_u)$ construct the double complex and compute $H_N^s(\pi)$.

Theorem 10. The groups $H_N^s(\pi)$ do not depend on the choice of s/u-bijective pair π .

From now on, we write $H_N^s(X,\varphi)$.

Theorem 11. The functor $H_*^s(X,\varphi)$ is covariant for s-bijective factor maps, contravariant for u-bijective factor maps.

Theorem 12. The groups $H_N^s(X,\varphi)$ are all finite rank and non-zero for only finitely many $N \in \mathbb{Z}$.

We can regard $\varphi:(X,\varphi)\to (X,\varphi)$, which is both s and u-bijective and so induces an automorphism of the invariants.

Theorem 13. (Lefschetz Formula) Let (X, φ) be any non-wandering Smale space and let $p \ge 1$.

$$\sum_{N \in \mathbb{Z}} (-1)^N \quad Tr[(\varphi^s)^p : H_N^s(X, \varphi) \otimes \mathbb{Q}$$

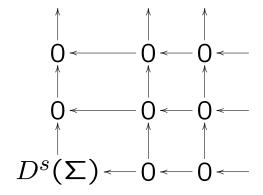
$$\to \quad H_N^s(X, \varphi) \otimes \mathbb{Q}]$$

$$= \quad \#\{x \in X \mid \varphi^p(x) = x\}$$

Example 1: Shifts of finite type

If $(X,\varphi)=(\Sigma,\sigma)$, then $Y=\Sigma=Z$ is an s/u-bijective pair.

The double complex D_a^s is:



and $H_0^s(\Sigma, \sigma) = D^s(\Sigma)$ and $H_N^s(\Sigma, \sigma) = 0, N \neq 0$.

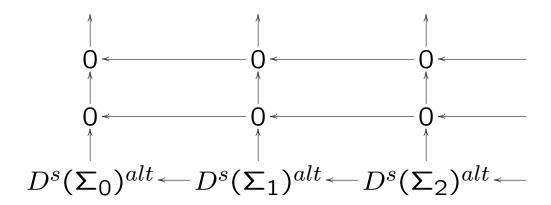
Example 2: $\dim(X^{s}(x, \epsilon)) = 0$.

(As an example, the solenoid we saw in example 2.)

We may find a SFT and s-bijective map

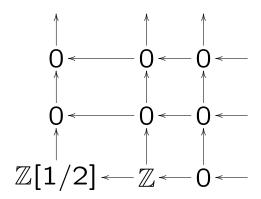
$$\pi_s: (\Sigma, \sigma) \to (X, \varphi).$$

The $Y = \Sigma, Z = X$ is an s/u-bijective pair and the double complex D^s is:



Example 2': $(X, \varphi) = 2^{\infty}$ -solenoid (Bazett-P.)

An s/u-bijective pair is $Y = \{0,1\}^{\mathbb{Z}}$, the full 2-shift, Z = X and the double complex D^s is



and we get

$$H_0^s(X,\varphi) \cong \mathbb{Z}[1/2], H_1^s(X,\varphi) \cong \mathbb{Z},$$
 $H_N^s(\Sigma_G,\sigma) = 0, N \neq 0, 1.$

Generalized 1-solenoids (Williams, Yi, Thomsen): Amini, P, Saeidi Gholikandi.

Example 4(N. Burke-P.)

Let m < n be relatively prime, and

$$X = \mathbb{Q}_m \times \mathbb{R} \times \mathbb{Q}_n / \mathbb{Z}[1/mn],$$

and

$$\varphi(a,r,b) = \left(\frac{n}{m}a, \frac{n}{m}r, \frac{n}{m}b\right).$$

$$H_0^s(X,\varphi) \cong \mathbb{Z}[1/n]$$

$$H_1^s(X,\varphi) \cong \mathbb{Z}[1/m]$$

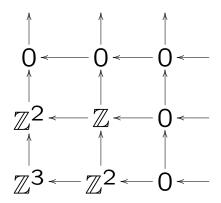
and

$$H_N^s(X,\varphi) = 0, N \neq 0, 1.$$

Example 3: Our Anosov example (Bazett-P.):

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right) : \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$$

The double complex D^s looks like:



and

$$egin{array}{c|cccc} N & H_N^s(X,arphi) & arphi^s \ \hline -1 & \mathbb{Z} & 1 \ 0 & \mathbb{Z}^2 & \left(egin{array}{c} 1 & 1 \ 1 & 0 \end{array}
ight) \ 1 & \mathbb{Z} & -1. \end{array}$$