Morita equivalences of torus equivariant spectral triples

Jan Jitse Venselaar

California Institute of Technology

10/27/2013

Jan Jitse Venselaar Morita equivalences of torus equivariant spectral triples

Definitions

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is composed of the following elements:

イロト イボト イヨト イヨト

SQR

Э

A real spectral triple (A, H, D, J) is composed of the following elements:

• \mathcal{A} : pre- C^* -algebra.

イロト イボト イヨト イヨト

SQR

Э

Definitions

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is composed of the following elements:

- \mathcal{A} : pre- C^* -algebra.
- \mathcal{H} : Hilbert space on which the algebra \mathcal{A} has a representation π as bounded operators.

Definitions

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is composed of the following elements:

- \mathcal{A} : pre- C^* -algebra.
- \mathcal{H} : Hilbert space on which the algebra \mathcal{A} has a representation π as bounded operators.
- D: the Dirac operator, an unbounded operator on ${\cal H}$ with compact resolvent.

Definitions

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is composed of the following elements:

- \mathcal{A} : pre- C^* -algebra.
- \mathcal{H} : Hilbert space on which the algebra \mathcal{A} has a representation π as bounded operators.
- *D*: the Dirac operator, an unbounded operator on \mathcal{H} with compact resolvent.
- J: the reality operator, an antilinear isometry acting on H.
 J maps π(A) to opposite representation π^o(A), commuting with π(A), and opposite order of multiplication: a^o = Ja^{*}J[†].

Definitions

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is composed of the following elements:

- \mathcal{A} : pre- C^* -algebra.
- \mathcal{H} : Hilbert space on which the algebra \mathcal{A} has a representation π as bounded operators.
- *D*: the Dirac operator, an unbounded operator on \mathcal{H} with compact resolvent.
- J: the reality operator, an antilinear isometry acting on H.
 J maps π(A) to opposite representation π^o(A), commuting with π(A), and opposite order of multiplication: a^o = Ja^{*}J[†].

Some conditions

Some of the conditions (not all of them):

- Lipschitz continuity: [D, a] bounded $\forall a \in A$.
- First order condition: $[[D, a], Jb^*J^{-1}] = 0 \ \forall a, b \in A.$
- Smoothness: $\mathcal{A}, [D, \mathcal{A}] \subset \bigcap \mathsf{Dom}\delta^k$, $\delta(\mathcal{T}) = [|D|, \mathcal{T}]$.
- Spectral dimension: k-th eigenvalue of |D|⁻¹, ordered from big to small, is of order O(k^{-d}) for an integer d.
- Finiteness: $\mathcal{H}^{\infty} := \bigcap \text{Dom} D^k$ is f.g. projective over \mathcal{A} .

イロト イボト イヨト

Some conditions

Some of the conditions (not all of them):

- Lipschitz continuity: [D, a] bounded $\forall a \in A$.
- First order condition: $[[D, a], Jb^*J^{-1}] = 0 \ \forall a, b \in A.$
- Smoothness: $\mathcal{A}, [D, \mathcal{A}] \subset \bigcap \mathsf{Dom}\delta^k$, $\delta(\mathcal{T}) = [|D|, \mathcal{T}]$.
- Spectral dimension: k-th eigenvalue of |D|⁻¹, ordered from big to small, is of order O(k^{-d}) for an integer d.
- Finiteness: $\mathcal{H}^{\infty} := \bigcap \text{Dom} D^k$ is f.g. projective over \mathcal{A} .

Canonical example is a spin structure on a manifold M, with spin Dirac operator D.

・ロト ・ 同ト ・ ヨト ・ ヨト

θ-deformations Coactions Strong connections Spin structures

θ -deformations

Rieffel: Given a pre- C^* -algebra \mathcal{A} with smooth torus action $\sigma: \mathbb{T}^2 \hookrightarrow \operatorname{Aut}(\mathcal{A})$, can deform the algebra along the torus action

イロト イボト イヨト イヨト

DQ P

θ-deformations Coactions Strong connections Spin structures

θ -deformations

Rieffel: Given a pre- C^* -algebra \mathcal{A} with smooth torus action $\sigma: \mathbb{T}^2 \hookrightarrow \operatorname{Aut}(\mathcal{A})$, can deform the algebra along the torus action Yamashita: $\mathcal{A}^{(\theta)} \simeq (C^{\infty}(\mathbb{T}^n_{\theta}) \otimes_{\min} \mathcal{A})^{\gamma^{-1} \otimes \sigma}$, with γ the obvious torus action on $(C^{\infty}(\mathbb{T}^n_{\theta}))$

θ-deformations Coactions Strong connections Spin structures

θ -deformations

Rieffel: Given a pre- C^* -algebra \mathcal{A} with smooth torus action $\sigma : \mathbb{T}^2 \hookrightarrow \operatorname{Aut}(\mathcal{A})$, can deform the algebra along the torus action Yamashita: $\mathcal{A}^{(\theta)} \simeq (C^{\infty}(\mathbb{T}^n_{\theta}) \otimes_{\min} \mathcal{A})^{\gamma^{-1} \otimes \sigma}$, with γ the obvious torus action on $(C^{\infty}(\mathbb{T}^n_{\theta}))$

Have a decomposition $\mathcal{A}^{(heta)}=igoplus_{k\in\mathbb{Z}^n}\mathcal{A}^{(heta)}_k$, where

$$\mathcal{A}_k^{(heta)} \mathrel{\mathop:}= \{ oldsymbol{a} \in \mathcal{A}_k^{ heta} | \sigma_t(oldsymbol{a}) = oldsymbol{e}^{2\pi i k \cdot t} oldsymbol{a} \}.$$

θ-deformations Coactions Strong connections Spin structures

θ -deformations

Rieffel: Given a pre- C^* -algebra \mathcal{A} with smooth torus action $\sigma: \mathbb{T}^2 \hookrightarrow \operatorname{Aut}(\mathcal{A})$, can deform the algebra along the torus action Yamashita: $\mathcal{A}^{(\theta)} \simeq (C^{\infty}(\mathbb{T}^n_{\theta}) \otimes_{\min} \mathcal{A})^{\gamma^{-1} \otimes \sigma}$, with γ the obvious torus action on $(C^{\infty}(\mathbb{T}^n_{\theta}))$

Have a decomposition $\mathcal{A}^{(heta)}=igoplus_{k\in\mathbb{Z}^n}\mathcal{A}^{(heta)}_k$, where

$$\mathcal{A}_k^{(heta)} := \{ a \in \mathcal{A}_k^{ heta} | \sigma_t(a) = e^{2\pi i k \cdot t} a \}.$$

Isometric torus action: $\sigma_t(D) = D$. Compatibility with spin structure: if $\sigma_t(T) = U_t T U_t^{-1}$, $U_t J = J U_{-t}$.

θ-deformations Coactions Strong connections Spin structures

Coactions

Now slight detour to coactions. Algebra \mathcal{A} , Hopf algebra \mathcal{H} . Continuous coaction $\rho : \mathcal{A} \to \mathcal{A} \otimes \mathcal{H}$:

- ρ is injective
- ρ is a comodule structure (obvious routes from A to $A \otimes H \otimes H$ commute.
- Podleś condition: $\rho(\mathcal{A})(1 \otimes H) = \mathcal{A} \otimes H$.

θ-deformations Coactions Strong connections Spin structures

Coactions

Now slight detour to coactions. Algebra \mathcal{A} , Hopf algebra H. Continuous coaction $\rho : \mathcal{A} \to \mathcal{A} \otimes H$:

- ρ is injective
- ρ is a comodule structure (obvious routes from A to $A \otimes H \otimes H$ commute.

• Podleś condition: $\rho(\mathcal{A})(1 \otimes H) = \mathcal{A} \otimes H$.

For \mathbb{T}^n -action, any smooth action can be translated to continuous coaction: $\sigma_t(a) = e^{2\pi i k \cdot t} a \Rightarrow \rho(a) = a \otimes u^k$.

イロト イヨト イヨト

θ-deformations
 Coactions
 Strong connections
 Spin structures

Strong connections

Because of the results of Dąbrowski, Gosse and Hajac, a right *H*-comodule algebra *A* is principal if and only if there exists a strong connection, i.e. there exists a map $\omega : H \to A \otimes H$ such that:

$$\begin{split} \omega(1) &= 1 \otimes 1 \\ \mu \circ \omega &= \eta \circ \epsilon \\ (\omega \otimes \mathrm{id}) \circ \Delta &= (\mathrm{id} \otimes \rho) \circ \omega \\ (S \otimes \omega) \circ \Delta &= (\sigma \otimes \mathrm{id}) \circ (\rho \otimes \mathrm{id}) \circ \omega, \end{split}$$

Flip $\sigma : A \otimes H \rightarrow H \otimes A$ Algebra multiplication $\mu : A \otimes A \rightarrow A$.

イロト イポト イラト イラト

θ-deformations
 Coactions
 Strong connections
 Spin structures

Strong connections II

Lemma

An algebra A, with coaction $\rho : A \to A \otimes U(\mathbb{T}^n)$, has a strong connection if, for each $1 \leq j \leq n$, there exists elements $\sum_i a_i \otimes b_i$, and $\sum_i b'_i \otimes a'_i$ such that $\sum a_i b_i = \sum b'_i a'_i = 1$, $\rho(a_i) = a_i \otimes \mathfrak{t}_j^{-1}$, $\rho(a'_i) = a'_i \otimes \mathfrak{t}_j^{-1}$, $\rho(b_i) = b_i \otimes \mathfrak{t}_j$, and $\rho(b'_i) = b'_i \otimes \mathfrak{t}_j$.

イロト イポト イラト イラト

θ-deformations
 Coactions
 Strong connections
 Spin structures

Strong connections II

Lemma

An algebra A, with coaction $\rho : A \to A \otimes U(\mathbb{T}^n)$, has a strong connection if, for each $1 \leq j \leq n$, there exists elements $\sum_i a_i \otimes b_i$, and $\sum_i b'_i \otimes a'_i$ such that $\sum a_i b_i = \sum b'_i a'_i = 1$, $\rho(a_i) = a_i \otimes \mathfrak{t}_j^{-1}$, $\rho(a'_i) = a'_i \otimes \mathfrak{t}_j^{-1}$, $\rho(b_i) = b_i \otimes \mathfrak{t}_j$, and $\rho(b'_i) = b'_i \otimes \mathfrak{t}_j$.

Proof.

Define strong connection recursively: $\omega(1) = 1 \otimes 1$,

$$\omega(u_j^n) = \sum a_i \omega(u_j^n) b_i.$$

θ-deformations
 Coactions
 Strong connections
 Spin structures

Strong connections II

Lemma

An algebra A, with coaction $\rho : A \to A \otimes U(\mathbb{T}^n)$, has a strong connection if, for each $1 \leq j \leq n$, there exists elements $\sum_i a_i \otimes b_i$, and $\sum_i b'_i \otimes a'_i$ such that $\sum a_i b_i = \sum b'_i a'_i = 1$, $\rho(a_i) = a_i \otimes \mathfrak{t}_j^{-1}$, $\rho(a'_i) = a'_i \otimes \mathfrak{t}_j^{-1}$, $\rho(b_i) = b_i \otimes \mathfrak{t}_j$, and $\rho(b'_i) = b'_i \otimes \mathfrak{t}_j$.

Proof.

Define strong connection recursively: $\omega(1) = 1 \otimes 1$,

$$\omega(u_j^n) = \sum a_i \omega(u_j^n) b_i.$$

Example: S_{θ}^{2n+1} is a \mathbb{T}^1 fibration over S_{θ}^{2n} : $\alpha_i \mapsto \alpha_i \otimes u$. $\sum \alpha_i \alpha_i^* = 1$

Morita equivalences of torus equivariant spectral triples

θ-deformations Coactions Strong connections Spin structures

Spin structures on principal fibrations

Now assume $(\mathcal{A}_0, \mathcal{H}_0, D_h, J_0)$ is a real spectral triple, of spectral dimension d. Then $(\mathcal{A}, \mathcal{H}, D_h + D_v + Z, J)$ is a real spectral triple, with $[D_v, a_0] = 0$, and $J\mathcal{H}_k = \mathcal{H}_{-k}$, Z commuting with algebra (isometric fibers).

イロト イポト イラト イラト

θ-deformations Coactions Strong connections Spin structures

Spin structures on principal fibrations

Now assume (A_0, H_0, D_h, J_0) is a real spectral triple, of spectral dimension d.

Then $(\mathcal{A}, \mathcal{H}, D_h + D_v + Z, J)$ is a real spectral triple, with $[D_v, a_0] = 0$, and $J\mathcal{H}_k = \mathcal{H}_{-k}$, Z commuting with algebra (isometric fibers).

First order condition $([[D, a], JbJ^{-1}] = 0)$ + strong connection + compact resolvent ensures that $D_v \xi_k = \sum_j (\tau_j \cdot k) A_j \xi_k$, with A_j generator of *n*-dimensional Clifford algebra, τ_j basis of \mathbb{R}^n . Gives spectral triple of spectral dimension d + n.

C*-algebras Spectral triples Dirac operator Equivalence relation

Morita equivalences

Setting for Morita equivalence of C^* -algebras: Hilbert C^* -modules.

イロト イボト イヨト イヨト

ŀ

DQ P

C*-algebras Spectral triples Dirac operator Equivalence relation

Morita equivalences

Setting for Morita equivalence of C^* -algebras: Hilbert C^* -modules. Generalization of Hilbert spaces to a complete space with a C^* -algebra valued inner product.

イロト イポト イヨト イヨト

DQ P

C*-algebras Spectral triples Dirac operator Equivalence relation

Morita equivalences

Setting for Morita equivalence of C^* -algebras: Hilbert C^* -modules. Generalization of Hilbert spaces to a complete space with a C^* -algebra valued inner product.

Two C^* -algebras \mathcal{A} and \mathcal{B} are strongly Morita equivalent if there exists a $(\mathcal{A}, \mathcal{B})$ -equivalence bimodule ${}_{\mathcal{B}}\mathcal{E}_{\mathcal{A}}$, with $\mathcal{B} = \text{End}_{\mathcal{A}}(\mathcal{E})$ such that:

- $\langle x, y \rangle_{\mathcal{B}} z = x \langle y, z \rangle_{\mathcal{A}}$ for all $x, y, z \in \mathcal{E}$.
- $\langle \mathcal{E}, \mathcal{E} \rangle_{\mathcal{A}}$ spans a dense subset of \mathcal{A} , $\langle \mathcal{E}, \mathcal{E} \rangle_{\mathcal{B}}$ of \mathcal{B} .

化口下 化固下 化医下不足下

C*-algebras Spectral triples Dirac operator Equivalence relation

Morita equivalences of spectral triples

Idea: Morita equivalent C^* -algebras contain same topological data (representation theory). Same geometry? Need Morita equivalence of spectral triples $(\mathcal{A}, \mathcal{H}, D, J)$ and $(\mathcal{A}', \mathcal{H}', D', J')$.

Spectral triples heta-deformations Morita equivalences Morita equivalence of heta-deformations Conclusions

C*-algebras Spectral triples Dirac operator Equivalence relation

Morita equivalences of spectral triples

Idea: Morita equivalent C^* -algebras contain same topological data (representation theory).

Same geometry? Need Morita equivalence of spectral triples $(\mathcal{A}, \mathcal{H}, D, J)$ and $(\mathcal{A}', \mathcal{H}', D', J')$.

- Hilbert space: $\mathcal{H}' = \mathcal{E} \otimes_{\mathcal{A}} \mathcal{H} \otimes_{J\mathcal{A}J^{-1}} \bar{\mathcal{E}}.$
- Reality operator: $J'(e \otimes v \otimes \overline{f}) = f \otimes Jv \otimes \overline{e}$.

イロト イポト イラト イラト

C*-algebras Spectral triples Dirac operator Equivalence relation

Dirac operator

Need extra data: connections.

イロト イボト イヨト イヨト

SQR

Э

C*-algebras Spectral triples Dirac operator Equivalence relation

Dirac operator

Need extra data: connections.

Connection is an operator $\nabla_D : \mathcal{E} \to \mathcal{E} \otimes \Omega^1_D$ that satisfies:

- Leibniz rule: $\nabla_D(ea) = \nabla_D(e)a + e \otimes [D, a].$
- Self-adjointness: $\langle e, \nabla_D f \rangle \langle \nabla_D e, f \rangle = [D, \langle e, f \rangle_A].$

The space Ω_D^1 is the space of *one forms*: \mathcal{A} -bimodule spanned by $\{\sum_i a_i[D, b_i] | a_i, b_i \in \mathcal{A}\}$ where the sum is finite.

イロト イポト イラト イラト

C*-algebras Spectral triples Dirac operator Equivalence relation

Dirac operator

Need extra data: connections.

Connection is an operator $\nabla_D : \mathcal{E} \to \mathcal{E} \otimes \Omega^1_D$ that satisfies:

- Leibniz rule: $\nabla_D(ea) = \nabla_D(e)a + e \otimes [D, a].$
- Self-adjointness: $\langle e, \nabla_D f \rangle \langle \nabla_D e, f \rangle = [D, \langle e, f \rangle_A].$

The space Ω_D^1 is the space of *one forms*: \mathcal{A} -bimodule spanned by $\{\sum_i a_i[D, b_i] | a_i, b_i \in \mathcal{A}\}$ where the sum is finite.

$$D'(e\otimes v\otimes \overline{f})=
abla_D(e)v\otimes \overline{f}+e\otimes Dv\otimes \overline{f}+e\otimes v\overline{(
abla_Df)}.$$

イロト イポト イラト イラト

C*-algebras Spectral triples Dirac operator Equivalence relation

Morita self-equivalences

Examples of Morita equivalences:

 \bullet Bimodule: algebra ${\cal A}$ itself. Morita self-equivalences.

イロト イボト イヨト イヨト

DQ P

C*-algebras Spectral triples Dirac operator Equivalence relation

Morita self-equivalences

Examples of Morita equivalences:

- \bullet Bimodule: algebra ${\cal A}$ itself. Morita self-equivalences.
- Dirac operator: $D' = D + E \pm + JEJ^{-1}$ with $E = \sum_j a_j[D, b_j]$, self-adjoint, sign depends on dimension.

C*-algebras Spectral triples Dirac operator Equivalence relation

Morita self-equivalences

Examples of Morita equivalences:

- \bullet Bimodule: algebra ${\cal A}$ itself. Morita self-equivalences.
- Dirac operator: $D' = D + E \pm + JEJ^{-1}$ with $E = \sum_j a_j[D, b_j]$, self-adjoint, sign depends on dimension.
- Hilbert space and J unchanged.

C*-algebras Spectral triples **Dirac operator** Equivalence relation

Morita self-equivalences

Examples of Morita equivalences:

- \bullet Bimodule: algebra ${\cal A}$ itself. Morita self-equivalences.
- Dirac operator: $D' = D + E \pm + JEJ^{-1}$ with $E = \sum_j a_j[D, b_j]$, self-adjoint, sign depends on dimension.
- Hilbert space and J unchanged.

C*-algebras Spectral triples **Dirac operator** Equivalence relation

Morita self-equivalences

Examples of Morita equivalences:

- \bullet Bimodule: algebra ${\cal A}$ itself. Morita self-equivalences.
- Dirac operator: $D' = D + E \pm + JEJ^{-1}$ with $E = \sum_j a_j [D, b_j]$, self-adjoint, sign depends on dimension.
- Hilbert space and J unchanged.
- For \mathcal{A} commutative: D also unchanged.

< ロ > < 同 > < 三 > < 三 >

Spectral triples heta-deformations Morita equivalences Morita equivalence of heta-deformations Conclusions

C*-algebras Spectral triples Dirac operator Equivalence relation

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?

イロト イボト イヨト イヨト

SQR

Э

C*-algebras Spectral triples Dirac operator Equivalence relation

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?

Check conditions:

Reflexivity Bimodule algebra itself, connection the identity.

イロト イボト イヨト イヨト

DQ P

 $\begin{array}{c} \text{Spectral triples} \\ \theta\text{-deformations} \\ \text{Morita equivalences} \\ \text{Morita equivalence of} \theta\text{-deformations} \\ \text{Conclusions} \end{array}$

C*-algebras Spectral triples Dirac operator Equivalence relation

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?

Check conditions:

Reflexivity Bimodule algebra itself, connection the identity.

Transitivity Bimodule $\mathcal{F} \otimes_{\mathcal{A}'} \mathcal{E}$, connection $\nabla_{D'} \otimes 1 + 1 \otimes \nabla_D$.

 $\begin{array}{c} \text{Spectral triples} \\ \theta\text{-deformations} \\ \text{Morita equivalences} \\ \text{Morita equivalence of} \theta\text{-deformations} \\ \text{Conclusions} \end{array}$

C*-algebras Spectral triples Dirac operator Equivalence relation

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?

Check conditions:

Reflexivity Bimodule algebra itself, connection the identity. Transitivity Bimodule $\mathcal{F} \otimes_{\mathcal{A}'} \mathcal{E}$, connection $\nabla_{D'} \otimes 1 + 1 \otimes \nabla_D$. Symmetry ???

 $\begin{array}{c} \text{Spectral triples} \\ \theta\text{-deformations} \\ \text{Morita equivalences} \\ \text{Morita equivalence of} \theta\text{-deformations} \\ \text{Conclusions} \end{array}$

C*-algebras Spectral triples Dirac operator Equivalence relation

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?

Check conditions:

Reflexivity Bimodule algebra itself, connection the identity. Transitivity Bimodule $\mathcal{F} \otimes_{\mathcal{A}'} \mathcal{E}$, connection $\nabla_{D'} \otimes 1 + 1 \otimes \nabla_D$. Symmetry ???

In fact, Morita equivalence of spectral triples is not symmetric.

 $\begin{array}{c} \text{Spectral triples}\\ \theta\text{-deformations}\\ \text{Morita equivalences}\\ \text{Morita equivalence of}\theta\text{-deformations}\\ \text{Conclusions} \end{array}$

C*-algebras Spectral triples Dirac operator Equivalence relation

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?

Check conditions:

Reflexivity Bimodule algebra itself, connection the identity. Transitivity Bimodule $\mathcal{F} \otimes_{\mathcal{A}'} \mathcal{E}$, connection $\nabla_{D'} \otimes 1 + 1 \otimes \nabla_D$. Symmetry ???

In fact, Morita equivalence of spectral triples is *not* symmetric. Well-known counterexample: finite spectral triples. There (A, \mathcal{H}, D) is Morita equivalent to $(A, \mathcal{H}, 0)$.

イロト イヨト イヨト

Morita equivalences of nc-tori Trivial deformations Dirac operator

Morita equivalences of noncommutative tori

Can show symmetry of Morita equivalence in a special case: "trivial $\theta\text{-deformations"}.$

Based on Morita equivalence of smooth noncommutative tori $C(\mathbb{T}_{\theta}^{n})$ by Rieffel& Schwarz (1999) and Han-Feng Li (2001).

Morita equivalences of nc-tori Trivial deformations Dirac operator

Morita equivalences of noncommutative tori

Can show symmetry of Morita equivalence in a special case: "trivial θ -deformations".

Based on Morita equivalence of smooth noncommutative tori $C(\mathbb{T}_{\theta}^{n})$ by Rieffel& Schwarz (1999) and Han-Feng Li (2001). When θ "irrational enough": group of Morita equivalences

generated by 3 types of elements.

Two of them are isomorphisms, "classical".

< ロ > < 同 > < 三 > < 三 >

Morita equivalences of nc-tori Trivial deformations Dirac operator

Morita equivalences of noncommutative tori

Can show symmetry of Morita equivalence in a special case: "trivial θ -deformations".

Based on Morita equivalence of smooth noncommutative tori $C(\mathbb{T}_{\theta}^{n})$ by Rieffel& Schwarz (1999) and Han-Feng Li (2001).

When θ "irrational enough": group of Morita equivalences generated by 3 types of elements.

Two of them are isomorphisms, "classical".

Interesting new equivalence σ_2 , which is for noncommutative 2-tori:

$$\sigma_2\begin{pmatrix} 0 & \theta \\ -\theta & 0 \end{pmatrix}) = \begin{pmatrix} 0 & -\frac{1}{\theta} \\ \frac{1}{\theta} & 0 \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Morita equivalences of nc-tori Trivial deformations Dirac operator

Trivial deformations

Trivial θ -deformation: strong connection for $U(\mathbb{T}^2)$ -coaction generated by 1 generator: $a_k = U_k a_0$, where $U_k^* = U_{-k} = U_k^{-1}$, and A_0 unital commutative.

Morita equivalences of nc-tori Trivial deformations Dirac operator

Trivial deformations

Trivial θ -deformation: strong connection for $U(\mathbb{T}^2)$ -coaction generated by 1 generator: $a_k = U_k a_0$, where $U_k^* = U_{-k} = U_k^{-1}$, and A_0 unital commutative. Equivalence bimodule for σ_2 is $\mathcal{S}(\mathbb{R}) \otimes A_0$, Schwartz functions (rapidly going to zero).

Morita equivalences of nc-tori Trivial deformations Dirac operator

Trivial deformations

Trivial θ -deformation: strong connection for $U(\mathbb{T}^2)$ -coaction generated by 1 generator: $a_k = U_k a_0$, where $U_k^* = U_{-k} = U_k^{-1}$, and A_0 unital commutative. Equivalence bimodule for σ_2 is $\mathcal{S}(\mathbb{R}) \otimes A_0$, Schwartz functions

(rapidly going to zero). Right action of $U_k a_0$ on $f(t) \otimes b_0$: $e^{2\pi i t \theta k_1} f(t + k_2) \otimes b_0 a_0$.

Morita equivalences of nc-tori Trivial deformations Dirac operator

Trivial deformations

Trivial θ -deformation: strong connection for $U(\mathbb{T}^2)$ -coaction generated by 1 generator: $a_k = U_k a_0$, where $U_k^* = U_{-k} = U_k^{-1}$, and A_0 unital commutative.

Equivalence bimodule for σ_2 is $\mathcal{S}(\mathbb{R}) \otimes A_0$, Schwartz functions (rapidly going to zero).

Right action of $U_k a_0$ on $f(t) \otimes b_0$: $e^{2\pi i t \theta k_1} f(t + k_2) \otimes b_0 a_0$. Left action of $U'_k a_0$ on $f(t) \otimes b_0$: $e^{-2\pi i k_1 t} f(t + \frac{k_2}{\theta}) \otimes a_0 b_0$.

Morita equivalences of nc-tori Trivial deformations Dirac operator

Trivial deformations

Trivial θ -deformation: strong connection for $U(\mathbb{T}^2)$ -coaction generated by 1 generator: $a_k = U_k a_0$, where $U_k^* = U_{-k} = U_k^{-1}$, and A_0 unital commutative.

Equivalence bimodule for σ_2 is $\mathcal{S}(\mathbb{R}) \otimes A_0$, Schwartz functions (rapidly going to zero).

Right action of $U_k a_0$ on $f(t) \otimes b_0$: $e^{2\pi i t \theta k_1} f(t + k_2) \otimes b_0 a_0$. Left action of $U'_k a_0$ on $f(t) \otimes b_0$: $e^{-2\pi i k_1 t} f(t + \frac{k_2}{\theta}) \otimes a_0 b_0$. Also works (slightly modified) if A_0 is deformed by a cocycle deformation (for example, A_0 is a noncommutative torus itself).

化口石 化晶石 化晶石 化晶石

Morita equivalences of nc-tori Trivial deformations Dirac operator

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ -deformations is a symmetric relation.

Proof.

• Leibniz rule: $\nabla_{D_v}(ea) = \nabla_{D_v}(e)a + e \otimes [D_v, a].$

Da A

Morita equivalences of nc-tori Trivial deformations Dirac operator

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ -deformations is a symmetric relation.

- Leibniz rule: $\nabla_{D_v}(ea) = \nabla_{D_v}(e)a + e \otimes [D_v, a].$
- Rewrite as: $(\nabla_{D_v}(ea) \nabla_{D_v}(e)a) \otimes v := e \otimes [D_v, a]v$.

Morita equivalences of nc-tori Trivial deformations Dirac operator

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ -deformations is a symmetric relation.

- Leibniz rule: $\nabla_{D_v}(ea) = \nabla_{D_v}(e)a + e \otimes [D_v, a].$
- Rewrite as: $(\nabla_{D_v}(ea) \nabla_{D_v}(e)a) \otimes v := e \otimes [D_v, a]v$.
- Also: $[D'_v, b]e \otimes v := [\nabla_{D_v}, b]e \otimes v, \ b \in \mathcal{B}.$

Morita equivalences of nc-tori Trivial deformations Dirac operator

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ -deformations is a symmetric relation.

- Leibniz rule: $\nabla_{D_v}(ea) = \nabla_{D_v}(e)a + e \otimes [D_v, a].$
- Rewrite as: $(\nabla_{D_v}(ea) \nabla_{D_v}(e)a) \otimes v := e \otimes [D_v, a]v$.
- Also: $[D'_{v}, b]e \otimes v := [\nabla_{D_{v}}, b]e \otimes v, b \in \mathcal{B}.$
- Can calculate D'_{ν} up to components commuting with action of algebra \mathcal{A} and Morita equivalent algebra \mathcal{B} on bimodule \mathcal{E} .

Morita equivalences of nc-tori Trivial deformations Dirac operator

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ -deformations is a symmetric relation.

- Leibniz rule: $\nabla_{D_v}(ea) = \nabla_{D_v}(e)a + e \otimes [D_v, a].$
- Rewrite as: $(\nabla_{D_v}(ea) \nabla_{D_v}(e)a) \otimes v := e \otimes [D_v, a]v$.
- Also: $[D'_{v}, b]e \otimes v := [\nabla_{D_{v}}, b]e \otimes v, b \in \mathcal{B}.$
- Can calculate D'_{ν} up to components commuting with action of algebra \mathcal{A} and Morita equivalent algebra \mathcal{B} on bimodule \mathcal{E} .
- Space of connections is free module over \mathcal{A} (Clifford algebra)

Morita equivalences of nc-tori Trivial deformations Dirac operator

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ -deformations is a symmetric relation.

- Leibniz rule: $\nabla_{D_v}(ea) = \nabla_{D_v}(e)a + e \otimes [D_v, a].$
- Rewrite as: $(\nabla_{D_v}(ea) \nabla_{D_v}(e)a) \otimes v := e \otimes [D_v, a]v$.
- Also: $[D'_v, b]e \otimes v := [\nabla_{D_v}, b]e \otimes v$, $b \in \mathcal{B}$.
- Can calculate D'_{ν} up to components commuting with action of algebra \mathcal{A} and Morita equivalent algebra \mathcal{B} on bimodule \mathcal{E} .
- Space of connections is free module over \mathcal{A} (Clifford algebra)
- Invariance under torus action: D'_{v} is uniquely determined.

Morita equivalences of nc-tori Trivial deformations Dirac operator

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ -deformations is a symmetric relation.

- Leibniz rule: $\nabla_{D_v}(ea) = \nabla_{D_v}(e)a + e \otimes [D_v, a].$
- Rewrite as: $(\nabla_{D_v}(ea) \nabla_{D_v}(e)a) \otimes v := e \otimes [D_v, a]v$.
- Also: $[D'_v, b]e \otimes v := [\nabla_{D_v}, b]e \otimes v$, $b \in \mathcal{B}$.
- Can calculate D'_{ν} up to components commuting with action of algebra \mathcal{A} and Morita equivalent algebra \mathcal{B} on bimodule \mathcal{E} .
- Space of connections is free module over \mathcal{A} (Clifford algebra)
- Invariance under torus action: D'_{v} is uniquely determined.
- D_h unchanged, explicit formula for D'_v .

Morita equivalences of nc-tori Trivial deformations Dirac operator

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ -deformations is a symmetric relation.

- Leibniz rule: $\nabla_{D_v}(ea) = \nabla_{D_v}(e)a + e \otimes [D_v, a].$
- Rewrite as: $(\nabla_{D_v}(ea) \nabla_{D_v}(e)a) \otimes v := e \otimes [D_v, a]v$.
- Also: $[D'_v, b]e \otimes v := [\nabla_{D_v}, b]e \otimes v$, $b \in \mathcal{B}$.
- Can calculate D'_{ν} up to components commuting with action of algebra \mathcal{A} and Morita equivalent algebra \mathcal{B} on bimodule \mathcal{E} .
- Space of connections is free module over \mathcal{A} (Clifford algebra)
- Invariance under torus action: D'_{v} is uniquely determined.
- D_h unchanged, explicit formula for D'_v .
- Applying σ_2 twice gives back D_v .

Conclusions and outlook

• Can show that, at least restricted to the equivariant setting, Morita equivalences of spectral triples are invertible.

イロト イボト イヨト イヨト

DQ P

Conclusions and outlook

- Can show that, at least restricted to the equivariant setting, Morita equivalences of spectral triples are invertible.
- Only works so far for trivial θ -deformations: no S_{θ}^{n} , etc.

Conclusions and outlook

- Can show that, at least restricted to the equivariant setting, Morita equivalences of spectral triples are invertible.
- Only works so far for trivial θ -deformations: no S_{θ}^{n} , etc.
- More general fibrations, based on the strong connection?

Conclusions and outlook

- Can show that, at least restricted to the equivariant setting, Morita equivalences of spectral triples are invertible.
- Only works so far for trivial θ -deformations: no S_{θ}^{n} , etc.
- More general fibrations, based on the strong connection?
- Is there a more general principle at work?