Morita equivalences of torus equivariant spectral triples

Jan Jitse Venselaar
California Institute of Technology

10/27/2013

Definitions

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is composed of the following elements:

Definitions

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is composed of the following elements:

- \mathcal{A} : pre- C^{*}-algebra.

Definitions

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is composed of the following elements:

- \mathcal{A} : pre- C^{*}-algebra.
- \mathcal{H} : Hilbert space on which the algebra \mathcal{A} has a representation π as bounded operators.

Definitions

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is composed of the following elements:

- \mathcal{A} : pre- C^{*}-algebra.
- \mathcal{H} : Hilbert space on which the algebra \mathcal{A} has a representation π as bounded operators.
- D : the Dirac operator, an unbounded operator on \mathcal{H} with compact resolvent.

Definitions

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is composed of the following elements:

- \mathcal{A} : pre- C^{*}-algebra.
- \mathcal{H} : Hilbert space on which the algebra \mathcal{A} has a representation π as bounded operators.
- D: the Dirac operator, an unbounded operator on \mathcal{H} with compact resolvent.
- J : the reality operator, an antilinear isometry acting on \mathcal{H}. J maps $\pi(\mathcal{A})$ to opposite representation $\pi^{\circ}(\mathcal{A})$, commuting with $\pi(\mathcal{A})$, and opposite order of multiplication: $a^{\circ}=J a^{*} J^{\dagger}$.

Definitions

A real spectral triple $(\mathcal{A}, \mathcal{H}, D, J)$ is composed of the following elements:

- \mathcal{A} : pre- C^{*}-algebra.
- \mathcal{H} : Hilbert space on which the algebra \mathcal{A} has a representation π as bounded operators.
- D: the Dirac operator, an unbounded operator on \mathcal{H} with compact resolvent.
- J : the reality operator, an antilinear isometry acting on \mathcal{H}. J maps $\pi(\mathcal{A})$ to opposite representation $\pi^{\circ}(\mathcal{A})$, commuting with $\pi(\mathcal{A})$, and opposite order of multiplication: $a^{\circ}=J a^{*} J^{\dagger}$.

Some conditions

Some of the conditions (not all of them):

- Lipschitz continuity: $[D, a]$ bounded $\forall a \in \mathcal{A}$.
- First order condition: $\left[[D, a], J b^{*} J^{-1}\right]=0 \forall a, b \in \mathcal{A}$.
- Smoothness: $\mathcal{A},[D, \mathcal{A}] \subset \bigcap \operatorname{Dom} \delta^{k}, \delta(T)=[|D|, T]$.
- Spectral dimension: k-th eigenvalue of $|D|^{-1}$, ordered from big to small, is of order $\mathcal{O}\left(k^{-d}\right)$ for an integer d.
- Finiteness: $\mathcal{H}^{\infty}:=\bigcap$ Dom D^{k} is f.g. projective over \mathcal{A}.

Some conditions

Some of the conditions (not all of them):

- Lipschitz continuity: $[D, a]$ bounded $\forall a \in \mathcal{A}$.
- First order condition: $\left[[D, a], J b^{*} J^{-1}\right]=0 \forall a, b \in \mathcal{A}$.
- Smoothness: $\mathcal{A},[D, \mathcal{A}] \subset \bigcap \operatorname{Dom} \delta^{k}, \delta(T)=[|D|, T]$.
- Spectral dimension: k-th eigenvalue of $|D|^{-1}$, ordered from big to small, is of order $\mathcal{O}\left(k^{-d}\right)$ for an integer d.
- Finiteness: $\mathcal{H}^{\infty}:=\bigcap$ Dom D^{k} is f.g. projective over \mathcal{A}.

Canonical example is a spin structure on a manifold M, with spin Dirac operator D.

θ-deformations

Rieffel: Given a pre- C^{*}-algebra \mathcal{A} with smooth torus action $\sigma: \mathbb{T}^{2} \hookrightarrow \operatorname{Aut}(\mathcal{A})$, can deform the algebra along the torus action
θ-deformations Coactions

θ-deformations

Rieffel: Given a pre- C^{*}-algebra \mathcal{A} with smooth torus action $\sigma: \mathbb{T}^{2} \hookrightarrow \operatorname{Aut}(\mathcal{A})$, can deform the algebra along the torus action Yamashita: $\mathcal{A}^{(\theta)} \simeq\left(C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right) \otimes_{\min } A\right)^{\gamma^{-1} \otimes \sigma}$, with γ the obvious torus action on $\left(C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right)\right)$
θ-deformations

θ-deformations

Rieffel: Given a pre- C^{*}-algebra \mathcal{A} with smooth torus action $\sigma: \mathbb{T}^{2} \hookrightarrow \operatorname{Aut}(\mathcal{A})$, can deform the algebra along the torus action Yamashita: $\mathcal{A}^{(\theta)} \simeq\left(C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right) \otimes_{\min } A\right)^{\gamma^{-1} \otimes \sigma}$, with γ the obvious torus action on $\left(C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right)\right)$
Have a decomposition $\mathcal{A}^{(\theta)}=\bigoplus_{k \in \mathbb{Z}^{n}} \mathcal{A}_{k}^{(\theta)}$, where

$$
\mathcal{A}_{k}^{(\theta)}:=\left\{a \in \mathcal{A}_{k}^{\theta)} \mid \sigma_{t}(a)=e^{2 \pi i k \cdot t} a\right\} .
$$

θ-deformations

Rieffel: Given a pre- C^{*}-algebra \mathcal{A} with smooth torus action $\sigma: \mathbb{T}^{2} \hookrightarrow \operatorname{Aut}(\mathcal{A})$, can deform the algebra along the torus action Yamashita: $\mathcal{A}^{(\theta)} \simeq\left(C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right) \otimes_{\min } A\right)^{\gamma^{-1} \otimes \sigma}$, with γ the obvious torus action on $\left(C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right)\right)$
Have a decomposition $\mathcal{A}^{(\theta)}=\bigoplus_{k \in \mathbb{Z}^{n}} \mathcal{A}_{k}^{(\theta)}$, where

$$
\mathcal{A}_{k}^{(\theta)}:=\left\{a \in \mathcal{A}_{k}^{\theta)} \mid \sigma_{t}(a)=e^{2 \pi i k \cdot t} a\right\} .
$$

Isometric torus action: $\sigma_{t}(D)=D$.
Compatibility with spin structure: if $\sigma_{t}(T)=U_{t} T U_{t}^{-1}$,
$U_{t} J=J U_{-t}$.

Coactions

Now slight detour to coactions. Algebra \mathcal{A}, Hopf algebra H.
Continuous coaction $\rho: \mathcal{A} \rightarrow \mathcal{A} \otimes H$:

- ρ is injective
- ρ is a comodule structure (obvious routes from A to $A \otimes H \otimes H$ commute.
- Podleś condition: $\rho(\mathcal{A})(1 \otimes H)=\mathcal{A} \otimes H$.

Coactions

Now slight detour to coactions. Algebra \mathcal{A}, Hopf algebra H.
Continuous coaction $\rho: \mathcal{A} \rightarrow \mathcal{A} \otimes H$:

- ρ is injective
- ρ is a comodule structure (obvious routes from A to $A \otimes H \otimes H$ commute.
- Podleś condition: $\rho(\mathcal{A})(1 \otimes H)=\mathcal{A} \otimes H$.

For \mathbb{T}^{n}-action, any smooth action can be translated to continuous coaction: $\sigma_{t}(a)=e^{2 \pi i k \cdot t} a \Rightarrow \rho(a)=a \otimes u^{k}$.

Strong connections

Because of the results of Dapbrowski, Gosse and Hajac, a right H-comodule algebra A is principal if and only if there exists a strong connection, i.e. there exists a map $\omega: H \rightarrow A \otimes H$ such that:

$$
\begin{aligned}
\omega(1) & =1 \otimes 1 \\
\mu \circ \omega & =\eta \circ \epsilon \\
(\omega \otimes \mathrm{id}) \circ \Delta & =(\mathrm{id} \otimes \rho) \circ \omega \\
(S \otimes \omega) \circ \Delta & =(\sigma \otimes \mathrm{id}) \circ(\rho \otimes \mathrm{id}) \circ \omega
\end{aligned}
$$

Flip $\sigma: A \otimes H \rightarrow H \otimes A$
Algebra multiplication $\mu: A \otimes A \rightarrow A$.

Strong connections II

Lemma

An algebra A, with coaction $\rho: A \rightarrow A \otimes U\left(\mathbb{T}^{n}\right)$, has a strong connection if, for each $1 \leq j \leq n$, there exists elements $\sum_{i} a_{i} \otimes b_{i}$, and $\sum_{i} b_{i}^{\prime} \otimes a_{i}^{\prime}$ such that $\sum a_{i} b_{i}=\sum b_{i}^{\prime} a_{i}^{\prime}=1, \rho\left(a_{i}\right)=a_{i} \otimes \mathfrak{t}_{j}^{-1}$, $\rho\left(a_{i}^{\prime}\right)=a_{i}^{\prime} \otimes \mathfrak{t}_{j}^{-1}, \rho\left(b_{i}\right)=b_{i} \otimes \mathfrak{t}_{j}$, and $\rho\left(b_{i}^{\prime}\right)=b_{i}^{\prime} \otimes \mathfrak{t}_{j}$.

Strong connections II

Lemma

An algebra A, with coaction $\rho: A \rightarrow A \otimes U\left(\mathbb{T}^{n}\right)$, has a strong connection if, for each $1 \leq j \leq n$, there exists elements $\sum_{i} a_{i} \otimes b_{i}$, and $\sum_{i} b_{i}^{\prime} \otimes a_{i}^{\prime}$ such that $\sum a_{i} b_{i}=\sum b_{i}^{\prime} a_{i}^{\prime}=1, \rho\left(a_{i}\right)=a_{i} \otimes \mathfrak{t}_{j}^{-1}$, $\rho\left(a_{i}^{\prime}\right)=a_{i}^{\prime} \otimes \mathfrak{t}_{j}^{-1}, \rho\left(b_{i}\right)=b_{i} \otimes \mathfrak{t}_{j}$, and $\rho\left(b_{i}^{\prime}\right)=b_{i}^{\prime} \otimes \mathfrak{t}_{j}$.

Proof.

Define strong connection recursively: $\omega(1)=1 \otimes 1$,

$$
\omega\left(u_{j}^{n}\right)=\sum a_{i} \omega\left(u_{j}^{n}\right) b_{i}
$$

Strong connections II

Lemma

An algebra A, with coaction $\rho: A \rightarrow A \otimes U\left(\mathbb{T}^{n}\right)$, has a strong connection if, for each $1 \leq j \leq n$, there exists elements $\sum_{i} a_{i} \otimes b_{i}$, and $\sum_{i} b_{i}^{\prime} \otimes a_{i}^{\prime}$ such that $\sum a_{i} b_{i}=\sum b_{i}^{\prime} a_{i}^{\prime}=1, \rho\left(a_{i}\right)=a_{i} \otimes \mathfrak{t}_{j}^{-1}$, $\rho\left(a_{i}^{\prime}\right)=a_{i}^{\prime} \otimes \mathfrak{t}_{j}^{-1}, \rho\left(b_{i}\right)=b_{i} \otimes \mathfrak{t}_{j}$, and $\rho\left(b_{i}^{\prime}\right)=b_{i}^{\prime} \otimes \mathfrak{t}_{j}$.

Proof.

Define strong connection recursively: $\omega(1)=1 \otimes 1$,

$$
\omega\left(u_{j}^{n}\right)=\sum a_{i} \omega\left(u_{j}^{n}\right) b_{i} .
$$

Example: $S_{\theta}^{2 n+1}$ is a \mathbb{T}^{1} fibration over $S_{\theta}^{2 n}$:
$\alpha_{i} \mapsto \alpha_{i} \otimes u . \sum \alpha_{i} \alpha_{i}^{*}=1$

Spin structures on principal fibrations

Now assume $\left(\mathcal{A}_{0}, \mathcal{H}_{0}, D_{h}, J_{0}\right)$ is a real spectral triple, of spectral dimension d.
Then $\left(\mathcal{A}, \mathcal{H}, D_{h}+D_{v}+Z, J\right)$ is a real spectral triple, with [D_{v}, a_{0}] $=0$, and $J \mathcal{H}_{k}=\mathcal{H}_{-k}, Z$ commuting with algebra (isometric fibers).

Spin structures on principal fibrations

Now assume $\left(\mathcal{A}_{0}, \mathcal{H}_{0}, D_{h}, J_{0}\right)$ is a real spectral triple, of spectral dimension d.
Then $\left(\mathcal{A}, \mathcal{H}, D_{h}+D_{v}+Z, J\right)$ is a real spectral triple, with [D_{v}, a_{0}] $=0$, and $J \mathcal{H}_{k}=\mathcal{H}_{-k}, Z$ commuting with algebra (isometric fibers).
First order condition $\left(\left[[D, a], J b J^{-1}\right]=0\right)+$ strong connection + compact resolvent ensures that $D_{v} \xi_{k}=\sum_{j}\left(\tau_{j} \cdot k\right) A_{j} \xi_{k}$, with A_{j} generator of n-dimensional Clifford algebra, τ_{j} basis of \mathbb{R}^{n}. Gives spectral triple of spectral dimension $d+n$.

Spectral triples
θ-deformations

Conclusions

C*-algebras
Spectral triples
Dirac operator
Equivalence relation

Morita equivalences

Setting for Morita equivalence of C^{*}-algebras: Hilbert C^{*}-modules.

Spectral triples
θ-deformations

Conclusions

Morita equivalences

Setting for Morita equivalence of C^{*}-algebras: Hilbert C^{*}-modules. Generalization of Hilbert spaces to a complete space with a C^{*}-algebra valued inner product.

Morita equivalences

Setting for Morita equivalence of C^{*}-algebras: Hilbert C^{*}-modules. Generalization of Hilbert spaces to a complete space with a C^{*}-algebra valued inner product.
Two C^{*}-algebras \mathcal{A} and \mathcal{B} are strongly Morita equivalent if there exists a $(\mathcal{A}, \mathcal{B})$-equivalence bimodule ${ }_{\mathcal{B}} \mathcal{E}_{\mathcal{A}}$, with $\mathcal{B}=\operatorname{End}_{\mathcal{A}}(\mathcal{E})$ such that:

- $\langle x, y\rangle_{\mathcal{B}} z=x\langle y, z\rangle_{\mathcal{A}}$ for all $x, y, z \in \mathcal{E}$.
- $\langle\mathcal{E}, \mathcal{E}\rangle_{\mathcal{A}}$ spans a dense subset of $\mathcal{A},\langle\mathcal{E}, \mathcal{E}\rangle_{\mathcal{B}}$ of \mathcal{B}.

Morita equivalences of spectral triples

Idea: Morita equivalent C^{*}-algebras contain same topological data (representation theory).
Same geometry? Need Morita equivalence of spectral triples $(\mathcal{A}, \mathcal{H}, D, J)$ and $\left(\mathcal{A}^{\prime}, \mathcal{H}^{\prime}, D^{\prime}, J^{\prime}\right)$.

C* -algebras

Morita equivalences of spectral triples

Idea: Morita equivalent C^{*}-algebras contain same topological data (representation theory).
Same geometry? Need Morita equivalence of spectral triples $(\mathcal{A}, \mathcal{H}, D, J)$ and $\left(\mathcal{A}^{\prime}, \mathcal{H}^{\prime}, D^{\prime}, J^{\prime}\right)$.

- Hilbert space: $\mathcal{H}^{\prime}=\mathcal{E} \otimes_{\mathcal{A}} \mathcal{H} \otimes_{\mathcal{A A}^{-1}} \overline{\mathcal{E}}$.
- Reality operator: $J^{\prime}(e \otimes v \otimes \bar{f})=f \otimes J v \otimes \bar{e}$.

Spectral triples
θ-deformations Morita equivalences

Conclusions

C*-algebras Spectral triples
Dirac operator
Equivalence relation

Dirac operator

Need extra data: connections.

Dirac operator

Need extra data: connections.
Connection is an operator $\nabla_{D}: \mathcal{E} \rightarrow \mathcal{E} \otimes \Omega_{D}^{1}$ that satisfies:

- Leibniz rule: $\nabla_{D}(e a)=\nabla_{D}(e) a+e \otimes[D, a]$.
- Self-adjointness: $\left\langle e, \nabla_{D} f\right\rangle-\left\langle\nabla_{D} e, f\right\rangle=\left[D,\langle e, f\rangle_{\mathcal{A}}\right]$.

The space Ω_{D}^{1} is the space of one forms: \mathcal{A}-bimodule spanned by $\left\{\sum_{i} a_{i}\left[D, b_{i}\right] \mid a_{i}, b_{i} \in \mathcal{A}\right\}$ where the sum is finite.

Dirac operator

Need extra data: connections.
Connection is an operator $\nabla_{D}: \mathcal{E} \rightarrow \mathcal{E} \otimes \Omega_{D}^{1}$ that satisfies:

- Leibniz rule: $\nabla_{D}(e a)=\nabla_{D}(e) a+e \otimes[D, a]$.
- Self-adjointness: $\left\langle e, \nabla_{D} f\right\rangle-\left\langle\nabla_{D} e, f\right\rangle=\left[D,\langle e, f\rangle_{\mathcal{A}}\right]$.

The space Ω_{D}^{1} is the space of one forms: \mathcal{A}-bimodule spanned by $\left\{\sum_{i} a_{i}\left[D, b_{i}\right] \mid a_{i}, b_{i} \in \mathcal{A}\right\}$ where the sum is finite.

$$
D^{\prime}(e \otimes v \otimes \bar{f})=\nabla_{D}(e) v \otimes \bar{f}+e \otimes D v \otimes \bar{f}+e \otimes v \overline{\left(\nabla_{D} f\right)}
$$

Spectral triples
θ-deformations

Conclusions

C*-algebras Spectral triples
Dirac operator
Equivalence relation

Morita self-equivalences

Examples of Morita equivalences:

- Bimodule: algebra \mathcal{A} itself. Morita self-equivalences.

C*-algebras

Morita self-equivalences

Examples of Morita equivalences:

- Bimodule: algebra \mathcal{A} itself. Morita self-equivalences.
- Dirac operator: $D^{\prime}=D+E \pm+J E J^{-1}$ with $E=\sum_{j} a_{j}\left[D, b_{j}\right]$, self-adjoint, sign depends on dimension.

C*-algebras

Morita self-equivalences

Examples of Morita equivalences:

- Bimodule: algebra \mathcal{A} itself. Morita self-equivalences.
- Dirac operator: $D^{\prime}=D+E \pm+J E J^{-1}$ with $E=\sum_{j} a_{j}\left[D, b_{j}\right]$, self-adjoint, sign depends on dimension.
- Hilbert space and J unchanged.

C*-algebras

Morita self-equivalences

Examples of Morita equivalences:

- Bimodule: algebra \mathcal{A} itself. Morita self-equivalences.
- Dirac operator: $D^{\prime}=D+E \pm+J E J^{-1}$ with $E=\sum_{j} a_{j}\left[D, b_{j}\right]$, self-adjoint, sign depends on dimension.
- Hilbert space and J unchanged.

C*-algebras

Morita self-equivalences

Examples of Morita equivalences:

- Bimodule: algebra \mathcal{A} itself. Morita self-equivalences.
- Dirac operator: $D^{\prime}=D+E \pm+J E J^{-1}$ with $E=\sum_{j} a_{j}\left[D, b_{j}\right]$, self-adjoint, sign depends on dimension.
- Hilbert space and J unchanged.

For \mathcal{A} commutative: D also unchanged.

Spectral triples

C*-algebras

Equivalence relation

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?
Check conditions:
Reflexivity Bimodule algebra itself, connection the identity.

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?
Check conditions:
Reflexivity Bimodule algebra itself, connection the identity.
Transitivity Bimodule $\mathcal{F} \otimes_{\mathcal{A}^{\prime}} \mathcal{E}$, connection $\nabla_{D^{\prime}} \otimes 1+1 \otimes \nabla_{D}$.

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?
Check conditions:
Reflexivity Bimodule algebra itself, connection the identity.
Transitivity Bimodule $\mathcal{F} \otimes_{\mathcal{A}^{\prime}} \mathcal{E}$, connection $\nabla_{D^{\prime}} \otimes 1+1 \otimes \nabla_{D}$.
Symmetry ???

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?
Check conditions:
Reflexivity Bimodule algebra itself, connection the identity.
Transitivity Bimodule $\mathcal{F} \otimes_{\mathcal{A}^{\prime}} \mathcal{E}$, connection $\nabla_{D^{\prime}} \otimes 1+1 \otimes \nabla_{D}$.
Symmetry ???
In fact, Morita equivalence of spectral triples is not symmetric.

Equivalence relation?

Question: is Morita equivalence of spectral triples an equivalence relation?
Check conditions:
Reflexivity Bimodule algebra itself, connection the identity.
Transitivity Bimodule $\mathcal{F} \otimes_{\mathcal{A}^{\prime}} \mathcal{E}$, connection $\nabla_{D^{\prime}} \otimes 1+1 \otimes \nabla_{D}$.
Symmetry ???
In fact, Morita equivalence of spectral triples is not symmetric. Well-known counterexample: finite spectral triples. There (A, \mathcal{H}, D) is Morita equivalent to $(A, \mathcal{H}, 0)$.

Spectral triples
θ-deformations
Morita equivalences

Morita equivalences of noncommutative tori

Can show symmetry of Morita equivalence in a special case: "trivial θ-deformations".
Based on Morita equivalence of smooth noncommutative tori $C\left(\mathbb{T}_{\theta}^{n}\right)$ by Rieffel\& Schwarz (1999) and Han-Feng Li (2001).

Morita equivalences of noncommutative tori

Can show symmetry of Morita equivalence in a special case: "trivial θ-deformations".
Based on Morita equivalence of smooth noncommutative tori $C\left(\mathbb{T}_{\theta}^{n}\right)$ by Rieffel\& Schwarz (1999) and Han-Feng Li (2001). When θ "irrational enough": group of Morita equivalences generated by 3 types of elements. Two of them are isomorphisms, "classical".

Morita equivalences of noncommutative tori

Can show symmetry of Morita equivalence in a special case: "trivial θ-deformations".
Based on Morita equivalence of smooth noncommutative tori $C\left(\mathbb{T}_{\theta}^{n}\right)$ by Rieffel\& Schwarz (1999) and Han-Feng Li (2001). When θ "irrational enough": group of Morita equivalences generated by 3 types of elements. Two of them are isomorphisms, "classical". Interesting new equivalence σ_{2}, which is for noncommutative 2-tori:

$$
\sigma_{2}\left(\left(\begin{array}{cc}
0 & \theta \\
-\theta & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & -\frac{1}{\theta} \\
\frac{1}{\theta} & 0
\end{array}\right) .
$$

Trivial deformations

Trivial θ-deformation: strong connection for $U\left(\mathbb{T}^{2}\right)$-coaction generated by 1 generator: $a_{k}=U_{k} a_{0}$, where $U_{k}^{*}=U_{-k}=U_{k}^{-1}$, and A_{0} unital commutative.

Trivial deformations

Trivial θ-deformation: strong connection for $U\left(\mathbb{T}^{2}\right)$-coaction generated by 1 generator: $a_{k}=U_{k} a_{0}$, where $U_{k}^{*}=U_{-k}=U_{k}^{-1}$, and A_{0} unital commutative.
Equivalence bimodule for σ_{2} is $\mathcal{S}(\mathbb{R}) \otimes A_{0}$, Schwartz functions (rapidly going to zero).

Trivial deformations

Trivial θ-deformation: strong connection for $U\left(\mathbb{T}^{2}\right)$-coaction generated by 1 generator: $a_{k}=U_{k} a_{0}$, where $U_{k}^{*}=U_{-k}=U_{k}^{-1}$, and A_{0} unital commutative.
Equivalence bimodule for σ_{2} is $\mathcal{S}(\mathbb{R}) \otimes A_{0}$, Schwartz functions (rapidly going to zero).
Right action of $U_{k} a_{0}$ on $f(t) \otimes b_{0}: e^{2 \pi i t \theta k_{1}} f\left(t+k_{2}\right) \otimes b_{0} a_{0}$.

Trivial deformations

Trivial θ-deformation: strong connection for $U\left(\mathbb{T}^{2}\right)$-coaction generated by 1 generator: $a_{k}=U_{k} a_{0}$, where $U_{k}^{*}=U_{-k}=U_{k}^{-1}$, and A_{0} unital commutative.
Equivalence bimodule for σ_{2} is $\mathcal{S}(\mathbb{R}) \otimes A_{0}$, Schwartz functions (rapidly going to zero).
Right action of $U_{k} a_{0}$ on $f(t) \otimes b_{0}: e^{2 \pi i t \theta k_{1}} f\left(t+k_{2}\right) \otimes b_{0} a_{0}$.
Left action of $U_{k}^{\prime} a_{0}$ on $f(t) \otimes b_{0}: e^{-2 \pi i k_{1} t} f\left(t+\frac{k_{2}}{\theta}\right) \otimes a_{0} b_{0}$.

Trivial deformations

Trivial θ-deformation: strong connection for $U\left(\mathbb{T}^{2}\right)$-coaction generated by 1 generator: $a_{k}=U_{k} a_{0}$, where $U_{k}^{*}=U_{-k}=U_{k}^{-1}$, and A_{0} unital commutative.
Equivalence bimodule for σ_{2} is $\mathcal{S}(\mathbb{R}) \otimes A_{0}$, Schwartz functions (rapidly going to zero).
Right action of $U_{k} a_{0}$ on $f(t) \otimes b_{0}: e^{2 \pi i t \theta k_{1}} f\left(t+k_{2}\right) \otimes b_{0} a_{0}$. Left action of $U_{k}^{\prime} a_{0}$ on $f(t) \otimes b_{0}: e^{-2 \pi i k_{1} t} f\left(t+\frac{k_{2}}{\theta}\right) \otimes a_{0} b_{0}$. Also works (slightly modified) if A_{0} is deformed by a cocycle deformation (for example, A_{0} is a noncommutative torus itself).

Morita equivalences of nc-tori
Trivial deformations
Dirac operator

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ-deformations is a symmetric relation.

Proof.

- Leibniz rule: $\nabla_{D_{v}}(e a)=\nabla_{D_{v}}(e) a+e \otimes\left[D_{v}, a\right]$.

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ-deformations is a symmetric relation.

Proof.

- Leibniz rule: $\nabla_{D_{v}}(e a)=\nabla_{D_{v}}(e) a+e \otimes\left[D_{v}, a\right]$.
- Rewrite as: $\left(\nabla_{D_{v}}(e a)-\nabla_{D_{v}}(e) a\right) \otimes v:=e \otimes\left[D_{v}, a\right] v$.

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ-deformations is a symmetric relation.

Proof.

- Leibniz rule: $\nabla_{D_{v}}(e a)=\nabla_{D_{v}}(e) a+e \otimes\left[D_{v}, a\right]$.
- Rewrite as: $\left(\nabla_{D_{v}}(e a)-\nabla_{D_{v}}(e) a\right) \otimes v:=e \otimes\left[D_{v}, a\right] v$.
- Also: $\left[D_{v}^{\prime}, b\right] e \otimes v:=\left[\nabla_{D_{v}}, b\right] e \otimes v, b \in \mathcal{B}$.

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ-deformations is a symmetric relation.

Proof.

- Leibniz rule: $\nabla_{D_{v}}(e a)=\nabla_{D_{v}}(e) a+e \otimes\left[D_{v}, a\right]$.
- Rewrite as: $\left(\nabla_{D_{v}}(e a)-\nabla_{D_{v}}(e) a\right) \otimes v:=e \otimes\left[D_{v}, a\right] v$.
- Also: $\left[D_{v}^{\prime}, b\right] e \otimes v:=\left[\nabla_{D_{v}}, b\right] e \otimes v, b \in \mathcal{B}$.
- Can calculate D_{v}^{\prime} up to components commuting with action of algebra \mathcal{A} and Morita equivalent algebra \mathcal{B} on bimodule \mathcal{E}.

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ-deformations is a symmetric relation.

Proof.

- Leibniz rule: $\nabla_{D_{v}}(e a)=\nabla_{D_{v}}(e) a+e \otimes\left[D_{v}, a\right]$.
- Rewrite as: $\left(\nabla_{D_{v}}(e a)-\nabla_{D_{v}}(e) a\right) \otimes v:=e \otimes\left[D_{v}, a\right] v$.
- Also: $\left[D_{v}^{\prime}, b\right] e \otimes v:=\left[\nabla_{D_{v}}, b\right] e \otimes v, b \in \mathcal{B}$.
- Can calculate D_{v}^{\prime} up to components commuting with action of algebra \mathcal{A} and Morita equivalent algebra \mathcal{B} on bimodule \mathcal{E}.
- Space of connections is free module over \mathcal{A} (Clifford algebra)

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ-deformations is a symmetric relation.

Proof.

- Leibniz rule: $\nabla_{D_{v}}(e a)=\nabla_{D_{v}}(e) a+e \otimes\left[D_{v}, a\right]$.
- Rewrite as: $\left(\nabla_{D_{v}}(e a)-\nabla_{D_{v}}(e) a\right) \otimes v:=e \otimes\left[D_{v}, a\right] v$.
- Also: $\left[D_{v}^{\prime}, b\right] e \otimes v:=\left[\nabla_{D_{v}}, b\right] e \otimes v, b \in \mathcal{B}$.
- Can calculate D_{v}^{\prime} up to components commuting with action of algebra \mathcal{A} and Morita equivalent algebra \mathcal{B} on bimodule \mathcal{E}.
- Space of connections is free module over \mathcal{A} (Clifford algebra)
- Invariance under torus action: D_{v}^{\prime} is uniquely determined.

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ-deformations is a symmetric relation.

Proof.

- Leibniz rule: $\nabla_{D_{v}}(e a)=\nabla_{D_{v}}(e) a+e \otimes\left[D_{v}, a\right]$.
- Rewrite as: $\left(\nabla_{D_{v}}(e a)-\nabla_{D_{v}}(e) a\right) \otimes v:=e \otimes\left[D_{v}, a\right] v$.
- Also: $\left[D_{v}^{\prime}, b\right] e \otimes v:=\left[\nabla_{D_{v}}, b\right] e \otimes v, b \in \mathcal{B}$.
- Can calculate D_{v}^{\prime} up to components commuting with action of algebra \mathcal{A} and Morita equivalent algebra \mathcal{B} on bimodule \mathcal{E}.
- Space of connections is free module over \mathcal{A} (Clifford algebra)
- Invariance under torus action: D_{v}^{\prime} is uniquely determined.
- D_{h} unchanged, explicit formula for D_{v}^{\prime}.

Calculation of Dirac operator

Theorem

Morita equivalence of trivial θ-deformations is a symmetric relation.

Proof.

- Leibniz rule: $\nabla_{D_{v}}(e a)=\nabla_{D_{v}}(e) a+e \otimes\left[D_{v}, a\right]$.
- Rewrite as: $\left(\nabla_{D_{v}}(e a)-\nabla_{D_{v}}(e) a\right) \otimes v:=e \otimes\left[D_{v}, a\right] v$.
- Also: $\left[D_{v}^{\prime}, b\right] e \otimes v:=\left[\nabla_{D_{v}}, b\right] e \otimes v, b \in \mathcal{B}$.
- Can calculate D_{v}^{\prime} up to components commuting with action of algebra \mathcal{A} and Morita equivalent algebra \mathcal{B} on bimodule \mathcal{E}.
- Space of connections is free module over \mathcal{A} (Clifford algebra)
- Invariance under torus action: D_{v}^{\prime} is uniquely determined.
- D_{h} unchanged, explicit formula for D_{v}^{\prime}.
- Applying σ_{2} twice gives back D_{v}.

Conclusions and outlook

- Can show that, at least restricted to the equivariant setting, Morita equivalences of spectral triples are invertible.

Conclusions and outlook

- Can show that, at least restricted to the equivariant setting, Morita equivalences of spectral triples are invertible.
- Only works so far for trivial θ-deformations: no S_{θ}^{n}, etc.

Conclusions and outlook

- Can show that, at least restricted to the equivariant setting, Morita equivalences of spectral triples are invertible.
- Only works so far for trivial θ-deformations: no S_{θ}^{n}, etc.
- More general fibrations, based on the strong connection?

Conclusions and outlook

- Can show that, at least restricted to the equivariant setting, Morita equivalences of spectral triples are invertible.
- Only works so far for trivial θ-deformations: no S_{θ}^{n}, etc.
- More general fibrations, based on the strong connection?
- Is there a more general principle at work?

