Localization of Matrix Factorizations

Tim Wertz
University of California, Davis

October 26, 2013

Acknowledgements

Acknowledgements

- The organizers

Acknowledgements

- The organizers
- Ilya Krishtal (Northern Illinois University)

Acknowledgements

- The organizers
- Ilya Krishtal (Northern Illinois University)
- Thomas Strohmer (UC Davis)

Acknowledgements

- The organizers
- Ilya Krishtal (Northern Illinois University)
- Thomas Strohmer (UC Davis)
- NSF, DARPA, UC Davis, Northern Illinois

Localization

Localization

"Nearsigthedness" and off-diagonal decay

Localization

"Nearsigthedness" and off-diagonal decay

- Communications channels in digital and wireless communication

Localization

"Nearsigthedness" and off-diagonal decay

- Communications channels in digital and wireless communication
- Correlation matrices in statistics

Localization

"Nearsigthedness" and off-diagonal decay

- Communications channels in digital and wireless communication
- Correlation matrices in statistics
- Approximate diagonalization of pseudodifferential operators

Localization

"Nearsigthedness" and off-diagonal decay

- Communications channels in digital and wireless communication
- Correlation matrices in statistics
- Approximate diagonalization of pseudodifferential operators
- Physics, i.e. the Anderson model

Localization

"Nearsigthedness" and off-diagonal decay

- Communications channels in digital and wireless communication
- Correlation matrices in statistics
- Approximate diagonalization of pseudodifferential operators
- Physics, i.e. the Anderson model
- Density matrices in quantum chemistry

Wiener's Lemma

Wiener's Lemma

Definition

We denote by $\mathscr{A}(\mathbb{T})$ the Banach algebra of functions with absolutely convergent Fourier series endowed with the norm

$$
\|f\|_{\mathscr{A}}=\left\|\left\{a_{k}\right\}\right\|_{\ell^{1}}=\sum_{k \in \mathbb{Z}}\left|a_{k}\right| .
$$

Wiener's Lemma

Definition

We denote by $\mathscr{A}(\mathbb{T})$ the Banach algebra of functions with absolutely convergent Fourier series endowed with the norm

$$
\|f\|_{\mathscr{A}}=\left\|\left\{a_{k}\right\}\right\|_{\ell^{1}}=\sum_{k \in \mathbb{Z}}\left|a_{k}\right| .
$$

Theorem (Wiener's Lemma, 1932)

If $f \in \mathscr{A}(\mathbb{T})$ and $f(t) \neq 0$ for all $t \in \mathbb{T}$, then $1 / f \in \mathscr{A}(\mathbb{T})$.

Wiener's Lemma and Matrices

Wiener's Lemma and Matrices

- Let $f=\sum_{k \in \mathbb{Z}} a_{k} e^{i k t} \in \mathscr{A}(\mathbb{T})$.

Wiener's Lemma and Matrices

- Let $f=\sum_{k \in \mathbb{Z}} a_{k} e^{i k t} \in \mathscr{A}(\mathbb{T})$.
- Construct a matrix $A_{f}=\left(a_{j k}\right)$ by setting $a_{j k}=a_{j-k}$.

Wiener's Lemma and Matrices

- Let $f=\sum_{k \in \mathbb{Z}} a_{k} e^{i k t} \in \mathscr{A}(\mathbb{T})$.
- Construct a matrix $A_{f}=\left(a_{j k}\right)$ by setting $a_{j k}=a_{j-k}$.
- If $|f(t)| \geq \delta>0$, then $1 / f \in \mathscr{A}$ (Wiener's Lemma).

Wiener's Lemma and Matrices

- Let $f=\sum_{k \in \mathbb{Z}} a_{k} e^{i k t} \in \mathscr{A}(\mathbb{T})$.
- Construct a matrix $A_{f}=\left(a_{j k}\right)$ by setting $a_{j k}=a_{j-k}$.
- If $|f(t)| \geq \delta>0$, then $1 / f \in \mathscr{A}$ (Wiener's Lemma).
- $\left(A_{f}\right)^{-1}=A_{1 / f}$.

Wiener's Lemma and Matrices

- Let $f=\sum_{k \in \mathbb{Z}} a_{k} e^{i k t} \in \mathscr{A}(\mathbb{T})$.
- Construct a matrix $A_{f}=\left(a_{j k}\right)$ by setting $a_{j k}=a_{j-k}$.
- If $|f(t)| \geq \delta>0$, then $1 / f \in \mathscr{A}$ (Wiener's Lemma).
- $\left(A_{f}\right)^{-1}=A_{1 / f}$.
- $\left\{a_{k}\right\} \in \ell^{1}$ means that A_{f} satisfies some off-diagonal decay condition.

Inverse-closedness

Inverse-closedness

Definition

Let $\mathscr{A} \subset \mathscr{B}$ be two Banach algebras with common identity. We say that \mathscr{A} is inverse-closed in \mathscr{B} if

$$
a \in \mathscr{A} \text { and } a^{-1} \in \mathscr{B} \Longrightarrow a^{-1} \in \mathscr{A}
$$

Inverse-closedness

Definition

Let $\mathscr{A} \subset \mathscr{B}$ be two Banach algebras with common identity. We say that \mathscr{A} is inverse-closed in \mathscr{B} if

$$
a \in \mathscr{A} \text { and } a^{-1} \in \mathscr{B} \Longrightarrow a^{-1} \in \mathscr{A}
$$

Inverse-closedness is also known as: \mathscr{A} is a spectral/local/full subalgebra of \mathscr{B}, \mathscr{A} is invariant under the holomorphic calculus in \mathscr{B}, spectral invariance.

Inverse-closedness

Definition

Let $\mathscr{A} \subset \mathscr{B}$ be two Banach algebras with common identity. We say that \mathscr{A} is inverse-closed in \mathscr{B} if

$$
a \in \mathscr{A} \text { and } a^{-1} \in \mathscr{B} \Longrightarrow a^{-1} \in \mathscr{A}
$$

Inverse-closedness is also known as: \mathscr{A} is a spectral/local/full subalgebra of \mathscr{B}, \mathscr{A} is invariant under the holomorphic calculus in \mathscr{B}, spectral invariance.

Theorem (Wiener's Lemma)

The Banach algebra of functions with absolutely convergent Fourier series, $\mathscr{A}(\mathbb{T})$ is inverse closed in the Banach algebra of continuous functions $C(\mathbb{T})$.

Decay Algebras

Decay Algebras

$$
\mathbf{M}=\left(m_{j k}\right), j, k \in \mathbb{Z}, m_{j k} \in \mathbb{C}
$$

Decay Algebras

$\mathbf{M}=\left(m_{j k}\right), j, k \in \mathbb{Z}, m_{j k} \in \mathbb{C}$.

- $\mathscr{B}_{b}:=\left\{\mathbf{M}\right.$: for some $n \in \mathbb{N}, m_{j k}=0$ when $\left.|j-k|>n\right\}$.

Decay Algebras

$\mathbf{M}=\left(m_{j k}\right), j, k \in \mathbb{Z}, m_{j k} \in \mathbb{C}$.

- $\mathscr{B}_{b}:=\left\{\mathbf{M}\right.$: for some $n \in \mathbb{N}, m_{j k}=0$ when $\left.|j-k|>n\right\}$.
- $\mathscr{B}_{c}:=\overline{\mathscr{B}_{b}}$ w.r.t. $\left\|\|_{o p}\right.$.

Decay Algebras, cont.

Decay Algebras, cont.

- $\mathscr{A}_{v}:=\left\{\mathbf{M}:\left|m_{j k}\right| \leq C v^{-1}(j-k)\right\}$.

Decay Algebras, cont.

- $\mathscr{A}_{v}:=\left\{\mathbf{M}:\left|m_{j k}\right| \leq C v^{-1}(j-k)\right\}$.
- $\mathscr{A}_{v}^{1}:=\left\{\boldsymbol{M}: \sup _{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}}\left|m_{j k}\right| v(j-k), \sup _{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}\left|m_{j k}\right| v(j-k)<\infty\right\}$

Decay Algebras, cont.

- $\mathscr{A}_{v}:=\left\{\mathbf{M}:\left|m_{j k}\right| \leq C v^{-1}(j-k)\right\}$.
- $\mathscr{A}_{v}^{1}:=\left\{\mathbf{M}: \sup _{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}}\left|m_{j k}\right| v(j-k), \sup _{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}\left|m_{j k}\right| v(j-k)<\infty\right\}$
- $\mathscr{C}_{v}:=\left\{\mathbf{M}: \sum_{j \in \mathbb{Z}} \sup _{k \in \mathbb{Z}}\left|m_{k, k-j}\right| v(j)<\infty\right\}$.

Some Algebraic Properties

Some Algebraic Properties

Definition

Let \mathscr{A} be a Banach algebra of matrices and let \mathscr{L} and $\mathscr{L}_{0}^{*}=\mathscr{A} \backslash \mathscr{L}$ be the sub-algebras of lower- and strictly-upper-triangular matrices, respectively. Then, we say that \mathscr{A} is strongly decomposable if there exists a bounded projection \mathcal{P} which maps \mathscr{A} onto \mathscr{L} parallel to \mathscr{L}_{0}^{*}. Let $\mathcal{Q}=I-\mathcal{P}$.

Some Algebraic Properties

Definition

Let \mathscr{A} be a Banach algebra of matrices and let \mathscr{L} and $\mathscr{L}_{0}^{*}=\mathscr{A} \backslash \mathscr{L}$ be the sub-algebras of lower- and strictly-upper-triangular matrices, respectively. Then, we say that \mathscr{A} is strongly decomposable if there exists a bounded projection \mathcal{P} which maps \mathscr{A} onto \mathscr{L} parallel to \mathscr{L}_{0}^{*}. Let $\mathcal{Q}=I-\mathcal{P}$.

Definition

An invertible matrix $\mathbf{A} \in \mathscr{A}$ admits a canonical factorization in \mathscr{A} if $\mathbf{A}=\mathbf{L U}$ where $\mathbf{L}, \mathbf{L}^{-1} \in \mathscr{L}$ and $\mathbf{U}, \mathbf{U}^{-1} \in \mathscr{L}^{*}$.

Abstract Harmonic Analysis

Abstract Harmonic Analysis

Definition (Fourier Series of an Operator)

Abstract Harmonic Analysis

Definition (Fourier Series of an Operator)

(1) $M(\theta): \mathbb{T} \rightarrow \ell^{2}(\mathbb{Z})$ given by $M(\theta) x(n)=\theta^{n} x(n)$.

Abstract Harmonic Analysis

Definition (Fourier Series of an Operator)

(1) $M(\theta): \mathbb{T} \rightarrow \ell^{2}(\mathbb{Z})$ given by $M(\theta) x(n)=\theta^{n} x(n)$.
(2) $f_{\mathbf{A}}(\theta):=M(\theta) \mathbf{A} M\left(\theta^{-1}\right)$.

Abstract Harmonic Analysis

Definition (Fourier Series of an Operator)

(1) $M(\theta): \mathbb{T} \rightarrow \ell^{2}(\mathbb{Z})$ given by $M(\theta) x(n)=\theta^{n} x(n)$.
(2) $f_{\mathbf{A}}(\theta):=M(\theta) \mathbf{A} M\left(\theta^{-1}\right)$.

- $f_{\mathbf{A}}(\theta) \sim \sum_{k} \theta^{k} \mathbf{A}_{k}$.

Abstract Harmonic Analysis

Definition (Fourier Series of an Operator)

(1) $M(\theta): \mathbb{T} \rightarrow \ell^{2}(\mathbb{Z})$ given by $M(\theta) x(n)=\theta^{n} x(n)$.
(2) $f_{\mathbf{A}}(\theta):=M(\theta) \mathbf{A} M\left(\theta^{-1}\right)$.

- $f_{\mathbf{A}}(\theta) \sim \sum_{k} \theta^{k} \mathbf{A}_{k}$.

Remark

(1) $\mathbf{A} \in \mathscr{B}_{c}$ if and only if f_{A} is continuous.

Abstract Harmonic Analysis

Definition (Fourier Series of an Operator)

(1) $M(\theta): \mathbb{T} \rightarrow \ell^{2}(\mathbb{Z})$ given by $M(\theta) x(n)=\theta^{n} x(n)$.
(2) $f_{\mathbf{A}}(\theta):=M(\theta) \mathbf{A} M\left(\theta^{-1}\right)$.

- $f_{\mathbf{A}}(\theta) \sim \sum_{k} \theta^{k} \mathbf{A}_{k}$.

Remark

(1) $\mathbf{A} \in \mathscr{B}_{c}$ if and only if f_{A} is continuous.
(2) $\mathbf{A} \in \mathscr{L} \cap \mathscr{B}_{c}$ if and only if f_{A} has a holomorphic extension to \mathbb{D} which is continuous in $\overline{\mathbb{D}}$.

Abstract Harmonic Analysis

Definition (Fourier Series of an Operator)

(1) $M(\theta): \mathbb{T} \rightarrow \ell^{2}(\mathbb{Z})$ given by $M(\theta) x(n)=\theta^{n} x(n)$.
(2) $f_{\mathbf{A}}(\theta):=M(\theta) \mathbf{A} M\left(\theta^{-1}\right)$.
(0) $f_{\mathbf{A}}(\theta) \sim \sum_{k} \theta^{k} \mathbf{A}_{k}$.

Remark

(1) $\mathbf{A} \in \mathscr{B}_{c}$ if and only if f_{A} is continuous.
(2) $\mathbf{A} \in \mathscr{L} \cap \mathscr{B}_{c}$ if and only if f_{A} has a holomorphic extension to \mathbb{D} which is continuous in $\overline{\mathbb{D}}$.
(0) $\mathbf{A} \in \mathscr{L}^{*} \cap \mathscr{B}_{c}$ if and only if f_{A} has a bounded holomorphic extension outside of \mathbb{D} which is continuous in $\mathbb{C} \backslash \mathbb{D}$.

Two useful results

Theorem (Baskakov, Krishtal, 2005)
Let $\mathbf{A} \in \mathscr{L} \cap \mathscr{B}_{c}$. Then $\mathbf{A}^{-1} \in \mathscr{L}$ if and only if $f_{\mathbf{A}}(z)$ is invertible for all $z \in \overline{\mathbb{D}}$.

Two useful results

Theorem (Baskakov, Krishtal, 2005)

Let $\mathbf{A} \in \mathscr{L} \cap \mathscr{B}_{c}$. Then $\mathbf{A}^{-1} \in \mathscr{L}$ if and only if $f_{\mathbf{A}}(z)$ is invertible for all $z \in \overline{\mathbb{D}}$.

Lemma (Gohberg, Laiterer, 1972)

Let $\mathscr{A} \subset \mathscr{A}_{c} \subset \mathscr{B}\left(\ell^{2}\right)$ be a strongly decomposable inverse-closed sub-algebra that satisfies $\|\mathbf{A}\|_{\mathscr{B}\left(\ell^{2}\right)} \leq C\|\mathbf{A}\|_{\mathscr{A}}$. Then, if $\|\mathbf{A}-\mathbf{I}\|_{\mathscr{B}\left(\ell^{2}\right)}<1$, \mathbf{A} admits a canonical factorization $\mathbf{A}=\mathbf{L U}$ in \mathscr{A} such that

$$
\begin{gather*}
\mathbf{L}^{-1}=\mathbf{I}-\mathcal{P} \mathbf{V}+\mathcal{P}[\mathbf{V} \mathcal{P} \mathbf{V}]-\mathcal{P}[\mathbf{V} \mathcal{P}[\mathbf{V} \mathcal{P} \mathbf{V}]]+\ldots \tag{1}\\
\mathbf{U}^{-1}=\mathbf{I}-\mathcal{Q} \mathbf{V}+\mathcal{Q}[[\mathcal{Q} \mathbf{V}] \mathbf{V}]-\mathcal{Q}[\mathcal{Q}[[\mathcal{Q} \mathbf{V}] \mathbf{V}] \mathbf{V}]+\ldots \tag{2}
\end{gather*}
$$

where $\mathbf{V}=\mathbf{A}-\mathbf{I}$ and the series converge in \mathscr{A}.

Main Result

Main Result

Theorem (Krishtal, Strohmer, W., 2013)

Let $\mathscr{A} \subset \mathscr{B}_{c} \subset \mathscr{B}\left(\ell^{2}\right)$ be an strongly decomposable inverse-closed sub-algebra that satisfies

$$
\|\mathbf{A}\|_{\mathscr{B}\left(\ell^{2}\right)} \leq C\|\mathbf{A}\|_{\mathscr{A}} .
$$

Then, if \mathbf{A} admits a canonical factorization $\mathbf{A}=\mathbf{L U}$ in \mathscr{B}_{c}, we have $\mathbf{L}, \mathbf{U} \in \mathscr{A}$.

Idea of the proof

Idea of the proof

(1) Define the holomorphic extensions

$$
f_{\mathrm{L}}(z)=\sum_{k} z^{k} \mathbf{L}_{k}, z \in \mathbb{D} \quad \text { and } \quad f_{\mathbf{U}}(z)=\sum_{k} z^{k} \mathbf{U}_{k}, z \in \mathbb{C} \backslash \overline{\mathbb{D}}
$$

Idea of the proof

(1) Define the holomorphic extensions

$$
f_{\mathrm{L}}(z)=\sum_{k} z^{k} \mathbf{L}_{k}, z \in \mathbb{D} \quad \text { and } \quad f_{\mathbf{U}}(z)=\sum_{k} z^{k} \mathbf{U}_{k}, z \in \mathbb{C} \backslash \overline{\mathbb{D}}
$$

(2) Choose $\varepsilon \in(0,1)$ such that $\left\|\left[f_{\mathbf{L}}(\varepsilon)\right]^{-1} \mathbf{L U}\left[f_{\mathbf{U}}(1 / \varepsilon)\right]^{-1}-I\right\|_{\mathscr{B}\left(\ell^{2}\right)}<1$.

Idea of the proof

(1) Define the holomorphic extensions

$$
f_{\mathrm{L}}(z)=\sum_{k} z^{k} \mathbf{L}_{k}, z \in \mathbb{D} \quad \text { and } \quad f_{\mathbf{U}}(z)=\sum_{k} z^{k} \mathbf{U}_{k}, z \in \mathbb{C} \backslash \overline{\mathbb{D}}
$$

(2) Choose $\varepsilon \in(0,1)$ such that $\left\|\left[f_{\mathbf{L}}(\varepsilon)\right]^{-1} \mathbf{L U}\left[f_{\mathbf{U}}(1 / \varepsilon)\right]^{-1}-I\right\|_{\mathscr{B}\left(\ell^{2}\right)}<1$.
(0) Then $\mathbf{A}^{\prime}=\left[f_{\mathbf{L}}(\varepsilon)\right]^{-1} \mathbf{L} \mathbf{U}\left[f_{\mathbf{U}}(1 / \varepsilon)\right]^{-1}=\mathbf{L}^{\prime} \mathbf{U}^{\prime}$.

Idea of the proof

(1) Define the holomorphic extensions

$$
f_{\mathrm{L}}(z)=\sum_{k} z^{k} \mathbf{L}_{k}, z \in \mathbb{D} \quad \text { and } \quad f_{\mathbf{U}}(z)=\sum_{k} z^{k} \mathbf{U}_{k}, z \in \mathbb{C} \backslash \overline{\mathbb{D}}
$$

(2) Choose $\varepsilon \in(0,1)$ such that $\left\|\left[f_{\mathbf{L}}(\varepsilon)\right]^{-1} \mathbf{L U}\left[f_{\mathbf{U}}(1 / \varepsilon)\right]^{-1}-I\right\|_{\mathscr{B}\left(\ell^{2}\right)}<1$.
(0) Then $\mathbf{A}^{\prime}=\left[f_{\mathbf{L}}(\varepsilon)\right]^{-1} \mathbf{L U}\left[f_{\mathbf{U}}(1 / \varepsilon)\right]^{-1}=\mathbf{L}^{\prime} \mathbf{U}^{\prime}$.
(-So $\left(\mathbf{L}^{\prime}\right)^{-1}\left[f_{\mathbf{L}}(\varepsilon)\right]^{-1} \mathbf{L}=\mathbf{D}=\mathbf{U}^{\prime} f_{\mathbf{U}}(1 / \varepsilon) \mathbf{U}^{-1}$.

Corollaries

Corollaries

Corollary

Suppose $\mathbf{A} \in \mathscr{A}$ admits a Cholesky factorization $\mathbf{A}=\mathbf{C}^{*} \mathbf{C}$. Then, $\mathbf{C}, \mathbf{C}^{*} \in \mathscr{A}$.

Corollaries

Corollary

Suppose $\mathbf{A} \in \mathscr{A}$ admits a Cholesky factorization $\mathbf{A}=\mathbf{C}^{*} \mathbf{C}$. Then, $\mathbf{C}, \mathbf{C}^{*} \in \mathscr{A}$.

Any two $L U$ factorizations differ by an invertible diagonal matrix.

Corollaries

Corollary

Suppose $\mathbf{A} \in \mathscr{A}$ admits a Cholesky factorization $\mathbf{A}=\mathbf{C}^{*} \mathbf{C}$. Then, $\mathbf{C}, \mathbf{C}^{*} \in \mathscr{A}$.

Any two $L U$ factorizations differ by an invertible diagonal matrix.

Corollary

Suppose that $\mathbf{A} \in \mathscr{A}$ admits a $Q R$ factorization $\mathbf{A}=\mathbf{Q R}$. Then $\mathbf{Q}, \mathbf{R} \in \mathscr{A}$.

Corollaries

Corollary

Suppose $\mathbf{A} \in \mathscr{A}$ admits a Cholesky factorization $\mathbf{A}=\mathbf{C}^{*} \mathbf{C}$. Then, $\mathbf{C}, \mathbf{C}^{*} \in \mathscr{A}$.

Any two $L U$ factorizations differ by an invertible diagonal matrix.

Corollary

Suppose that $\mathbf{A} \in \mathscr{A}$ admits a $Q R$ factorization $\mathbf{A}=\mathbf{Q R}$. Then $\mathbf{Q}, \mathbf{R} \in \mathscr{A}$.

Consider $\mathbf{A}^{*} \mathbf{A}=\mathbf{R}^{*} \mathbf{Q}^{*} \mathbf{Q R}=\mathbf{R}^{*} \mathbf{R}$ and apply the previous corollary.

Next steps

Next steps

- Eigenvector localization

Next steps

- Eigenvector localization
- More general decay patterns

Thanks!

