Localization of Matrix Factorizations

Tim Wertz University of California, Davis

October 26, 2013

Acknowledgements

• The organizers

- The organizers
- Ilya Krishtal (Northern Illinois University)

- The organizers
- Ilya Krishtal (Northern Illinois University)
- Thomas Strohmer (UC Davis)

- The organizers
- Ilya Krishtal (Northern Illinois University)
- Thomas Strohmer (UC Davis)
- NSF, DARPA, UC Davis, Northern Illinois

Localization

• Communications channels in digital and wireless communication

- Communications channels in digital and wireless communication
- Correlation matrices in statistics

- Communications channels in digital and wireless communication
- Correlation matrices in statistics
- Approximate diagonalization of pseudodifferential operators

- Communications channels in digital and wireless communication
- Correlation matrices in statistics
- Approximate diagonalization of pseudodifferential operators
- Physics, i.e. the Anderson model

- Communications channels in digital and wireless communication
- Correlation matrices in statistics
- Approximate diagonalization of pseudodifferential operators
- Physics, i.e. the Anderson model
- Density matrices in quantum chemistry

We denote by $\mathscr{A}(\mathbb{T})$ the Banach algebra of functions with absolutely convergent Fourier series endowed with the norm

$$\|f\|_{\mathscr{A}} = \|\{a_k\}\|_{\ell^1} = \sum_{k\in\mathbb{Z}} |a_k|.$$

We denote by $\mathscr{A}(\mathbb{T})$ the Banach algebra of functions with absolutely convergent Fourier series endowed with the norm

$$\|f\|_{\mathscr{A}} = \|\{a_k\}\|_{\ell^1} = \sum_{k\in\mathbb{Z}} |a_k|.$$

Theorem (Wiener's Lemma, 1932)

If $f \in \mathscr{A}(\mathbb{T})$ and $f(t) \neq 0$ for all $t \in \mathbb{T}$, then $1/f \in \mathscr{A}(\mathbb{T})$.

• Let
$$f = \sum_{k \in \mathbb{Z}} a_k e^{ikt} \in \mathscr{A}(\mathbb{T}).$$

• Let
$$f = \sum_{k \in \mathbb{Z}} a_k e^{ikt} \in \mathscr{A}(\mathbb{T}).$$

• Construct a matrix $A_f = (a_{jk})$ by setting $a_{jk} = a_{j-k}$.

• Let
$$f = \sum_{k \in \mathbb{Z}} a_k e^{ikt} \in \mathscr{A}(\mathbb{T}).$$

- Construct a matrix $A_f = (a_{jk})$ by setting $a_{jk} = a_{j-k}$.
- If $|f(t)| \ge \delta > 0$, then $1/f \in \mathscr{A}$ (Wiener's Lemma).

• Let
$$f = \sum_{k \in \mathbb{Z}} a_k e^{ikt} \in \mathscr{A}(\mathbb{T}).$$

- Construct a matrix $A_f = (a_{jk})$ by setting $a_{jk} = a_{j-k}$.
- If $|f(t)| \ge \delta > 0$, then $1/f \in \mathscr{A}$ (Wiener's Lemma).

•
$$(A_f)^{-1} = A_{1/f}$$
.

• Let
$$f = \sum_{k \in \mathbb{Z}} a_k e^{ikt} \in \mathscr{A}(\mathbb{T}).$$

- Construct a matrix $A_f = (a_{jk})$ by setting $a_{jk} = a_{j-k}$.
- If $|f(t)| \ge \delta > 0$, then $1/f \in \mathscr{A}$ (Wiener's Lemma).

•
$$(A_f)^{-1} = A_{1/f}$$
.

• $\{a_k\} \in \ell^1$ means that A_f satisfies some off-diagonal decay condition.

Let $\mathscr{A}\subset\mathscr{B}$ be two Banach algebras with common identity. We say that \mathscr{A} is inverse-closed in \mathscr{B} if

$$a \in \mathscr{A}$$
 and $a^{-1} \in \mathscr{B} \implies a^{-1} \in \mathscr{A}$.

Let $\mathscr{A}\subset\mathscr{B}$ be two Banach algebras with common identity. We say that \mathscr{A} is inverse-closed in \mathscr{B} if

$$a \in \mathscr{A}$$
 and $a^{-1} \in \mathscr{B} \implies a^{-1} \in \mathscr{A}$.

Inverse-closedness is also known as: \mathscr{A} is a spectral/local/full subalgebra of \mathscr{B} , \mathscr{A} is invariant under the holomorphic calculus in \mathscr{B} , spectral invariance.

Let $\mathscr{A}\subset\mathscr{B}$ be two Banach algebras with common identity. We say that \mathscr{A} is inverse-closed in \mathscr{B} if

$$a \in \mathscr{A} \text{ and } a^{-1} \in \mathscr{B} \implies a^{-1} \in \mathscr{A}.$$

Inverse-closedness is also known as: \mathscr{A} is a spectral/local/full subalgebra of \mathscr{B} , \mathscr{A} is invariant under the holomorphic calculus in \mathscr{B} , spectral invariance.

Theorem (Wiener's Lemma)

The Banach algebra of functions with absolutely convergent Fourier series, $\mathscr{A}(\mathbb{T})$ is inverse closed in the Banach algebra of continuous functions $C(\mathbb{T})$.

 $\mathbf{M} = (m_{jk}), j, k \in \mathbb{Z}, m_{jk} \in \mathbb{C}.$

 $\mathbf{M}=(m_{jk}), j, k \in \mathbb{Z}, m_{jk} \in \mathbb{C}.$

• $\mathscr{B}_b := \{ \mathbf{M} : \text{ for some } n \in \mathbb{N}, m_{jk} = 0 \text{ when } |j - k| > n \}.$

 $\mathbf{M}=(m_{jk}), j, k \in \mathbb{Z}, m_{jk} \in \mathbb{C}.$

• $\mathscr{B}_b := \{ \mathbf{M} : \text{ for some } n \in \mathbb{N}, m_{jk} = 0 \text{ when } |j - k| > n \}.$

• $\mathscr{B}_c := \overline{\mathscr{B}_b}$ w.r.t. $\| \|_{op}$.

Decay Algebras, cont.

•
$$\mathscr{A}_{v} := \{ \mathbf{M} : |m_{jk}| \le Cv^{-1}(j-k) \}.$$

•
$$\mathscr{A}_{v} := \left\{ \mathbf{M} : |m_{jk}| \leq Cv^{-1}(j-k) \right\}.$$

• $\mathscr{A}_{v}^{1} := \left\{ \mathbf{M} : \sup_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |m_{jk}| v(j-k), \sup_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} |m_{jk}| v(j-k) < \infty \right\}$

•
$$\mathscr{A}_{\mathbf{v}} := \left\{ \mathbf{M} : |m_{jk}| \leq C \mathbf{v}^{-1} (j-k) \right\}.$$

•
$$\mathscr{A}_{\mathsf{v}}^1 := \left\{ \mathsf{M} : \sup_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |m_{jk}| \mathsf{v}(j-k), \sup_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} |m_{jk}| \mathsf{v}(j-k) < \infty \right\}$$

•
$$\mathscr{C}_{\mathbf{v}} := \left\{ \mathbf{M} : \sum_{j \in \mathbb{Z}} \sup_{k \in \mathbb{Z}} |m_{k,k-j}| \mathbf{v}(j) < \infty \right\}.$$

Some Algebraic Properties

Let \mathscr{A} be a Banach algebra of matrices and let \mathscr{L} and $\mathscr{L}_0^* = \mathscr{A} \setminus \mathscr{L}$ be the sub-algebras of lower- and strictly-upper-triangular matrices, respectively. Then, we say that \mathscr{A} is *strongly decomposable* if there exists a bounded projection \mathcal{P} which maps \mathscr{A} onto \mathscr{L} parallel to \mathscr{L}_0^* . Let $\mathcal{Q} = I - \mathcal{P}$.

Let \mathscr{A} be a Banach algebra of matrices and let \mathscr{L} and $\mathscr{L}_0^* = \mathscr{A} \setminus \mathscr{L}$ be the sub-algebras of lower- and strictly-upper-triangular matrices, respectively. Then, we say that \mathscr{A} is *strongly decomposable* if there exists a bounded projection \mathcal{P} which maps \mathscr{A} onto \mathscr{L} parallel to \mathscr{L}_0^* . Let $\mathcal{Q} = I - \mathcal{P}$.

Definition

An invertible matrix $\mathbf{A} \in \mathscr{A}$ admits a *canonical factorization* in \mathscr{A} if $\mathbf{A} = \mathbf{L}\mathbf{U}$ where $\mathbf{L}, \mathbf{L}^{-1} \in \mathscr{L}$ and $\mathbf{U}, \mathbf{U}^{-1} \in \mathscr{L}^*$.

Abstract Harmonic Analysis

Abstract Harmonic Analysis

•
$$M(\theta) : \mathbb{T} \to \ell^2(\mathbb{Z})$$
 given by $M(\theta)x(n) = \theta^n x(n)$.

•
$$M(\theta) : \mathbb{T} \to \ell^2(\mathbb{Z})$$
 given by $M(\theta) \times (n) = \theta^n \times (n)$.
• $f_{\bullet}(\theta) := M(\theta) \Phi M(\theta^{-1})$

•
$$M(\theta) : \mathbb{T} \to \ell^2(\mathbb{Z})$$
 given by $M(\theta)x(n) = \theta^n x(n)$.

$$I_{\mathbf{A}}(\theta) := M(\theta) \mathbf{A} M(\theta^{-1}).$$

•
$$M(\theta) : \mathbb{T} \to \ell^2(\mathbb{Z})$$
 given by $M(\theta)x(n) = \theta^n x(n)$.

$$I_{\mathbf{A}}(\theta) := M(\theta) \mathbf{A} M(\theta^{-1}).$$

$$\bullet f_{\mathbf{A}}(\theta) \sim \sum_{k} \theta^{k} \mathbf{A}_{k}.$$

Remark

() $\mathbf{A} \in \mathscr{B}_c$ if and only if $f_{\mathbf{A}}$ is continuous.

•
$$M(\theta) : \mathbb{T} \to \ell^2(\mathbb{Z})$$
 given by $M(\theta)x(n) = \theta^n x(n)$.

$$I_{\mathbf{A}}(\theta) := M(\theta) \mathbf{A} M(\theta^{-1}).$$

•
$$f_{\mathbf{A}}(\theta) \sim \sum_{k} \theta^{k} \mathbf{A}_{k}$$
.

Remark

- **Q** $\mathbf{A} \in \mathscr{B}_c$ if and only if $f_{\mathbf{A}}$ is continuous.
- ② **A** ∈ $\mathscr{L} \cap \mathscr{B}_c$ if and only if f_A has a holomorphic extension to \mathbb{D} which is continuous in $\overline{\mathbb{D}}$.

•
$$M(\theta) : \mathbb{T} \to \ell^2(\mathbb{Z})$$
 given by $M(\theta)x(n) = \theta^n x(n)$.

 $I_{\mathbf{A}}(\theta) := M(\theta) \mathbf{A} M(\theta^{-1}).$

•
$$f_{\mathbf{A}}(\theta) \sim \sum_{k} \theta^{k} \mathbf{A}_{k}.$$

Remark

- **Q** $\mathbf{A} \in \mathscr{B}_c$ if and only if $f_{\mathbf{A}}$ is continuous.
- ② **A** ∈ $\mathscr{L} \cap \mathscr{B}_c$ if and only if f_A has a holomorphic extension to \mathbb{D} which is continuous in $\overline{\mathbb{D}}$.
- **③** A ∈ $\mathscr{L}^* \cap \mathscr{B}_c$ if and only if f_A has a bounded holomorphic extension outside of \mathbb{D} which is continuous in $\mathbb{C} \setminus \mathbb{D}$.

Theorem (Baskakov, Krishtal, 2005)

Let $\mathbf{A} \in \mathscr{L} \cap \mathscr{B}_c$. Then $\mathbf{A}^{-1} \in \mathscr{L}$ if and only if $f_{\mathbf{A}}(z)$ is invertible for all $z \in \overline{\mathbb{D}}$.

Theorem (Baskakov, Krishtal, 2005)

Let $\mathbf{A} \in \mathscr{L} \cap \mathscr{B}_c$. Then $\mathbf{A}^{-1} \in \mathscr{L}$ if and only if $f_{\mathbf{A}}(z)$ is invertible for all $z \in \overline{\mathbb{D}}$.

Lemma (Gohberg, Laiterer, 1972)

Let $\mathscr{A} \subset \mathscr{A}_c \subset \mathscr{B}(\ell^2)$ be a strongly decomposable inverse-closed sub-algebra that satisfies $\|\mathbf{A}\|_{\mathscr{B}(\ell^2)} \leq C \|\mathbf{A}\|_{\mathscr{A}}$. Then, if $\|\mathbf{A} - \mathbf{I}\|_{\mathscr{B}(\ell^2)} < 1$, **A** admits a canonical factorization $\mathbf{A} = \mathbf{LU}$ in \mathscr{A} such that

$$\mathbf{L}^{-1} = \mathbf{I} - \mathcal{P}\mathbf{V} + \mathcal{P}[\mathbf{V}\mathcal{P}\mathbf{V}] - \mathcal{P}[\mathbf{V}\mathcal{P}[\mathbf{V}\mathcal{P}\mathbf{V}]] + \dots,$$
(1)

(2)

$$\mathbf{U}^{-1} = \mathbf{I} - \mathcal{Q}\mathbf{V} + \mathcal{Q}[[\mathcal{Q}\mathbf{V}]\mathbf{V}] - \mathcal{Q}[\mathcal{Q}[[\mathcal{Q}\mathbf{V}]\mathbf{V}]\mathbf{V}] + \dots,$$

where $\mathbf{V} = \mathbf{A} - \mathbf{I}$ and the series converge in \mathscr{A} .

Theorem (Krishtal, Strohmer, W., 2013)

Let $\mathscr{A} \subset \mathscr{B}_c \subset \mathscr{B}(\ell^2)$ be an strongly decomposable inverse-closed sub-algebra that satisfies

$$\|\mathbf{A}\|_{\mathscr{B}(\ell^2)} \leq C \|\mathbf{A}\|_{\mathscr{A}}.$$

Then, if **A** admits a canonical factorization $\mathbf{A} = \mathbf{L}\mathbf{U}$ in \mathscr{B}_c , we have $\mathbf{L}, \mathbf{U} \in \mathscr{A}$.

O Define the holomorphic extensions

$$f_{\mathsf{L}}(z) = \sum_k z^k \mathsf{L}_k, z \in \mathbb{D}$$
 and $f_{\mathsf{U}}(z) = \sum_k z^k \mathsf{U}_k, z \in \mathbb{C} \setminus \overline{\mathbb{D}}.$

Define the holomorphic extensions

$$f_{\mathsf{L}}(z) = \sum_{k} z^k \mathsf{L}_k, z \in \mathbb{D}$$
 and $f_{\mathsf{U}}(z) = \sum_{k} z^k \mathsf{U}_k, z \in \mathbb{C} \setminus \overline{\mathbb{D}}.$

Solution Choose $\varepsilon \in (0,1)$ such that $\|[f_{\mathsf{L}}(\varepsilon)]^{-1} \mathsf{LU}[f_{\mathsf{U}}(1/\varepsilon)]^{-1} - I\|_{\mathscr{B}(\ell^2)} < 1.$

Define the holomorphic extensions

$$f_{\mathsf{L}}(z) = \sum_{k} z^k \mathsf{L}_k, z \in \mathbb{D}$$
 and $f_{\mathsf{U}}(z) = \sum_{k} z^k \mathsf{U}_k, z \in \mathbb{C} \setminus \overline{\mathbb{D}}.$

Solution Choose $\varepsilon \in (0,1)$ such that $\|[f_{\mathsf{L}}(\varepsilon)]^{-1} \mathsf{LU}[f_{\mathsf{U}}(1/\varepsilon)]^{-1} - I\|_{\mathscr{B}(\ell^2)} < 1.$

• Then
$$\mathbf{A}' = [f_{\mathbf{L}}(\varepsilon)]^{-1} \mathbf{L} \mathbf{U} [f_{\mathbf{U}}(1/\varepsilon)]^{-1} = \mathbf{L}' \mathbf{U}'.$$

Define the holomorphic extensions

$$f_{\mathsf{L}}(z) = \sum_{k} z^k \mathsf{L}_k, z \in \mathbb{D}$$
 and $f_{\mathsf{U}}(z) = \sum_{k} z^k \mathsf{U}_k, z \in \mathbb{C} \setminus \overline{\mathbb{D}}.$

Solution Choose $\varepsilon \in (0,1)$ such that $\|[f_{\mathsf{L}}(\varepsilon)]^{-1} \mathsf{LU}[f_{\mathsf{U}}(1/\varepsilon)]^{-1} - I\|_{\mathscr{B}(\ell^2)} < 1.$

• Then
$$\mathbf{A}' = [f_{\mathbf{L}}(\varepsilon)]^{-1} \mathbf{L} \mathbf{U} [f_{\mathbf{U}}(1/\varepsilon)]^{-1} = \mathbf{L}' \mathbf{U}'.$$

• So
$$(\mathbf{L}')^{-1}[f_{\mathbf{L}}(\varepsilon)]^{-1}\mathbf{L} = \mathbf{D} = \mathbf{U}'f_{\mathbf{U}}(1/\varepsilon)\mathbf{U}^{-1}$$
.

Corollaries

Suppose $A \in \mathscr{A}$ admits a Cholesky factorization $A = C^*C$. Then, $C, C^* \in \mathscr{A}$.

Suppose $A \in \mathscr{A}$ admits a Cholesky factorization $A = C^*C$. Then, $C, C^* \in \mathscr{A}$.

Any two LU factorizations differ by an invertible diagonal matrix.

Suppose $A \in \mathscr{A}$ admits a Cholesky factorization $A = C^*C$. Then, $C, C^* \in \mathscr{A}$.

Any two LU factorizations differ by an invertible diagonal matrix.

Corollary

Suppose that $A \in \mathscr{A}$ admits a QR factorization A = QR. Then $Q, R \in \mathscr{A}$.

Suppose $A \in \mathscr{A}$ admits a Cholesky factorization $A = C^*C$. Then, $C, C^* \in \mathscr{A}$.

Any two LU factorizations differ by an invertible diagonal matrix.

Corollary

Suppose that $A \in \mathscr{A}$ admits a QR factorization A = QR. Then $Q, R \in \mathscr{A}$.

Consider $\mathbf{A}^*\mathbf{A} = \mathbf{R}^*\mathbf{Q}^*\mathbf{Q}\mathbf{R} = \mathbf{R}^*\mathbf{R}$ and apply the previous corollary.

• Eigenvector localization

- Eigenvector localization
- More general decay patterns

Thanks!

