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Classical Construction

Let A be a finite set (called the alphabet or symbol space).

Give A the discrete topology, then A is compact (since A is
finite).

Consider the set
AN := A×A× . . .

consisting of all (one-sided) sequences of elements of A.

AN with the product topology is compact (by Tychonoff’s
theorem).
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Classical Construction Con’t

The shift map σ : AN → AN defined by
σ(x1x2x3 . . .) := x2x3x4 . . . is continuous.

The pair (AN, σ) is called the (one-sided) full shift space.

Definition

The pair (X , σ|X ) is a shift space if X is subset of AN such that X
is closed and σ(X ) ⊆ X .

Since X is a closed subset of a compact space, X is also compact.
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Natural Extension

Let A = {a1, a2, . . .} be a countably infinite set and give A the
discrete topology.
Consider the space

AN := A×A× . . .

with the product topology.
The shift map σ : AN → AN defined by σ(x1x2x3 . . .) := x2x3x4 . . .
is continuous.
However, the space AN is NOT compact (or even locally
compact).
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Why doesn’t it work?

Example

Any open set U in AN must contain a basis element of the form

Z (x1 . . . xm) = {x1 . . . xmzm+1zm+2 . . . ∈ AN : zk ∈ A for k ≥ m + 1}.

Define xn := x1 . . . xmananan . . ., then {xn}∞n=1 is a sequence in
Z (x1 . . . xm) without a convergent subsequence.
Hence the closure of U is not (sequentially) compact, therefore AN

is not locally compact.
If we define a shift space over A to be a pair (X , σ|X ) where X is
a closed subset of AN with the property that σ(X ) ⊆ X , then the
set X will be a closed, but not necessarily compact, subset of AN.
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Benefits

The full shift and all shift spaces are compact!
Our new definition reduces to the classical definition when A is
finite.
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New Construction

Let A be an infinite alphabet with the discrete topology.

Let A∞ = A ∪ {∞} denote the one-point compactification of
A. Since A∞ is compact, the product space

XA := A∞ ×A∞ × . . .

is compact.

Note: We do not take XA as our definition of the full shift, since
it includes sequences that contain the symbol ∞, which is not in
our original alphabet.
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New Construction Con’t

We identify elements of XA with infinite and finite sequences of
elements in A.
How do we do it?

Infinite sequences with no ∞ in them are of no concern.

For infinite sequences with ∞, we consider the first place that
∞ appears; for example, write x = x1 . . . xn∞ . . . with xi 6=∞
for 1 ≤ i ≤ n and identify x with the finite sequence x1 . . . xn.

In this way we define an equivalence relation ∼ on XA such
that the quotient space XA/ ∼ of all equivalence classes is
identified with the collection of all sequences of symbols from
A that are either infinite or finite.

We let ΣA denote the set of all finite and infinite sequences of
elements of A.
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Topology on ΣA

We use the identification of ΣA with XA/ ∼, to give ΣA the
quotient topology it inherits from XA.
With this topology the space ΣA is both compact and Hausdorff.
The shift map σ : ΣA → ΣA, which simply removes the first entry
from any sequence, is a map on ΣA that is continuous at all points
except the empty sequence.
We define the one-sided full shift to be the pair (ΣA, σ).
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Defining Shift Spaces

Definition

If A is an alphabet and X ⊆ ΣA, we say X has the
infinite-extension property if for all x ∈ X with l(x) <∞, there are
infinitely many a ∈ A such that Z (xa) ∩ X 6= ∅.

Definition

Let A be an alphabet, and (ΣA, σ) be the full shift over A. A shift
space over A is defined to be a subset X ⊆ ΣA satisfying the
following three properties:

(i) X is a closed subset of ΣA.

(ii) σ(X ) ⊆ X .

(iii) X has the infinite-extension property.
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Defining Shift Spaces

For any shift space X we define X inf := X ∩ Σinf
A and

X fin := X ∩ Σfin
A .

1 All shift spaces are compact since ΣA is compact.

2 σ : ΣA → ΣA restricts to a map σ|X : X → X . Thus we will
often attach the map σ|X to X and refer to the pair (X , σ|X )
as a shift space. Note that our definition allows the empty set
X = ∅ as a shift space.

3 If X 6= ∅, then X inf 6= ∅, so that nonempty shift spaces will
always have sequences of infinite length. Moreover, X inf is
dense in X .
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Classical Shifts of Finite Type

Definition

Let X be a shift space over a finite alphabet A. Then X is a shift
of finite type if X = XF for a finite set F of blocks.

For a finite alphabet A, X is a shift of finite type if and only if X
is an M-step shift (i.e., X = XF for a set F with each block in F
having length M + 1) if and only if X is an edge shift (i.e., X is
the shift space coming from a finite directed graph with no sinks
where the edges are used as symbols).
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Edge shifts vs. M-step shifts

Proposition

If XE is an edge shift, then XE is a 1-step shift.

The converse is false.

Example

Let A = {a1, a2, a3, . . .} be a countably infinite alphabet, and let

F := {aiaj : i 6= 1 and i 6= j}.

Then XF is a 1-step shift, since every forbidden block in F has
length 2. XF is not an edge shift.
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Shifts of Finite Type vs. M-step shifts

Proposition

If X is a shift of finite type, then X is an M-step shift for some
M ∈ N ∪ {0}.

The converse is false.
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Shifts of Finite Type vs. M-step shifts

Example of an edge shift (therefore an M-step shift) that is not a
shift of finite type.

Example

Let E be the graph

• e1 // • e2 // • e3 // • e4 // · · ·

and let XE be the edge shift associated to E . We shall argue that
XE is not a shift of finite type over A := E 1. Suppose F is a finite
subset of Σfin

A . Since F is a finite collection of finite sequences of
edges, there exists n ∈ N such that the edge en does not appear in
any element of F . Thus the infinite sequence enen . . . is allowed,
and enen . . . ∈ XF . However, enen . . . /∈ XE , so XE 6= XF .
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Summary

Here’s what we know:

{edge shifts} ( {M-step shifts}

{shifts of finite type} ( {M-step shifts}

{shifts of finite type} 6= {edge shifts}.
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Summary Con’t

Here’s what we don’t know:

Is every shift of finite type an edge shift? Conjecture: No

For each M ∈ N ∪ {0} does there exist an (M + 1)-step shift
space that is not conjugate to any M-step shift? Conjecture:
Yes

We have proven that

{0-step shifts} ⊆ {1-step shifts} ⊆ {2-step shifts} ⊆ . . . ,

but we don’t know if the containment is proper.
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Definition of row-finite

Definition

Let A be an alphabet, and let X ⊆ ΣA be a shift space over A.
We say that X is finite-symbol (or finite) if B1(X ) is finite, and we
say X is infinite-symbol (or infinite) otherwise. We say that X is
row-finite if for every a ∈ A, the set {b ∈ A : ab ∈ B(X )} is finite.
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Proposition

If A is an infinite alphabet and X is a shift of finite type over A,
then X is not row-finite.

{row-finite shifts of finite type over infinite alphabets} = ∅.

Proposition

If A is an alphabet and X is a 1-step shift space over A that is
row-finite, then X is conjugate to the edge shift of a row-finite
graph.

{row-finite edge shifts} = {row-finite M-step shifts}.
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Theorem (Curtis, Hedlund, Lyndon)

Every shift morphism is equal to a sliding block code.

Outline of proof:

If φ : X → Y is a shift morphism, then the continuity of φ and
the compactness of X implies that φ is uniformly continuous
with respect to the standard metric on X giving the topology.

Any two sequences in X that are close in this metric are equal
along some initial segment, and hence one may define a block
map Φ : Bn(X )→ A and use the fact that φ commutes with
the shift to show φ is the sliding block code coming from Φ.

For shifts over infinite alphabets, this proof does not work.
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Sliding Block Codes

Definition

If X and Y are shift spaces over a countable alphabet A, and X is
row-finite, we say that a function φ : X → Y is a sliding block
code if the following two criteria are satisfied:

(a) If {xn}∞n=1 ⊆ X and limn→∞ xn = ~0, then limn→∞ φ(xn) = ~0.

(b) For each a ∈ A there exists a natural number n(a) ∈ N and a
function Φa : Bn(a)(X ) ∩ Z (a)→ A such that

φ(x1x2x3 . . .)i = Φxi (xi . . . xn(xi )+i−1)

for all i ∈ N and for all x1x2x3 . . . ∈ X inf.

We say that a sliding block code is bounded if there exists M ∈ N
such that n(a) ≤ M for all a ∈ A, and unbounded otherwise.
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Sliding Block Codes

Theorem

Let A be a countable alphabet, and let X and Y be shift spaces
over A. If X is row-finite and φ : X → Y is a function, then φ is a
shift morphism if and only if φ is a sliding block code. Moreover, if
φ is a bounded sliding block code, then φ is an M-block code from
some M ∈ N.
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Summary of Results

Theorem

Let E and F be countable graphs with no sinks and no sources. If
XE
∼= XF , then GE ∼= GF , which implies C ∗(E ) ∼= C ∗(F ).

Theorem

Let E and F be countable graphs with no sinks and no sources. If
XE
∼= XF , then LC(E ) ∼= LC(F ).

Theorem

If E and F are row-finite graphs with no sinks, and if ψ : XF → XE

is a bounded conjugacy with bounded inverse, then
C ∗(E ) ∼= C ∗(F ) via an explicit isomorphism.
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Thanks for listening

Any Questions?
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