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1. W. M. Goldman, in [1], has described a “grafting” procedure for a flat con-
formal structure, generalizing to higher dimensions Maskit’s construction [2] of a
surjective development. He proved that if a representation of the holonomy of a
complex projective structure (on a closed surface) is faithful and has a Fuchsian im-
age H, then the structure is obtained by such a grafting operation from the standard
structure on A/H, where A is the unit disk. He also conjectured that a similar state-
ment can be made for flat conformal structures in higher dimensions. The present
note proves this conjecture for three-dimensional manifolds.

2. The definitions of flat conformal structure (here simply to be called conformal),
development, holonomy homomorphism, and holonomy group can all be found in
[3]-[5]. Let R" = R" y {0}, A = {x € R*: x| < 1}, £ = {x € R": [l
and A* = R"\(AU X), and let .#, be the group of orientation-preserving Mébius
automorphisms of R”. If G e #,, we denote by R(G) its set of discontinuity; and we
put L(G) = R"\R(G).

Let G be a subgroup of .#, such that G(A) = A, G acts on A freely and discontinu- -
ously, and A/G = M(G) is compact (ie., G is a Fuchsian group). Throughout, M (G)
will denote the conformal manifold with fixed conformal structure K, dropped down
from A, Let S = UT'Si be a family of incompressible aspherical connected closed

(n —~ 1)-submanifolds in M (@), U 5‘,' the lift of S in A, and T the stabilizer of
§,- in G. Suppose the conformal manifold (M, K;) = R(T;)/T; is homeomorphic
either to §; x §!, where § ! is a circle, or to a fiber bundle over the nonorientable
hypersurface S/ = S,/I"; with fiber S'. It is easily seen that the hypersurfaces S; and
S/ have conformally equivalent neighborhoods in M (G) and M;, respectively. Slit
the manifolds M (G) and (M,, K i) along S; and S}, and paste corresponding “edges”
of the slits conformally, for each i = 1,.. .. m (see Figure 1, where the pasting is
pictured along an orientable surface). The conformal manifold A [S] so obtained is
then homeomorphic to M (G), and the image of the development 4: A?[S] —R"is
all of R” (if S # @).

DEeFINITION. The conformal manifold A [S] is obtained by “grafting” along S on
M(G).

THEOREM. Let M be a closed three-dimensional manifold, M = A/G, where G is a
Fuchsian group; and let K be an arbitrary conformal structure on M , the representation
of whose holonomy d. : G — M is the identity. Then (M, K ) is obtained by a grafting
operation on M (G). If the family S’ is homotopic in M to the JSamily S, then M(S] is
conformally equivalent to M[S"].
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FIGURE 1

3. For the proof, we need three auxiliary lemmas.

LEMMA 1. Let X be a manifold with boundary 8X = YUY, where the imbedding
Y, — X is a homotopy equivalence, whll‘e Y, is a nonvoid compact orientable manifold.
Then X is compact.

Let us introduce the following standard notation. p: M — M is the universal
covering; G is the corresponding group of transformations of the covering space;
d: M — R" is the development of a conformal structure K on M; and d.(G) = H is
the holonomy group.

LEMMA 2 (see [3] and [6]). Let (M, K) be a compact conformal manifold; E a
closed subset of R" invariant with respect to H_and consisting of more than one point,
My=M\d~(E); and dy = d |57, Then dy: My — d(M)\E is a covering.

LEMMA 3. Suppose H(A) = A, and (M, K) is compact and aspherical. Then F =
p(d="(X)) is a finite union of incompressible aspherical closed hypersurfaces in M.

ProoF. Obviously d~'(Z) is closed in M and invariant with respect to G. There-
fore F is compact and is a submanifold of codimension | in M (since p is a covering);
and consequently F has only finitely many ¢ connected components. We assert that for
any component F, C p~'(F) we have r, (F)) = {1} and mi(F)) = = 0 for k > 1 (which
implies incompressibility and asphericity for F). Indeed, let M + and M be the
components of ﬁo =M \d~'(X) adjoining F,. By Lemma 2, dj | ii; and a'o | i- are

coverings; and since d (M &) = A and d(M = A*, these coverings are homeomor-
phisms. Let K* be the cone over d (F \) with vertex at zero, and K~ its image under
inversion with respect to Z. The complcx O (M\dd I(K*UK~))ud~'{0, oo} is ho-
motopically equivalent to M.If m (F ]k {l} or n,{(F 1) # 0, k > 1, then the exactness
of the homotopy sequence of the pair (K™, F 1) implies that T = 7, (K*UK™) #0.
But T occurs as a summand in 7., (Q), and this contradicts the contractibility of
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4. ProoF oF THE THEOREM. Without loss of generality we can suppose that
d: M = A — R" preserves the orientation induced on A by its imbedding in R”
(otherwise we take the composite of d with inversion with respect to X), and that
d(A) = R" (otherwise (M, K) is uniformized by the group G; see [5]). Let

A M=M=, Al M M
j=1 j=1
let G; and G| be the stabilizers of M " and M . respectively, and Qf = R(GI*) iz

the sets of discontinuity of the groups Gj and G restricted to the sphere X.
It is easily seen that

dclaM})=AUQ!,  d(cha M) =A"UQ;,

and the manifolds d(cly M }-*) /G’j.k are compact. It follows from Lemma 3 that all the
connected components of the sets Q}* are contractible.

LEMMA 4. For every j, the set Q; has exactly two connected components.

ProoF. Let f‘l;fl“ be a component of :\7“, 17"1 a component of 8}171', F", c c’)ﬁ,‘ n
OM}, and W = d(F,) c Q nQy. Since the holonomy homomorphism 4. is the
identity and d |;. = is a homeomorphism (see Lemma 3), the stabilizer I') of F,

1 ]

in the group G is the stabilizer of W in the groups G| and G| . The hypersurface F 1
separates A into two components U+ and U~, with M;* ¢ U*. Since G (M) =
ﬁfh we have L(Gf) c c(U*)NEZ, cdU*tncllU- = clF,, and WnclF, = @ (all
closures taken in R"). Suppose W c clU*. Then since d preserves orientation, so
does ¢ = dlf. : F| — W (the orientation being induced from U+). On the other hand,
for every y € I'} we have g oy = y o ¢, and therefore ¢ drops to a homeomorphism
f: F,/T} — W/T, of the boundary of the manifold N = (U* U F, U W)/T',. Since
all transformations in I'} are orientation-preserving, it follows that N is orientable
and f preserves orientation of the boundary dN. Let N' = N/f be the manifold
obtained by identifying the points x and f(x) in @N. In view of the properties of ¢
and f just described, the manifold N’ is nonorientable, aspherical, closed (since by
Lemma I N is compact), and has fundamental group n,(N') ~ Z x I';. Therefore N’

is homotopically equivalent to the manifold S' x (F,/T}), which is orientable. The
contradiction proves that W Cc clU~ N Z.

Applying Lemma 1 to the manifold (U~ U fl U W_)jlﬂ, we see that R(I') ) ncl U~ NZ
consists of just the one component W = (clU~\ ¢l F\)NZ. But W C Q[ (since d|;-
1

is a homeomorphism), and L(G; ) C el U~ NZ. Therefore L(G, ) = Zncl f, =)
and G, equals either Iy or its Z;-extension. If the dimension 7 is 3, the lemma now
follows immediately (since I'y is geometrically finite and isomorphic to a Fuchsian
group, and therefore quasi-Fuchsian [7]). But in the given situation we can give a
simple proof for arbitrary dimension.

Suppose €| consists of just one component (i.e., Q7 = W). Since ﬁ,‘ = (AL
Q; UA*)/G; is closed and aspherical, and 7,(M;") ~ Gy, it follows that M, is
homotopically equivalent to W/I';. But this is impossible, since H,.(ﬁi” AR
H,(W/T'\,Z). Thus, Q'\W # @. The manifold X = (A* U Q[)/T", has exactly
two boundary components Y, = W/T'; and Y, (by Lemma 1), while by Lemma 3



Y, and Y, are aspherical and the maps i.,: m,(Y;) — m,;(X) are monomorphic (i
is the imbedding Y, — X, kK = 1,2). Since I'|/(W) = W, i, is an isomorphism.
If (i1.)"" 0 i (m(Y3)) has infinite index j in m;(Y,), then the covering Y, over Y,
corresponding to this subgroup in noncompact and homotopically equivalent to the
orientable manifold ¥, of the same dimension; which is impossible. If 1 < j < oo,
then there exists a finite-sheeted covering over X having more than two boundary
components, which is also impossible, by Lemma 2. Thus, ] consists of exactly
two contractible components, and G| either equals I'} or is a Z;-extension of I'}.
This proves the lemma.

We restrict ourselves now to the case G; = I'; (the argument for Z;-extensions
is similar). In each component AFZ,' pick a surface §, invariant with respect to I';.
Let M " and ﬁ,* be the components adjoining AF/‘I]“; ﬁj and P, the inverse images of
§; in A’?j* and AFZ;' with respect to the mapping d; K’f and ]\7;' the components of
M f\?j and ﬁ;\ﬁ, whose stabilizers are G| and G}; and N’,‘ the union of cl Hj‘
and the two components of AZ*\E and A?;\fm’, adjoining aﬁ?i;. Then (N K =
(U, N /G})/G is conformally equivalent to (A\|J°S;)/G. At the same time,
(N=.K™) = (U2, N7 /G7)/G is conformally equivalent to (Ui (R(T')\S:)/G;)/G.
If n = 3, then R(I';)/T’; is homeomorphic to S; x S' (where §; = .-S'U,-/l'}) (see [7])
and, as is easily seen, (M, K) is conformally equivalent to M[S], where M(G) D> S =
(il S,)/G. This proves the theorem.
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