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It is a long standing open problem wether or not any word hyperbolic
group admits a discrete faithful cocompact isometric action on a space of
negative curvature. The goal of this note is to show that the answer is
negative if one restricts to the class of groups of isometries of 2-dimensional
C AT (0)-complexes. Namely, we will prove the following:

Theorem 0.1 There exists a word-hyperbolic group G which acts discretely
and effectively by isometries with compact quotient on a contractible 2-di-
mensional complex P of non-positive curvature so that G doesn’t admit such
action on any negatively curved 2-dimensional polyhedron.

By negatively (or nonpositively) curved space we mean CAT(—1) (or
CAT(0)) space in the sense of comparison theorems. We shall need a def-
inition of the angle in C'AT'(0)-space X which we take from [1]. Suppose
c(t), d(t) are geodesics emanating from a point x € X. Let

(1) = arccos(t%(d(c(t), ()2 - 1)

Then the angle between ¢, ¢ at x is defined to be

lim f(t)

t—0

This definition coincides with the usual one in the case of Riemann manifolds.
Angle comparison theorem states that for C AT (—k) space angles of geodesic
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triangles are not greater than angles of comparison triangles in Riemannian
space of constant curvature —k.

Definition 0.2 Let X be a topological space and G C Homeo(X) is a sub-
group. Then G is said to act discretely (= properly discontinuously) on X if

for any compact K C X there are only finitely many elements g € G such
that gK N K # 0.

It is known that if X is a proper metric space (i.e. metric balls are compact)
then G C Isom(X) is discrete iff the G-orbit of any point € X is discrete
in the sense that the map G — Gx C X is proper, where G has discrete
topology.

Definition 0.3 Suppose that G is a discrete group of isometries of a geodesic
length space X. An ideal point z € 05X s called a “point of approrimation”
if for any geodesic ray | emanating from z there exists an infinite sequence
gn € G and a compact K C X such that g,(1) N K # 0 for all n.

Lemma 0.4 Suppose that G C Isom(X) is a discrete group of isometries
where X is a space as above and G acts with compact quotient. Then any
point z € 0,,X is a point of approximation for the action of G.

Proof: Take any geodesic ray [ emanating from z. The projection of [ to
X /@ is recurrent. Therefore if F' is a (compact) fundamental domain for the
action of G on X then infinitely many translates of [ intersect F'. O

Lemma 0.5 Suppose that G, X are as above, X is a CAT(0)-space and
H C G is a finite subgroup such that the normalizer of H in G s finite.
Then the fized-point set F' = Fixyg of H in X is compact.

Proof: Tt is well-known that F' is convex. Suppose that F'is unbounded and
2 € OxF'. Take any geodesic ray | C F' emanating from z. According to
Lemma 0.4 there exists a compact K, an infinite sequence g, € G such that
gn(l) N K # ( for all g,. Therefore either we have an infinite sequence of
distinct finite subgroups H, = g¢,Hg,' whose fixed-point sets intersect K
(which means that G doesn’t act discretely) or the sequence H, contains
only a finite number of distinct members. This implies that the normalizer
of H in G is infinite. O



Remark 0.6 Actually one can prove that if X is CAT(0), G is cocompact
group of isometries, H is a finite subgroup in G then the subgroup

Stab(Fizy) ={g € G: g(Fixy) = Fizy}
acts on Fizy with compact quotient.

Theorem 0.7 There exists a word-hyperbolic group G which acts discretely
and effectively by isometries with compact quotient on a 2-dimensional poly-
hedron P of non-positive curvature so that G' doesn’t admit such action on a
negatively curved 2-dimensional polyhedron.

Proof: This theorem is an application of a construction of a hyperbolic group
due to W.Ballman and M.Brin [2]. Note that W.Ballman and S.Buyalo [3]
proved that for any finite-index subgroup G’ < G there is is only one G'-
invariant C'AT'(0)-metric on P. Our theorem was motivated by this result
and a question of S.Gersten.

First I describe the properties of the construction [2]. There exists a
2-dimensional C AT'(0) polyhedron P with the following properties:

(a) all faces of P are flat regular hexagons,

(b) links L, of all vertices of P are tetrahedrons (complete graphs on 4
vertices);

(c) for each vertices z,y € P and isometries ¢ : L, — L, there exists (a
unique) global isometry g of P which sends z to y and induces the map ¢
between links L, L,,.

These properties imply that the group G(P) = I'som(P) acts on P with
compact quotient which is isometric to a Euclidean triangle A(7/2,7/3,7/6).
The properties (a-c) determine the space P almost uniquely. Namely, there
are exactly two polyhedra P, P" which satisfy these properties. However
the corresponding groups G(P), G(P’) are quite different: one is hyperbolic,
another contains Z2. Moreover, G(P') is a nonuniform lattice in H>.

To distinguish these polyhedra (and the corresponding groups) we intro-
duce the notion of “twist” around the face Fy of P. Take the union of all
faces of P adjacent to Fj along edges of Fj. For each edge we get exactly 2
faces, therefore we have the union of 12 faces F;. Now delete from

St(F) = U;ilﬁ}



the edges which belong to F. There are exactly two possible cases:

(d) St(Fy) — Fy is connected (the polyhedron P has a “twist”);

(d’) St(Fy) — Fy consists of two connected components (the polyhedron
P has no “twist”).

We require P to satisfy the condition (d).

Lemma 0.8 Suppose that P satisfies conditions (a-d). Then the space X is
Gromouv-hyperbolic.

Proof: The space P is CAT(0) and has cocompact group of isometries.
Therefore hyperbolicity of P is equivalent to the absence of 2-flats: this was
proven for nonpositively curved simply-connected Riemannian manifolds by
P.Eberlein [5] and the general case was treated by M.Bridson [4]. Suppose
that P contains a flat L. Then L must contain a face Fy of P. By examin-
ing how L can extend from Fj we conclude that L must contain all faces in
St(Fy). This contradicts the assumption that L is totally-geodesic. O

Remark 0.9 If P’ satisfies conditions (a- d’) then the arguments above will
imply just that the flat L contains all faces in a component of St(Fy) — Fy
which is perfectly legal for a flat. Moreover one can see that extending F' this
way we produce a periodic flat in P’.

Our goal is to show that the group G can’t act on a negatively curved 2-
complexes (as we shall see we will prove a stronger statement). Denote by
A; the centers of faces Fj and by C; the vertices of Fy. Let 7y € G' be the
reflection in the hexagon Fjy, 6; be the rotation of order 12 around A; (so
05 = 7). Finally we let H; be stabilizers of the vertices C;. These groups
are isomorphic to the permutation group Ss. Note that the normalizer of
each group H; is equal to H; (for example since their fixed-point sets are
points Cj). This implies that H; are maximal finite subgroups in G. The
normalizer of < fy > in G is finite (this is Zy-extension of < 6y >).

Suppose that p : G — Isom(X) is a discrete, faithful representation
where X is a CAT(0) 2-complex so that X/p(G) is compact. Each group
H} = p(Hj) has nonempty fixed point set Fliz(H;) which must be a bounded
convex set (according to Lemma 0.5). The fixed-point sets

Fiz(H), Fiz(< pfy >)
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are disjoint (otherwise H; are not maximal finite in G). Therefore we can
choose for each j points

C7 € Fiz(H}), Ay € Fiz(< 05 >)

to realize the minimal distance between these compact sets. These points
may be nonunique, however sets of minimizing points are convex in which
case we choose centers of masses of these convex subsets. It follows that our
choice is invariant under the action of G* and moreover 6 acts on {CY, ..., C¢}
as element of order 6.

Consider the triangle A; = AjC;_;C; C X. By minimality of Aj the
edges of A emanating from this point intersect only at Aj. Now let’s prove the
same for Cs. We denote by [CF, Q7] the intersection [C}, C7, |N[C}, Ag]. Let
R be rotation in H; which sends Cj_; to Cj;1. Then Q7 is fixed under p(R)
and under p(7p) (the last element fixes all the segments [C}, C,,]. However
the group H; is generated by R and 7o. This means that Q; € Fiz(H}). By
minimality of C we conclude that Q7 = C7.

Minimality and injectivity of p also implies that A; N A; i, = [Af, CF].

Denote by 6(r) a regular 1-dimensional hexagon with sides equal to r.
Choose r = /Cy | AjC*, then there exists a local isometry i : 6(r) — La:
where L ,: is the link of Af in X; values of i on the vertices of 6(r) are given
by the segments [C}, Ag]. Since X is a CAT(0) space the length of i(6(r)) is
at least 27, therefore r > 7 /3. We conclude that 8 = /C7 C5_ Ay < m/3 and
equality iff the triangle A is flat. However we assume that X is negatively
curved, therefore 3 < 7/3. Hence /C;,,C:C; | < 28 < 27/3. Now we
use invariance to conclude that the link Lc- contains a (locally) embedded
circuit of the length strictly less than 3/C7,,C7CY | < 67/3 = 2m. This
contradicts the assumption that X is C'AT(0).

]

Remark 0.10 One can relax the assumption that X is negatively curved
and assume just that X is CAT(0). The conclusion in this case would be
that there exists a positive number s and an equivariant local isometry f :
(P,s-d) — X. Namely, one subdivides faces of P into equilateral triangles.
On 1-skeleton of this triangulation we get a local similarity from P to X
by sending points Cj, Ay to C7, A}. (The corresponding triangles in X are
equilateral flat triangles). Then extend this to P by combing from C;. This



map s actually a totally-geodesic isometric embedding: check it locally and
use CAT(0)—property.
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