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Abstract 
We apply  the  concept  of a sympto t i c  cone to dis t inguish quasi- isometry classes 
of fundamenta l  groups of 3-manifolds. We prove tha t  the  existence of a 
Seifert component in a Haken manifold is a quasi-isometry invariant of its 
fundamental group. 

1. I n t r o d u c t i o n  

Let F be a finitely generated group. A finite set of generators G of F 
determines a Cayley graph C(F, ~). It is a metric space whose quasi- 
isometry class does not depend on the chosen set of generators G. We 
are interested in geometric properties of F, i.e. quasi-isometry invariants of 
its Cayley graph. Well-known examples of geometric properties of finitely 
generated groups include: "finitely presentable", "virtually nilpotent" (Gro- 
mov), "virtually abelian" (Gromov, Bridson and Gersten), "word hyper- 
bolic" (Gromov), "being a finite extension of a uniform lattice in SO(n, 1)" 
(Mostow, Tukia, Gabai), "being a finite extension of a nonuniform lattice in 
a rank 1 symmetric space" (Schwartz), cohomological dimension is a quasi- 
isometry invariant for fundamental groups of finite aspherical complexes 
(Gersten). 

Quasi-isometries ignore the local geometry. Looking for quasi-isometry in- 
variants we have to understand the large-scale geometry of metric spaces. 
One aspect of it, namely the asymptotic geometry of finite subsets of distant 
points in a metric space X is encoded in the geometry of the asymptotic 
cone of X. This concept has been introduced by Van den Dries and Wilkie 
([DW]) and Gromov ([Gr2]). Bi-Lipschitz topological invariants of the 
asymptotic cone of X are quasi-isometry invariants of X. Papasoglu ([P]) 
proves that  the asymptotic cone of a group satisfying a quadratic isoperi- 
metric inequality is simply connected. The asymptotic cone will be used in 

This research was partially supported by the grant SFB 256 "Nichtlineare partielle Differ- 
entialgleichungen" and the NSF grant DMS-9306140 (Kapovich). 



Vol.5, 1995 ON A S Y M P T O T I C  CONES 583 

[K1L] to prove quasi-isometric rigidity of noncompact irreducible symmetric 
spaces of higher rank. 

We study the large-scale geometry of nonpositively curved spaces X. 
One observes that fiats in X are reproduced inside the asymptotic cone, 
whereas negatively curved subspaces break up into trees. One may think of 
the asymptotic cone of X as a higher-dimensional analogue of a metric tree. 
For instance, the asymptotic cone of a higher-rank symmetric space is a 
generalized affine building ([K1L]). We investigate the pat tern of flats in the 
asymptotic cone of certain nonpositively curved spaces of geometric rank 
one (in the sense of Ballmann, Brin and Eberlein) and obtain non-trivial 
quasi-isometry invariants. 

Metrics of nonpositive curvature appear in abundance in 3-dimensional 
topology. Thurston proved that atoroidal Haken manifolds are hyperbolic. 
It is shown in ILl that Haken manifolds with incompressible tori generically 
admit metrics of nonpositive curvature. In the subsequent paper ([KL1]) 
we show that the fundamental group of every Haken manifold (which is not 
a Ni l -  or Sol-manifold) is quasi-isometric to the fundamental group of a 
3-manifold of nonpositive curvature. 

Due to the geometrization of 3-manifolds we can apply our results about  
asymptotic cones of nonpositively curved spaces to distinguish quasi-isomet- 
ry types of fundamental groups of 3-dimensional Haken manifolds. In The- 
orem 5.1 we prove that if a Haken manifold ~I1 contains only hyperbolic 
components and M2 is a nonpositively curved manifold which contains a 
Seifert component with hyperbolic base then 7q (M1) is not quasi-isometric 
to 7r1(M2). Combining this with results of N. Brady, Gersten and Schwartz, 
one obtains a rough quasi-isometry classification of fundamental groups of 
Haken manifolds. It follows in particular that the existence of a Seifert (as 
well as a hyperbolic) component in a Haken manifold is a quasi-isometry in- 
variant of its fundamental group. 

The paper is organized as follows. In section 2 we discuss basic proper- 
ties of nonpositively curved spaces. We describe a discrete analogon of ruled 
surfaces in CAT(0)-spaces. In section 3 we review the concept of ultralim- 
its and asymptotic cones of metric spaces. We use ultralimits to give yet 
another interpretation of the compactification of representation varieties by 
actions of groups on trees ([M], [Be], [Pa D. In section 4 we study large-scale 
geometric properties of certain nonpositively curved spaces. We show that 
fat geodesic triangles in a CAT(0)-space X avoid regions of strictly negative 
curvature. Assuming that X is negatively curved outside a disjoint union of 
flats, we deduce geometric and topological properties of the asymptotic cone 
of X.  In particular, distinct embedded 2-discs have at most one point in 
common. This rules out the possibility that  X contains a quasi-isometrically 
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embedded product of the real line and a non-abelian free group. Examples 
of such CAT(0)-spaces X are given by universal covers of Haken manifolds 
obtained by gluing hyperbolic components. Another class of examples are 
universal covers of nonpositively curved manifolds arising from Thurston- 
Schroeder's cusp-closing construction ([S]). In section 5 we apply the results 
of section 4 to distinguish quasi-isometry classes of fundamental '  groups of 
Haken 3-manifolds. 

A c k n o w l e d g e m e n t s .  We thank the Mathematical Institute at the Uni- 
versity of Bonn for its hospitality during the period when this paper was 
written. We are grateful to Richard Schwartz and Martin Bridson for re- 
marks concerning the original manuscript of this paper. 

2. P r e l i m i n a r i e s  

2.1 E l e m e n t a r y  p r o p e r t i e s  o f  C A T ( 0 ) - s p a c e s .  Let X be a complete 
metric space with metric d = dx.  A geodesic in X is an isometric embed- 
ding f : I --~ X of an interval. A complete geodesic in X is an isometric 
embedding f : R -* X. We denote by [xy] a geodesic segment joining points 
x, y E X ,  and by ]xy[ the open segment. An n-dimensional fiat is an isomet- 
ric embedding of R ~, n > 2. X is called a geodesic space if any two points 
can be connected by a geodesic. A(x, y, z) will denote a geodesic triangle 
in X with vertices x, y, z. It is the union of geodesic segments [xy], [yz] and 
[zx]. We define the iuradius I R x ( A )  of a triangle A in X to be the infimum 
of all numbers p so that there exists a point in X with distance at most p 
from all sides of A. 

There is a synthetic way of defining upper curvature bounds for geodesic 
spaces X via distance comparison. We are only concerned with nonpositive 
bounds tr < 0. X is said to satisfy the CAT(t~)-property, if geodesic trian- 
gles in X are not thicker than triangles in the complete simply-connected 
Riemannian 2-manifold M 2 of sectional curvature g. More precisely, let 
A(x, y, z) be a triangle in X and choose a triangle A(x',  y', z') with the 
same side lengths in M~. If p, q are points on A(x, y, z) and pP, qt are points 
on A(x t, y r  zr), which divide corresponding sides in the same ratio, then 

d(p, q) <_ d(p', q') . 

In fact, it suffices to check this property only in the case when q is a vertex. 
We say that  X has local upper curvature bound ~ at a subset A if there is 
a convex subset containing A which satisfies the CAT(n)-property. 

X is a metric tree if it satisfies the CAT(n)-property for arbitrary neg- 
ative values of n. In this case all geodesic triangles degenerate to tripods. 
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One can also characterize metr ic  trees as geodesic spaces where any two 
points can be connected by a unique simple arc (see L e m m a  4.7). 

We collect a few facts about  CAT(0)-spaces, see e.g. [GrBS] and [B] for 
details. The CAT(0)-property implies tha t  the distance function is convex. 
Hence, any two points can be connected by a unique geodesic. In particu- 
lar, CAT(0)-spaces are contractible. If Y is a convex subset in a CAT(0)- 
space X,  then  the nearest-point-projection Try : X ~ Y is well-defined and 
distance-nonincreasing. Two complete geodesic rays r l ,  r2 : [0, cx~) ~ X 
are called asymptot ic ,  if the distance function t --~ d(rl(t), r.2(t)) remains 
bounded. The set O ~ X  of equivalence classes of asymptot ic  rays is called 
the ideal boundary of X.  

Let x be a point in the CAT(0)-space X and rl,r~_ : [0, c) ~ X be 
geodesic rays emanat ing  from x. The angle Zx(r t ,  r2) = c~ between rl  and 
r2 is defined by the formula: 

d(rl(t),r2(t)) 
2sin(~ = lim 

\ 2 ]  t - - 0 +  t 

This limit exists, because the function t H d(rl(t), r2(t)) is convex. The 
definition coincides with the usual one in the case of Riemannian  manifolds.  

LEMMA 2.1. Let rl,r2,r3 be rays emanating from x. Then the angles 
between them satisfy the inequality: 

Zx(rl ,r2) + /x ( r2 , r3 )  >_ / x ( r l , r 3 )  . 

LEMMA 2.2. If  the union of the geodesic rays rl  and r2 emanating from 
x is a geodesic with x as interior point, then the angle between rl and r2 
equals 7c. 

Distance comparison in the presence of an upper  curvature  bound  yields 
angle comparison: 

LEMMA 2.3. The angles of a geodesic triangle in a CAT(~)-space are not 
greater  than the corresponding angles of a comparison triangle in the model 
space M~. 

For a geodesic triangle r in X with angles c~,/3, 7, we define the angle 
deficit by: 

deficit(r) := 7c - c~ - / 3  - 7 - 

Let x, y, z be three points in the CAT(0)-space X.  There is a unique 
geodesic triangle A(x ,  y, z). Define points x', y ' ,  z' by [xx'] := [xy] N [xz], 
[yy'] := [yz] 0 [yx] and [zz'] :=  [zx] n [zy]. The triangle A(x ' ,  y',  z') is called 
the open triangle spanned by x, y, z. A(x,  y, z) itself is called open, if it 
coincides wi th  A(x ' ,  y', z'). 

We shall need the following property  of CAT(0)-spaces. 
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LEMMA 2.4. Let  V = [xy] U [yz] U [zw] be a broken geodesic in a CAT(O)- 
space  x such that u and U [zw] are geodesics.  Then is a 
geodesic as well. 

Proof: Suppose that there are points a E [xy] and b E [zw] such that 
d(a, b) < d(a, y) + d(y, b). Consider the comparison triangle A(a',  y', b') in 
the Euclidean plane and the point z' E [y'b'] with d(y', z') = d(y, z). Then 
d(a', z') < d(a', y') + d(y', z'), on the other hand tile comparison property 
implies that  d(a', z') 7_ d(a, z) = d(a, y) + d(y, z). This contradiction proves 
the assertion. [] 

2.2 N o n p o s i t i v e l y  c u r v e d  m e t r i c s  on  3 -man i fo lds .  Let M be a com- 
pact smooth 3-manifold. A closed smooth surface S C M is called incom- 
pressible if it is 2-sided, has infinite fundamental group and the inclusion 
S C M induces a monomorphism of fundamental groups. A manifold M 
is said to be irreducible if any smooth 2-sphere in the universal cover of M 
bounds a ball. If M is irreducible and contains a closed incompressible sur- 
face then it is called Itaken. Note that if the boundary of a Haken manifold 
has zero Euler characteristic then it is incompressible. 

Remark 2.5: Our definition of Haken manifolds is slightly more restric- 
tive than the classical one (see [3Sh], [Jo]). However it will suffice for the 
purposes of this paper. 

Let M be a Haken 3-manifold with boundary of zero Euler characteristic. 
According to [Jo], [JSh] and [T] there is a unique finite union T of disjoint 
incompressible 2-tori and Klein bottles which split M into a collection of 
hyperbolic and maximal Seifert components. We recall the following results 
concerning the existence of nonpositively curved metrics on M.  

T H E O R E M  2.6 ([L],[LSco]). I f  M admits a Riemannian metric of non- 
positive sectional curvature with totMly-geodesic boundary, then T can be 
isotoped so that T U OM is totally geodesic. 

Remark 2. 7: Theorem 2.6 implies that for each component ik/j of M \ T 
the universal cover of Mj is convex in the universal cover of M. Hence 
7cl (Mj) is quasi-isometrically embedded into 7t- 1 ( M ) .  

T H E O R E M  2.8 ([L]). Suppose that either OM is nonempty or M \ T has 
a hyperbolic component. Then M admits a smooth Riemannian metric of 
nonpositive sectional curvature with totally-geodesic boundary such that T 
is totally geodesic and the sectional curvature is strictly negative on each 
hyperbolic component of M \ T. 

2.3 S t r a i g h t  fil l ings. We recall that  a ruled surface in a smooth Rie- 
mannian manifold is a smooth family of geodesics. It is a classical fact that  
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the intrinsic curvature of a ruled surface is not greater than the curvature 
of the ambient manifold. The goal of this section is to construct a discrete 
analogue of filling in geodesic triangles by ruled surfaces. 

Let A be a non-degenerate triangle in Euclidean plane. 
We define a triangulation of A to be a decomposition of A into a fi- 

nite collection K of Eulidean 2-simplices with disjoint interiors so that the 
closure of their union equals A. Note that our definition differs from the 
standard one: we allow interior vertices on edges of triangles in K. 

For a triangulation S of A, we denote by S i the /-skeleton of S. A 
triangulation T of A is called special if it can be constructed from the 
trivial triangulation by the following inductive procedure. There exists a 
finite sequence of triangulations A = To , . . . ,Tn  = T of A, such that the 
triangulation Tk+l is obtained from Tk by adding a segment ak satisfying 
the properties: 

o At least one endpoint of (rk is contained in T ~ 
o The intersection of the interior of a~ with T~ is empty. 

Take now a geodesic triangle A(x, y, z) in a CAT(0)-space X. We define 
a canonical map 

f :T1---~ X 

by mapping A to A(x, y, z) and requiring that the restriction of f to every 
segment ak is an affine map. We call such a map f a straight filling. We 
say that a filling is c-fine if the image under f of each triangle in T 1 has 
diameter at most c. 

For each triangle ~ in T 2, let ~(~) be the curvature of X at f(O6). We 
put a Riemannian metric of constant curvature ~(~) on ~ so that it has 
geodesic sides and the restriction of f to every side is an isometry. This 
induces a path metric on A which we denote by df. 

LEMMA 2.9. The map f : (T 1, dilT1 ) ---* X does not increase distances. 

Proof: Suppose that p and q are two points on the boundary of the same 
triangle ~ in T 2. Then the distance comparison inequality implies: 

dr(p, q) > d(f(p), f(q)) . 

The global statement follows immediately. [] 

We define the angle deficit of the filling f as the sum 

deficit(f) := ~ deficit((5) . 
~hET 2 

LEMMA 2.10. The det~cit of the straight tilling f is not greater than the 
angle det~cit of the triangle A(x, y, z). 
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Proof: The angles of the triangles 6 are not smaller than the angles of f(~) 
and the sum of angle deficits is sub-additive with respect to triangulations: 

deficit(f) := Z deficit(~) _< Z deficit (f(6)) _< deficit ( A ( x , y , z ) )  [] 
~ E T  2 6 E T  2 

LEMMA 2.11. For every interior vertex p in T ~ the sum of the angles 
adjacent to p is at least 2~. For every vertex p, which is an interior point 
of a side of A,  the sum of the angles adjacent to 19 is at least 7r. 

Proof: Consider an interior vertex p. There is exactly one segment cr~ which 
contains p as an interior point. Let r and r be the sums of angles in 
(A, dr) adjacent to p from two different sides of a~. Denote by ~i the sums 
of corresponding angles in X. For each angle a adjacent to p in (5 ,  dr), the 
corresponding angle in X adjacent to f(p)  is not greater than a. Therefore, 
r _> V)i. By Lemma 2.1 and Lemma 2.2, we conclude that r _> 7r. The 
argument for vertices on the boundary is analogous. [] 

We now compare local curvature bounds of the spaces X and (A, dr). 

PROPOSITION 2.12. Suppose that the filling f : T 1 ---+ X is e-fine. Let p be 
a point in T 1 so that the ball B~(f(p))  satisfies the CAZ(n)-property with 
n < O. Then the local curvature of  (A, df) at the point p is bounded from 
above by n. 

Proof: The arguments of the proof of Theorem 15 in [B] remain valid for 
singular spaces with piecewise constant curvature. The link condition for 
(A, d f)  is satisfied according to Lemma 2.11. [] 

COROLLARY 2.13. The geodesic space (A, dr) satisfies the CAT(O)-property. 

Proof: According to Theorem 7 in [B] it suffices to verify that any two points 
in (A, dr) are connected by a unique geodesic. Suppose that p, q are points 
which are connected by two distinct geodesics 71 and 72. Without  loss of 
generality, we may assume that the interiors of 71 and 72 are disjoint. Then 
71 U 72 bounds a n-gon P which is triangulated by triangles of nonpositive 
curvature. Using the Gaug-Bonnet formula and Lemma 2.11, we conclude 
that the sum of angles in P is less than (n - 2)7r. On the other hand, P has 
n - 2 angles greater or equal to 7r by Lemma 2.2. [] 

2.4  Q u a s i - i s o m e t r i c s  o f  m e t r i c  spaces .  Let (Xj ,  dj) (j = 1,2) be a 
pair of metric spaces. We recall that  a map f : (X l ,d l )  ~ (X2,d2) is a 
quasi-isometric embedding if there are two constants K > 0 and C such 
that 

I(- ldl(x ,  y ) -  C ~ d2 ( f (x) ,  f (y))  <_ K d l ( x ,  y ) +  C 
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for each x , y  E X l .  A map fl  : (X l ,d l )  --* (X2,d2) is a quasi-isometry if 
there are two constants C1, C2 and another map f2 : (X2, d2) --* (X l ,d l )  
such that both f l ,  f2 are quasi-isometric embeddings and 

dl ( f2 f~(x) ,x )  < C1 , d2( f l f2(y) ,y)  < C2 

for every x E X1, y E X2. Such spaces X1,X2 are called quasi-isometric. 
For example, two geodesic metric spaces which admit cocompact discrete 
actions by isometrics of the same group are quasi-isometric. 

A finitely generated group F with a fixed finite set of generators carries a 
canonical metric which is called the word metric. The quasi-isometry class 
of the word metric does not depend on the generating set. 

2.5 Bi-Lipschitz embeddings  of Eucl idean planes. 

LEMMA 2.14. Let T be a metric tree and f : •2 ~ T x R be a bi-Lipschitz 
embedding. Then the image of f is a fiat in T x R. 

Proof: The map f is closed because it is bi-Lipschitz. Consider the pro- 
jection P of f (R  2) in the tree T. The set P is a subtree in T. Let 
w E P be any point which separates P.  Then the line {w} x R sepa- 
rates f(N 2) and therefore I - I ( ( T  \ {w}) x R) is not connected. We denote 
the intersection f(N2) n {w} x N by L. The preimage f - I ( L )  is closed 
in N 2. The compact subset f-l(L) U {oo} in the one-point compactifica- 
tion S 2 = R 2 U {oc} is homeomorphic to the subset L U {oc} in the one- 
point compactification of the real line {w} x R. Hence by Alexander duality 
H~(LU{oc},  Z) ~/ : /0 (N 2 - f - ~  (L), 7) r 0, where we use Alexander-Spanier 
cohomology. Thus L = {w} x R. It follows furthermore that w separates P 
in exactly two components. Hence P is homeomorphic to an interval. Since 
f is closed, f (N 2) = P x R. P is a complete geodesic in T because f is 
closed and is a homeomorphism onto its image. D 

COROLLARY 2.15. The product of a metric tree and R is not bi-Lipschitz 
homeomorphic to the product of two metric trees with nontrivial branching. 

Proof: The product of two metric trees with at least 3 ends contains three 
flats which have exactly one common point. [] 

3. Ultral imits  of Metric Spaces 

Let (Xi) be a sequence of metric spaces which is not precompact in the 
Gromov-Hausdorff topology. One can describe the limiting behavior of the 
sequence (Xi) by studying limits of precompact sequences of subspaces Y/ C 
Xi. Ultrafilters are an efficient technical device for simultaneously taking 
limits of all such sequences of subspaces and putting them together to form 
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one object, namely an ultralimit of (Xi). We discuss this concept following 
Gromov ([Gr2]). 

3.1 U l t r a f i l t e r s .  Let I be an infinite set. A filter on I is a nonempty 
family w of subsets of I with the properties: 
o0 w. 
o I f A E w a n d A C B ,  t h e n B E w .  
o I f A 1 , . . . , A , , E w ,  t h e n A 1 f l . . . n A n  Ew. 

Subsets A C I which belong to a filter w are called w-large. We say that  
a property (P) holds for w-all i, if (P) is satisfied for all i in some w-large 
set. An ultrafilter is a maximal filter. The maximality condition can be 
rephrased as: for every decomposition I = A1 U . . .  U AN of I into finitely 
many disjoint subsets, the ultrafilter contains exactly one of these subsets. 

For example, for every i E I, we have the principal ultrafilter 5i defined 
as ~i := {A C I ] i E A}. An ultrafilter is principal if and only if it 
contains a finite subset. The interesting ultrafilters are of course the non- 
principal ones. They cannot be described explicitly but exist by Zorn's 
lemma: every filter is contained in an ultrafilter. Let Z be the Zariski filter 
which consists of complements to finite subsets in I. An ultrafilter is a 
nonprincipal ultrafilter, if and only if it contains Z. For us is not important  
what ultrafilters look like, but rather how they work: An ultrafilter w on 
I assigns a "limit" to every flmction f : I --~ Y with values in a compact 
space Y. Namely, 

w-lim f = w-lira f ( i )  �9 Y 

is defined to be the unique point y �9 Y with the property that  for every 
neighborhood U of y the preirrmge f - l u  is "w-large". To see the existence 
of a limit, assume that  there is no point y �9 Y with this property. Then 
each point z �9 Y possesses a neighborhood Uz such that  f - l u z  ~ w. By 
compactness, we can cover Y with finitely many of these neighborhoods. It 
follows that  I ~ w. This contradicts the definition of a filter. Uniqueness of 
the point y follows, because Y is Hausdorff. Note that  if y is an accumulation 
point of {f(i)}i~i  then there is a non-principal ultrafilter w with w-lira f = y, 
namely an ultrafilter containing the pullback of the neighborhood basis of y. 

3.2 U l t r a l i m i t s  o f  m e t r i c  spaces .  Let (Xi)i~i be a family of metric 
spaces parametrized by an infinite set I. For an ultrafilter w on I we define 
the ultralimit 

X,,, = w-Sm Xi 
? 

as follows. Let Seq be the space of sequences (xi)i~I with xi �9 Xi. The 
distance between two points (xi), (y~) �9 Seq is given by 
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d,~((xi),(yi)) := ~-lim(i H dx~(xi, yi)) 

where we take the ultralimit of the function i ~-~ dx~(xi, yi) with values in 
the compact set [0, oc]. The function d~ is a pseudo-distance on Seq with 
values in [0, cc]. Set 

: =  (Seq, 
where we identify points with zero d~-distance. 

EXAMPLE 3.1: Let Xi = Y for all i, where Y is a compact metric space. 
Then X~ ~ Y for all ultrafilters ~. 

The concept of ultralimits extends the notion of Gromov-Hausdorff lim- 
its: 

PROPOSITION 3.2. Let (Xi)i~m be a sequence of compact metric spaces 
converging in the Gromov-Hausdorff  topology to a compact metric space 
X .  Then X~ ~- X for all non-principal ultratilters w. 

Proof: Realize the Gromov-Hausdorff convergence in an ambient compact 
metric space Y, i.e. embed the Xi and X isometrically into Y such that the 
Xi converge to X with respect to the Hausdorff distance. Then there is a 
natural isometric embedding 

X ~ = a - l i m X i  ~ ) w - l i m Y - Y .  
i i 

Since a is non-principal, the ~-limit is independent of any finite collection 
of Xi 's  and we get: 

io i~_io 

On the other hand X C_ t(X~), because t ((xi))  = x if (xi) is a sequence 
with xi E Xi  converging in Y to x E X. Hence ~(X~) = X which proves 
the claim, o 

If the spaces Xi do not have uniformly bounded diameter, then the 
ultralimit X~ decomposes into (generically uncountably many) components 
consisting of points of mutually finite distance. We can pick out one of these 

0 The sequence (x~ defines components if the spaces Xi have basepoints x i . 
0 in X,~ and we set a basepoint x,~ 

x ~ : =  I d (x ,x ~ < 2 } .  
Define the based ultralimit as 

0 0 ~-l.im(Xi, x ~ := (X,~, x~,) . 

EXAMPLE 3.3: For every locally compact space Y with a basepoint yo, we 
have: 



592 M. K A P O V I C H  A N D  B. L E E B  G A F A  

 -lim(Y, -- (Y, Yo) 

We observe tha t  some geometric properties pass to ultral imits:  

PROPOSITION 3.4. Let  o (Xi ,  x i )iEI be a sequence of based geodesic spaces 
and let co be an ultrafilter. Then X ~ is a geodesic space. 

I f  the Xi  are CAT(R) spaces for some ~ <_ 0 then X ~ has the same upper 
curvature bound ~. 

Proof: The ul tral imit  of geodesic segments in Xi  is a geodesic segment  
in X ~ Therefore X ~ is a geodesic space. It remains to prove tha t  any  
pair of points x~o = (xi) and y~o = (Yi) in X ~ can be joined by a unique 
geodesic. Suppose tha t  d~(x~, y~) = s + t where s, t _> 0. There are points 
zi on the geodesic segments [xiyi] such tha t  for si :=  di(xi ,  zi) and ti :=  
di(zi, Yi) we have aMimsi  = s and co-limti = t. Hence z~o := (zi) satisfies 
d~(x~,z~)  = s and d~(z~,y~)  = t. Suppose tha t  u~ = (ui) is another  
point wi th  the same property. Consider in the model  space M~ comparison 

' b e a  triangles A(x}, u}, y~) with the same sidelengths as A(xi ,  ui, Yi). Let z i 
division point on [x}y~] corresponding to zi on [xiyi]. Since w-lim(di(xi,  ui)+ 
di(ui, Yi) - di(Yi, xi)) = 0, we have w-limdi(ui ,  zi) <_ c~-limdM~ (u{, z~) = 
0 and therefore u~o = z~o. Thus there is a unique point z,~ C X~ with  
d~(x~, z~) = s and d~(z~, y~) = t. D 

COROLLARY 3.5. Let (Xi) ieN be a sequence of geodesic spaces with upper 
curvature bounds ~i tending to -oc .  Then for every non-principal ultrafilter 
co the ultralimit X~o is a metric forest, i.e. every component is a metric tree. 

3.3 T h e  a s y m p t o t i c  c o n e  o f  a m e t r i c  s p a c e .  Let X be a metr ic  space 
and ~o be a non-principal ultrafi l ter on N. The asymptotic cone C o n e ~ ( X )  
of X is defined as the based ul t ra l imit  of resealed copies of X:  

ConQo(X) : = X  ~ , where (X~o,x~,~ 0 = c ~ - l j m ( ~ . X , x  ~  

The limit  is independent  of the chosen basepoint  x ~ E X.  The discussion 
in the previous section implies: 

PROPOSITION 3.6. 1. C o n e ~ ( X  x Y) = C o n e ~ ( X )  x ConQo(Y).  
2. C o n c u r  n =" R n. 

3. The asymptotic  cone of a geodesic space is a geodesic space. 
4. The asymptotic cone of a CAT(0)-space is CAT(0). 
5. The asymptotic  cone of a space with a negative upper curvature  bound 

is a metr ic  tree by Corollary 3.5. 

Remark 3.9': For any metric space X the asympto t ic  cone C o n e ~ ( X )  is 
complete ([DW]). 
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Remark 3.8: Suppose that X admits a cocompact discrete action by a 
group of isometries. The problem of dependence of the topological type of 
Cone",X oil the ultrafilter w is open (see [Gr2]). 

To get an idea of the size of the asymptotic cone, note that in the 
most interesting cases it is homogeneous. W~e call a metric space X quasi- 
homogeneous if d i a m ( X / I s o m ( X ) )  is finite. 

PROPOSITION 3.9. Let X be a quasi-homogeneous metric space. Then 
Cone. : (X)  is a homogeneous metric space for every non-principal ultrafil- 
ter ~,. 

Proof: The group of sequences of isometries I sora(X)  ~ acts transitively on 
the nltralimit  -limi (1 .  X)  which contains Cone",(X) as a component. [] i 

LEMMA 3.10. Let X be a quasi-homogeneous CAT(-1) space with uncount- 
able number of ideal boundary points. Then for every nonpdncipal ultrat~l- 
ter w the asymptotic cone Cone",(X) is a tree with uncountable branching. 
Every open set in Cone",(X) contains an uncountable discrete subset. 

Proof: Let x ~ E X be a basepoint and y, z E 0 ~ X .  Denote by 7 the geode- 
sic in X with the ideal endpoints z, y. Then Cone,, (ix0, yD and Cone", ([x0, z D 
are geodesic rays in Cone , , (X)  emanating from x",.~ Their union is equal to 
the geodesic Cone~7. This produces uncountably many rays in Cone",(X) 
so that any" two of them have precisely the basepoint in common. The 
homogeneity of Cone",(X) implies the assertion, o 

COROLLARY 3.11. Let Z be a compact Seifert manifold with hyperbolic 
base orbifold. Then the space Cone",( 7rt (Z)) is the product of N and a tree 
with uncountable branching at every point. 

Proof: Let F be the fundamental group of the base orbifold of Z. If Z has 
non-empty boundary, then 7rl (Z) virtually splits as the product of 7/and a 
non-abelian free group. In the case OZ = 0 it was proven independently by 
Epstein, Gersten and Mess, that 71" l ( z )  is quasi-isometric to 7/x F, see [R]. 
The assertion follows from Lemma 3.10. [] 

Applications of the asymptotic cone as a quasi-isometry invaraint are 
based on the following 

PROPOSITION 3.12. Suppose that f : X ~ Y is a quasi-isometric embed- 
ding. Then for each non-principal ultrafilter ~, f induces a bi-Lipschitz 
embedding Cone,~( f ) :  Cone~(X)---* Cone",(Y). 

I f  f is a quasi-isometry then Cone",(f)  : Cone",( X )  ---+ Cone",(V) is a 
bi-Lipschitz homeomorphism. 

We illustrate this property in the following simple case: 
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PROPOSITION 3.13. Let X , Y ,  Z be CAT( -1 )  spaces which have at least 3 
ideal boundary points. Then R x X is not quasi-isometric to Y x Z. 

Proof: The spaces Cone~(X) ,  Cone~(Y) and Cone~(Z)  are metric trees 
with at least 3 ends. Therefore by Corollary 2.15, the spaces Cone~(Y)  x 
Cone~(Z)  and Cone~(X)  x R are not bi-Lipschitz homeomorphic. [] 

EXAMPLE 3.14: H p x Hq is not quasi-isometric to H p+q-1 x R, where 
p,q>_ 2. 

3.4 Limits of isometric actions on C A T ( 0 ) - s p a c e s .  In [M], Morgan 
compactifies the space of representations of a finitely generated group F into 
SO(n, 1). The ideal points of the compactification are isometric actions of 
F on metric trees. A geometric version of this construction was given in 
[Be] and [Pal. In this section, we rephrase their argument in the context of 
ultralimits and generalize it to the setting of nonpositive curvature. 

Let Xn be a sequence of CAT(0)-spaces and p~ : F ~ Isom(Xn) be a 
sequence of representations. Choose a finite generating set G of the group 
r .  For x e X,~, we denote by Dn(x) the diameter of the set pn(G)(x). 
Set D~ := infxexn D,~(x). We assume that the sequence (Pn) diverges 
in the sense that  l i I n~_~Dn  = oc. Choose points z,~ E X~ such that 
D~(xn) <_ Dn + 1/n. For any non-principal ultrafilter cz, there exists a 
natural isometric action p~ of F on the ultralimit of rescaled spaces 

(X~o, x,o) := w-lim(D~ -1 �9 Xn, Xr~) �9 
n 

X,~ is a CAT(0)-space and the action p~ has no global fixed point. If the 
spaces X~ are CAT(-1 ) ,  then the limit space X~ is a metric tree. The 
tree constructed in [Be] and [Pal is the minimal invariant subtree. Assume 
also that  the spaces X~ are Hadamard manifolds of uniformly bounded 
dimension with sectional curvature bounded between two negative constants 
- a  2, - 1  and that the representations p~ are discrete and faithful. Then the 
Margulis lemma implies that the action p~ is small. This means that the 
stabilizer of any non-degenerate segment in X~ is virtually nilpotent. 

4. The Large-scale Geometry of Certain CAT(0)-spaces 

4.1 Fat triangles in CAT(0)-spaces. Consider a Haken 3-manifold M 
equipped with a metric of nonpositive curvature as in Theorem 2.8. In this 
section we will assume that M has at least one hyperbolic component. Let 

> 0 be such that the components of T t2 0 M  are 7c-separated. Denote by 
_N the 3e-neighborhood of the union of T U OM and all Seifert components 
of M.  Then there is a negative constant g such that on every 2c-bM1 with 
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center outside ~V the sectional curvature is bounded from above by ~. The 
lift N of 2~ to the universal cover fir consists of e-separated convex sets Ni. 
After rescaling, we can assume that ~ = -1 .  

More generally, we consider a CAT(0)-space X equipped with a collec- 
tion of disjoint open convex sets Ni which satisfy the property: 

(,) There exists e > 0 such that  each ball of radius 2e centered at a point x 
outside N := UiNi is CAT(-1) .  
Denote by H the complement of N in X. Consider a geodesic triangle 

A(vl,  v2, v3) in X and choose an e-fine straight filling f : T 1 ~ X of this tri- 
angle. We denote by E the CAT(0)-space (A, d f) constructed in section 2.3. 
Put  R = R(e) :=  4c -1 -[- 2e. Define C* to be the set of all points in E which 
have distance not greater than R from two different sides of A. The reader 
may think of C* as the union of corners of the triangle E. (See Figure 1.) 

Figure  1 

LEMMA 4.1. The set f ( (2  \ C*) N T 1) is contained in N. 

Proof: Suppose that  x is a point in (E \ C*) N T 1. Consider the concentric 
metric circles 7k in E centered at x with radii kr for all odd numbers k 
so that  ks _< R - r There are n := [R/(2c)] such circles. These circles 
meet at most one side of A. Suppose that  each circle 7k contains a point 
xk  E f - l ( H )  C T 1. The discs D~(xk) C E of radius e centered at xk are 
disjoint. Since the filling f is e-fine, every disc D~ (xk) is covered by triangles 
(~i which are contained in D2~ (xk). According to Lemma 2.9, every triangle 
f(06i) is contained in the ball B2~(f(xk)). By construction of E and by 
the property (,), the curvature ~(~i) of the interior of each triangle ~i is at 
most -1 .  For a measurable subset Y C_ E, we define the integral 

6ET(2) 
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Using the GauB-Bonnet formula, we estimate: 

deficit(f) = fr(-Ifr~)dvol > Z JD (-I(~)dvol 

LTre 2 ( R -  2e)Tre 2 
> - - >  >7c 
- 2 4 e  - 

a n d  hence its area is at least half the area of the Euclidean disc of radius e. 
On the other hand, it follows from Lemma 2.10 that 

deficit(f) < deficit (A(Vl, vz, v3)) < 7r. 

This contradiction implies that  for at least one circle 7k, the intersection 
7k N T 1 is entirely contained in f - l ( N ) .  Any point on 7~ is at distance at 
most e/2 from a point in 7k D T 1. Therefore consecutive points of 7k 7/T 1 
are at most e apart. Since the convex subsets Ni are G-separated, f(Tk N T 1) 
lies in one component Ni. 

We conclude the proof by showing that  the convexity of Ni and the 
straightness of the filling f imply: 

n a x ;  

We abbreviate D := Dk~ (x). The intersection of 7k with 0E is either empty 
or consists of the endpoints of a subsegment r of a side of A. f(r) is 
contained in Ni, because Ni is convex. Recall that  the triangulation T is 
obtained by successively adding segments al, see section 2.3. We proceed 
by induction on I. Suppose that  Tt11 N D C f -x(Ni) .  Then 

O(a; n D) c (T;L1 riD) u(Tk n T  1) c f - l ( N i )  . 

The convexity of JVi implies that  c~l N D is contained in f-1 (Ni). o 
We say that  the triangle T in X is r-fat if its inradius is strictly greater 

than r. For every vertex vi of r, we define the r-corner C~(vi) at vi to 
be the set of points on 7- whose distance from both sides adjacent to vi is 
at most r. Note that if 7- is r-fat, then the r-corners at its vertices are 
disjoint. We define the r-fat part (D,.(w) of 7- to be 7- \ UiC~(vi). Recall that  
R = R(~) = 4c -3 + 2e. 

PROPOSITION 4.2. Suppose that the triangle A(Vl, v2, va) is R = R(e)-fat. 
Then the fat part 42R(A(vl, v2, v3)) iS contained in a single component Ni. 

Proof: Let f : T 1 ---* X be an G-straight filling of A(Vl,V2,V3). Denote by 
C*R(Vi ) the set of points on E whose distance in E to both sides [viVi-a] 
and [vivi+l] is at most R. Then f(C*R(Vi ) NOV,) C CR(vi). The C*n(vi ) 
are convex subsets of E and since A(Vl, v2, v3) is R-fat by assumption, they  
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are disjoint and intersect at most two sides of 0E. Thus, their complement 
F := E \ UiC~(v~) in E is connected. By Lemma 4.1, F N T  1 is contained in 
f - 1  ( N ) .  The components Ni a r e  e-separated and the connected set F lies in 
a e/2-neighborhood of T 1. We conclude that OR(A(vl, v2, v3)) C f ( F  A T 1) 
is contained in a single component Ni. [] 

4.2 A s y m p t o t i c  cones  of  c e r t a i n  CAT(0 ) - spaces .  We keep the nota- 
tions and assumptions of section 4.1. In addition, we require that  the sets 
Ni are 3e-neighborhoods of flats Fi in X. 

Pick a non-principal ultrafilter w. We define 5 to be the family of all 
flats in Cone~ (X)  which arise as ultralimits of sequences ( i -1 .  Fj(i))~eN of 
flats in the rescaled spaces i - 1  �9 X. 

PROPOSITION 4.3. The asymptot ic  cone Cone~ ( X )  satisfies the properties: 
o (F1) Every  open triangle is contained in a flat F E ~ .  
o (F2) A n y  two fiats in ~ have at most  one point in common. 

Proof: Let A = A ( x , y , z )  be an open triangle in Cone~(X).  Then A is 
the ultralimit of a sequence of triangles i -1 �9 Ai, where Ai = A(xi, yi, zi) 
are triangles in the original space X. For w-every i the triangle Ai is R-fat, 
where R is chosen as in section 4.1. Otherwise, the ultralimit A would not 
be open. By Proposition 4.2, the fat part OR(Ai) is contained in a set Nj(i). 
Each point w on the side ]zy[ of A corresponds to a sequence of points wi 
o n  ]xiYi[. Since A is open, we have: 

1 . d(wi, [zizi] U [ziyi]) �9 0 < d,,(w, [xz] U [zy]) = w-lim - 

Hence for w-every i, wi does not belong to any R-corner of Ai. Therefore, 
wi belongs to Nj(i) and its distance from the flat Fj(i) is at most 3c. We 
conclude that  w lies in the fiat F E 5 c which arises as the ultralimit of the 
sequence ( i -1 .  Fj(i)). This concludes the proof of property (F1). 

To verify property (F2), let F and F' be flats in P which have two dis- 
tinct points x and y in common. We will show that  F t C F. Choose a point 
z p in F ~ so that  the triangle A(x, g, z ~) is non-degenerate and pick points u 
and w on ]xy[ and ]xz'[. There is a sequence of fiats (Fj(i)) in X which cor- 
responds to the flat F.  Select points x~, yi E Fj( O, z~ E X ,  u~ E]xi, Yi[ and 
wi E]xi, z~[ so that  (zi), (yi), z' ( i ) ,  (ui), (wi) represent the points x, y, z', u, w. 
For w-all i~ ui, wi belong to the fat part OR(A(xi ,  Yi, z~)). According to 
Proposition 4.2, the points ui, wi belong to the same component Nk(i). Since 
ui lies on Fj(i), Nk(i) coincides with Nj(i). Hence, w lies on F. We conclude 
that  z' E F ,  since w was an arbitrary point of ]xzr[. [] 

4 . 3  S p e c i a l  CAT(0 ) - space s .  In the previous section, we established 
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geometric properties for the asympto t ic  cone of a CAT(0)-space with iso- 
la ted flats. The asympto t ic  cone is a CAT(0)-space itself and  now we shall 
s tudy  geometric and topological properties of CAT(0)-spaces Y satisfying 
the conclusion of Proposi t ion 4.3. 

Consider a flat F E 5 c and denote by ~rf : Y --* F the nearest-point-  
project ion onto F .  

LEMMA 4.4. Let 7 : I - - ~  Y be a curve in the complement o fF .  Then 7(FO'y 
is constant. 

Proof: Assume tha t  7~F o 7 is non-constant .  Then there exist nearby points 
pl  and p2 on 7 with dist inct  projections qi := ZcF(pi) in F:  

d(pi,F) = d(pi,qi) > d(px,p2) (i = 1,2) . 

The geodesic [Plp2] cannot  meet  F and therefore the piecewise geodesic pa th  
~lqlq2p~] is not locally mininfizing at ql or q2, say at ql (see L e m m a  2.4). 
Since ~)lql]N[qlq2] = {ql }, the triangle A(p l ,  ql, q2) spans a non-degenerate  
open triangle A(r,  ql, s). By proper ty  (F1), A(r ,  ql, s) lies in a flat F ' .  
Since F Q  F I contains the non-tr ivial  segment  [ql8], F and F 1 must  coincide 
according to (F2). Thus [Plql] N F contains a non-trivial  segment  [ql r]. This 
contradicts  tha t  ql = a-F(Pl), r, 

LEMMA 4.5. Every embedded closed curve 7 C Y is contained in a fiat 
F E J  z. 

Proof: Consider the geodesic segment a joining two dist inct  points x and 
y on 7. Since 7 is a closed curve, the project ion 7r~ maps  at  least two 
points of 7 to an interior point u of ~. Hence there exists a point z on 
7 \ a with Try(z) = u. Consider a maximal  subarc c~ C 7 containing z wi th  
7r~(c~) = {u}. At least one of the endpoints  of c~ is different from u, i.e. 
does not  lie on a.  Denote  it by Zl. There is a nearby point  w on 7 whose 
projection ~r~,(w) =: v is different from u and  which satisfies 

d(w, Z l )  ( d(u, Z l )  = d(a, Z l )  �9 

As in the proof of L e m m a  4.4, we find a flat F E ~c which contains a 
non-degenerate segment  a r C a.  

We proceed by proving tha t  7rF(x) r ~rF(y). The intersection F N a is 
a non-degenerate  segment  [x'yq, so tha t  x '  lies between x and yr. Consider 
x"  := 7rt~(x) and suppose tha t  x" r xq Then  the piecewise geodesic pa th  
xx 'x"  is not locally minimizing at  x' .  Since [xx'] N [x'x"] = {x'}, A(x,  x', x") 
spans a non-degenerate open triangle with vertex x 1. As in the proof of 
L e m m a  4.4 we obtain a contradiction.  Therefore ~rF(x) = x'  and similarly 
7rF(y) = y'.  Thus ZrF o 7 is non-constant .  
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Suppose now that 7 ~ F. Choose a maximal open subarc/3 C 7 in the 
complement of F.  By Lemma 4.4~ 7rv(/3) is a point p E F. By maximality of 
/3 and continuity we conclude that  every endpoint of/3 must coincide with 
p. Therefore ,3 has at most one endpoint and 7rF(7) = {p}. This contradicts 
7rF(X) ~ 7rF(y). We conclude that  7 is contained in F. D 

COROLLARY 4.6. Every embedded disc in Y of dimension at least 2 is 
contained in a fiat F E .~. In particular, there are no other fiats in Y 
besides the fiats F C ~ .  

We can use arguments similar to the proof of Lemma 4.4 to show: 

LEMMA 4.7. Suppose that  T is a metric tree. Then T is a topological tree, 
i.e. any two points are connected by a unique topologically embedded arc. 

We conclude from Lemma 4.5: 

COROLLARY 4.8. Suppose that  Y is a CAT(0) space satisfying the con- 
clusion of Proposition 4.3 and all fiats in Y have dimension 2. Let T be 
a tree with nontrivial branching. Then there is no topological embedding 
r  

COROLLARY 4.9. Let Y be a CAT(0) space satisfying the conclusion of 
Proposition 4.3. Suppose that T is a metric tree which contains an uncount- 
able discrete subset. Then there is no bi-Lipschitz embedding ~ : T x R --~ Y .  

Proof: Suppose that  there is such an embedding ~b. Lemma 4.5 and property 
(F2) imply that  the image of 0 is contained in a flat F E .T'. We obtain a 
contradiction, since a fiat does not contain uncountable discrete subsets, o 

5. D i s t inc t ion  of  Quas i - i sometry  Classes  of  3 -mani fo ld  Groups  

The goal of this section is to distinguish quasi-isometry classes of funda- 
mental groups of certain 3-manifolds. Recall that  any Haken manifold of 
zero Euler characteristic can be obtained in a unique way by gluing hyper- 
bolic and maximal Seifert components. In this section we consider only such 
Haken manifolds. 

THEOREM 5.1. Let M1 be a non-positively curved Haken manifold which 
has at least one Seifert component with hyperbolic base. Assume that M2 
is a Haken manifotd which contains only hyperbolic components. Then the 
fundamental groups ~rl (M1) and 70 (M2) are not quasi-isometric. 

Remark 5.2: As we shall prove in [KL1], the condition in Theorem 5.1 that  
M1 admits a metric of non-positive curvature is actually obsolete. Namely, 
we prove that  fundamental group of any Haken manifold which is neither 
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Sol nor Nil, is quasi-isometric to the fundamental group of a 3-manifold of 
nonpositive curvature. 

Proof: The manifold M1 contains a Seifert component Z. The universal 
cover 2 of Z is a convex subset in the universal c o v e r  ]~-I 1 according to 
2.6. Therefore, the asymptotic cone Cone~(2)  is isometrically embedded 
in Cone~(2~/1). The asymptotic cone Cone~(2)  is isometric to the product 
of the real line and a metric tree T with nontrivial branching, see Corollary 
3.11. Suppose that there exists a quasi-isometry M1 --~ ~/2. It induces a 
homeomorphism Cone~(3-11) ~ Cone~(M2). Hence, N x T topologically 
embeds into Con%(2kIo_). The manifold Mo_ carries a metric of nonpositive 
curvature (Theorem 2.8). By Theorem 4.3, Cone~(2~/2) satisfies the prop- 
erties (F1) and (F2), see the discussion in the beginning of section 4.1. This 
contradicts Corollary 4.8. 

T H E O R E M  5.3. Let M be a nonpositively curved Haken 3-manifold with 
totally-geodesic fiat boundary. Assume that M is not / /a t ,  not Seifert and 
not homeomorphic to a dosed hyperbolic manifold. Then the asymptot ic  
cone of the universal cover of M contains two/ /a ts  which have exactly one 
point in common. 

Proof: Suppose that  M contains a hyp_erbolic component N. By Theorem 
2.6, the universal cover iN; is convex in M. Hence, Cone~ (17) is isometrically 
embedded in Cone~( f I ) .  Pick two flats F1 and F~ in 0N. Then Cone~( F1 ) 
and Cone~(F2) are flats in Cone~(2V) which both contain the base point. 
According to Proposition 4.3 they have exactly one common point. 

We are left with the case that M is a graph-manifold. We can find in the 
universal cover AT/two convex subsets A1 and A2 which are universal covers 
of Seifert components and whose intersection is a flat F. The sets Ai split off 
Riemannian factors li isometric to the real line. Since M is not Seifert, we 
may assume that the one-dimensional factors are not parallel in F. Choose 
fiats Fi in Ai different from F and consider the associated fiats Cone~ (Fi)  

~ 

in Cone~(M).  The intersection of Cone~(Fi)  with Cone~(F)  is a line 
Cone~(li). The lines Cone~(li)  intersect in a single point. Since the inter- 
section of the sets Cone~(Ai) is precisely Cone~(F) ,  the flats Cone~(Fi)  
have exactly one point in common, o 

Theorem 5.1 combined with results of Gromov, Gersten, N. Brady, 
Schwartz and ourselves leads to a rough classification of quasi-isometry types 
of fundamental  groups of Haken manifolds. We divide Haken 3-manifolds 
with flat incompressible boundary into the following classes. 
1. 7-/: closed hyperbolic 3-manifolds. 
2. CT-I : open hyperbolic 3-manifolds of finite volume. 
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3. ~ ) /  : manifolds not contained in H, CT-I which are obtained by gluing 
hyperbolic components only. 

4. $ : Seifert manifolds with hyperbolic base-orbifolds. 
5. $ $  : graph-manifolds. They are obtained by gluing Seifert manifolds 

with hyperbolic base and they are not Seifert. 
6. 7-/$ : manifolds with at least one hyperbolic and Seifert component (with 

hyperbolic base). 
7. Closed Nil-manifolds. 
8. Closed Sol-manifolds. 
9. Flat manifolds. 

T H E O R E M  5.4. If two 3-manifolds belong to different c/asses (1-9) then 
their fundamental groups are not quasi-isometric. 

Proof: The flmdamental groups of Nil-  and flat manifolds have polynomial 
growth of degree 4 in the nilpotent and of degree at most 3 in the flat case. 
Therefore they are not quasi-isometric to each other and to the fundamental 
groups of all other classes. 

The property to be word-hyperbolic is a quasi-isometry invariant ([GhH]). 
Therefore, the fundamental groups of closed hyperbolic manifolds are not 
quasi-isometric to the fundamental groups of manifolds of all other classes. 

Let M be a manifold of the class dT-/ and F be a finitely generated 
torsion-free group which is quasi-isometric to 7rl(M). Corollary 4 in the 
paper of R. Schwartz ([Sc2]) implies that F must be isomorphic to a lattice 
in S0 (3 ,  1) which is commensurable with 7rl(M). Therefore, if such a group 
F is the fundamental group of a Haken 3-manifold, then F belongs to the 
class C7-/. 

Theorem 5.1 and Remark 5.2 imply that  the fundamental groups of the 
class 7-/~ have different quasi-isometry type from the classes 7-/$, $ $  and $. 

Gersten introduced in [G1] a quasi-isometry invariant notion of diver- 
gence of geodesics which measures the rate of growth of diameters of spheres. 
Using [Br], Gersten ([G2]) shows that fundamental groups of manifolds in 
the classes ~ $  and 7-/7-/have exponential divergence. In [G2] Gersten proves 
that the fundamental groups of all graph-manifolds fibered over the cir- 
cle have at most quadratic divergence. On the other hand, [KL1] implies 
that  the fundamental group of any graph-manifold is quasi-isometric to the 
fundamental group of a graph-manifold fibered over the circle. This dis- 
tinguishes the classes ~,_q and $8 .  Note that Gersten characterizes closed 
graph-manifolds as those Haken manifolds whose fundamental groups have 
precisely quadratic divergence. 

To distinguish the fundamental groups of Seifert manifolds and manifolds 
in 7Y~, 7Y$. $ S  up to quasi-isometry we observe that their asymptotic cones 
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have different topological properties. Namely, the asymptot ic  cone of the 
fundamental group of a Seifert manifold with hyperbolic base splits as a 
metric product T x R where T is a tree with nontrivial branching, see 
Corollary 3.11. Hence the intersection of bi-Lipschitz embedded Euclidean 
planes is either empty or contains a line, according to Lemma 2.14. On 
the other hand, by Theorem 5.3, the asymptotic cones of manifolds in the 
classes 7-/7-/, ?-/S, ,S$ contain flats which have precisely one point in common. 

To sever the class of Sol-manifolds one can use the fact that  amenability 
is a quasi-isometry invariant. The only Haken manifolds with amenable 
fundamental groups are Sol-, Nil- and flat manifolds. One may also argue 
as follows on the level of asymptotic cones. It was shown in [Gr2] that the 
asymptotic  cone of the Lie group Sol is not simply-connected. On the other 
hand, if M is a manifold of nonpositive curvature, then the asymptotic  cone 
of the universal cover iV/is contractible (see 3.4). 

Remark 5. 5: A theorem of Rieffel ([R]) distinguishes quasi-isometry classes 
of fundamental groups of closed Seifert manifolds with hyperbolic base from 
the fundamental groups of all other 3-manifolds. 

Remark 5.6: Fundamental groups of open and closed aspherical 3-manifolds 
cannot be quasi-isometric, because they have different cohomological dimen- 
sion ([G3]). 

Remark 5.7: The question how to distinguish quasi-isolnetry types of fun- 
damental groups inside the classes 7-/$, ,SS and ~ remains open. Con- 
siderable progress in this direction was achieved by Schwartz ([Scl]) who 
proves that  fundamental groups of two open hyperbolic manifolds of finite 
volume are quasi-isometric iff they are commensurable. We discuss in our 
consecutive paper ([KL2]) the quasi-isometry invariance of the canonical 
decomposition for (universal covers of) Haken manifolds of zero Euler char- 
acteristic. 

[Sr] 

[DW] 

[G1] 

[G2] 

R e f e r e n c e s  

W. BALLMANN, Singular spaces of nonpositive curvature, in [GhtI], 189-201. 
M. BESTVINA, Degenerations of hyperbolic space, Duke Math. Journal 56:1 
(198S), 143-161. 
N. BRADY, Divergence of geodesics in manifolds of negative curvature, in 
preparation. 
L. VAN DEN DRIES, A.J. WILKIE, On Gromov's theorem concerning groups 
of polynomial growth and elementary logic, Journ. of Algebra 89 (1984), 
349-374. 
S. GERST•N, Quadratic divergence of geodesics in CAT(0)-spaces, Geometric 
and Functional Analysis 4:1 (1994), 37-51. 
S. GERSTEN, Divergence in 3-manifolds groups, Geometric And Functional 
Analysis (GAFA) 4:6 (1994), 633-647. 



Vol.5, 1995 ON ASYMPTOTIC CONES 603 

[G3] 

[GhH] 

[Grl] 

[Gr2] 

[GrBS] 

[JSh] 

[Jo] 

[KL1] 

[KL2] 

[K1L] 

ILl 

[LSco] 

[M] 

[P] 

[Pa] 

[R] 

[Sc2] 

[Sco] 

[T] 

S. GERSTEN, Quasi-isometry invariance of cohomological dimension, C.R. 
Acad. Sci. Paris 316:I (1993), 411-416. 
E. GI'IYS, P. DE LA HARPE, Sur les Groupes Hyperboliques d'Apr~s Mikhael 
Gromov, Birkhs 1990. 
M. GROMOV, Infinite groups as geometric objects, Proc. ICM Warszawa 1 
(1984), 385-392. 
M. GROMOV, Asymptotic invariants of infinite groups, in "Geometric Group 
Theory", Vol. 2; Cambridge Univ. Press., London Math. Society Lecture 
Notes, 182 (1993). 
M. GROMOV, W. BALLMANN, V. SCHROEDER, Manifolds of Nonpositive Curva- 
ture, Birkhs 1985. 
W. JACO, P. SItALEN, Seifert Fibre Spaces in 3-manifolds, Memoirs of AMS, 
no. 2 (1979). 
K. JOHANNSON, Homotopy-equivalences of 3-manifolds with boundary, 
Springer Lecture Notes in Math. 761 (1979). 
M. KAPOVICtt, B. LEEB, On quasi-isometries of graph-manifold groups, Pre- 
print, 1994. 
M. KAPOVICH, B. LEEB, Quasi-isometries preserve the canonical decomposi- 
tion of Haken manifolds, Preprint, 1994. 
B. KLEINER, B. LEEB, Rigidity of quasi-isometries for symmetric spaces of 
higher rank, Preprint, 1995. 
B. LEES, 3-manifolds with(out) metrics of nonpositive curvatures, PhD The- 
sis, University of Maryland, 1992. 
S. LEEB, P. SCOTT, Decomposition of nonpositively curved manifolds, in 
preparation. 
J. MORGAN, Group actions on trees and the compactification of the space of 
classes of SO(n, 1) representations, Topology 25:1 (1986), 1-33. 
P. PAPASOGLU, On the asymptotic cone of groups satisfying a quadratic 
isoperimetric inequality, Preprint. 
F. PAULIN, Topologie de Gromov ~quivariant, structures hyperboliques et 
arbres reels, Inv. Math. 94 (1988), 53-80. 
E. RIEFFEL, Groups coarse quasi-isometric to H 2 • •, PhD Thesis, UCLA, 
1993. 
V. SCHROEDER, A cusp closing theorem, Proc. AMS 106:3 (1989), 797-802. 
R. SCHWARTZ, The quasi-isometry classification of hyperbolic lattices, Preprint, 
1993. 
R. SCUWARTZ, On the quasi-isometry structure of rank 1 lattices, Preprint, 
1994. 
P. SCOTT, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 
4O4-487. 
W. TttURSTON, Hyperbolic structures on 3-manifolds, I, Ann. of Math. 124 
(1986), 203-246. 

Michael Kapovich 
Department of Mathematics 
University of Utah 
Salt Lake City, UT 84112 
USA 
kapovich@math.utah.edu 

Bernhard Leeb 
Mathematisches Institut 
Universits Bonn 
Beringstr. 1 
53115 Bonn, Germany 
leeb@rheimiam.uni-bonn.de Submitted: May 1994 


