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Abstract. We develop the notion of a Kleinian Sphere Pack-
ing, a generalization of “crystallographic” (Apollonian-like) sphere
packings defined by Kontorovich-Nakamura [KN19]. Unlike crys-
tallographic packings, Kleinian packings exist in all dimensions, as
do “superintegral” such. We extend the Arithmeticity Theorem
to Kleinian packings, that is, the superintegral ones come from
Q-arithmetic lattices of simplest type. The same holds for more
general objects we call Kleinian Bugs, in which the spheres need
not be disjoint but can meet with dihedral angles π{m for finitely
many m. We settle two questions from [KN19]: piq that the Arith-
meticity Theorem is in general false over number fields, and piiq
that integral packings only arise from non-uniform lattices.

1. Introduction

The classical Apollonian packing in the plane, usually described by
an ad hoc construction involving inscribing tangent circles, exhibits a
number of thereafter surprising arithmetic and dynamical properties;
see, e.g., [K13]. In this paper, we complete the program initiated in
[KN19] to understand the relationship between such packings and the
theory of arithmetic groups in hyperbolic space.

1.1. Kleinian (and Crystallographic) Packings.

A sphere packing (or just “packing”) P of Sn – B8Hn`1 (n ě
2) is an infinite collection of round balls in Sn with pairwise disjoint
interiors, such that the union of the balls is dense in Sn. We identify
the ideal boundary Sn “ B8Hn`1 with the one-point compactification
of Euclidean n-space Sn “ RnYt8u. By abuse of terminology, we will
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paq pbq pcq

Figure 1. paq A packing P, pbq its reflection group ΓP ,

and pcq its superpacking ĂP.

conflate the collection of balls P with the collection of round spheres
bounded by these balls. In view of the density condition, a packing
contains balls with arbitrarily small Euclidean radii. (Of course, the
radii are only defined once we choose an identification Sn – B8Hn`1,
in particular, we choose a point at 8.) The bend1 of a sphere is the
reciprocal of its radius, with the convention that a sphere containing
8 in its interior has negative radius and bend. A packing is integral
if all its spheres have integer bends.

Next we attach to any sphere packing its “superpacking.” For an
pn ´ 1q-sphere S Ă Sn, denote by RS reflection through S acting on
Hn`1. Given a packing P, let

(1) ΓP “ xRS : S P Py ă IsompHn`1
q

be the reflection group of P, generated by reflections through the
spheres in P. The superpacking

(2) ĂP :“ ΓP ¨P

is defined as the orbit of the packing under the action of its reflection
group, see Figure 1. A packing is superintegral if its superpacking
has all integer bends.2 Note that no tangency conditions are imposed
on the spheres; indeed the circles in the packing shown in Figure 1paq
are all disjoint (and this packing is superintegral).

As we will show, superintegrality, even in the absence of any other
structure imposed on the packing P, is already related to (sub)arithme-
ticity, as follows. Recall that a group of hyperbolic isometries is called

1Note that in the theory of Kleinian groups, “bend” more often refers to dihedral
angle; but for integral sphere packings, bend is used for inversive radii. For circles,
bend is the curvature, but for higher dimensional spheres, (Gaussian) curvature is
inverse square-radius.

2It turns out that this condition is strictly stronger than integrality; that is, there
exist packings, even crystallographic ones, which are integral but not superintegral
[KN19].
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“k-arithmetic” (of simplest type3) if, possibly after conjugation, it is
commensurable with the group OFpoq of o-integral automorphs of a
hyperbolic4 quadratic form F defined over a totally real number field
k with ring of integers o (see, e.g., [VS93]). We call a Zariski-dense,
discrete subgroup Γ ă IsompHn`1q k-subarithmetic if Γ is contained
in a k-arithmetic lattice.

Theorem 3 (Subarithmeticity Theorem). If an orbit

O “ Γ ¨ S0

of a fixed sphere S0 Ă B8Hn`1 under a Zariski dense subgroup Γ ă

IsompHn`1q has all integer bends, then Γ is Q-subarithmetic. More
precisely, there exists an isotropic rational hyperbolic quadratic form F
so that Γ is contained in OFpZq.

Corollary 4. In particular, if a general packing P happens to be su-
perintegral, then its reflection group ΓP is necessarily Q-subarithmetic.

Remark 5. These conclusions need not hold for o-(super)integral pack-
ings, that is, ones with all bends in a ring of integers o; see §1.2.

In general, there is not much more one can say about integral or
superintegral packings without assuming more structure.

Definition 6. A sphere packing P is Kleinian if its set of limit
points also arises as the limit set of a geometrically finite5 group ΓS ă
IsompHn`1q. We call ΓS a symmetry group of the packing.

In the special case that Γ is generated by finitely many reflections
in hyperplanes, P is called crystallographic; such were defined and
studied in [KN19]. It is well-known and easy to see (e.g., from the
Poincaré Fundamental Polyhedron Theorem) that discrete, finitely gen-
erated, hyperbolic reflection groups are geometrically finite, so every
crystallographic packing is also Kleinian.

The following statement is both standard and deserves to be stated
explicitly.

Theorem 7. Let ΓS ă IsompHn`1q be geometrically finite. Then its
domain of discontinuity is a disjoint union of open round balls (that is,
is a Kleinian sphere packing) if and only if the boundary of the convex
core M˚ of the orbifold M “ Hn`1{ΓS is totally geodesic.

3If an arithmetic subgroup of On,1 contains a hyperplane reflection, then it is
necessarily of simplest type, see [Vin67, Lemma 7].

4See Definition 47.
5See Definition 28.
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An important role is played by the “supergroup” of a Kleinian pack-

ing. If P has symmetry group ΓS, then the supergroup rΓ is defined
by

rΓ :“ xΓS,ΓPy .

That is, the supergroup is the group generated by both ΓS and ΓP .

Note that both the symmetry group ΓS and supergroup rΓ are not
uniquely determined by the packing P; indeed, any nontrivial normal
subgroup of ΓS will have the same limit set. A priori it is not even

obvious that rΓ acts discretely, but it is in fact a lattice, acting on Hn`1

with finite covolume; see the Structure Theorem 22.

We turn our attention now to the integral and superintegral Kleinian
packings. An immediate corollary of the Subarithmeticity Theorem 3 is
that, if a Kleinian packing P is integral, then any symmetry group ΓS
is Q-subarithmetic. If P is moreover superintegral, then its supergroup
rΓ is itself Q-arithmetic. This is because the superpacking ĂP can also

be given as the orbit of the packing P under the action of rΓ, together
with the obvious fact that, if a group is subarithmetic and a lattice,
then it is arithmetic!

In the case of crystallographic packings, the main result of [KN19,
Thm 18] was the following finiteness theorem. Before stating the theo-
rem, note that it is shown in [KN19, Thm 3] that there exist infinitely
many conformally inequivalent superintegral crystallographic packings
in certain dimensions up to n “ 18. We say that two Kleinian packings
are commensurable if (conjugates of) their supergroups are.

Theorem 8 (Finiteness Theorem [KN19]). Superintegral crystallogra-
phic packings exist in only finitely-many dimensions, and there are
finitely many in each dimension, up to commensurability.

Indeed, if a crystallographic packing is superintegral, then its super-
group is a Q-arithmetic reflective lattice. Arithmetic reflective lattices
are known (see, e.g., the discussion in [Bel16]) to lie in finitely many
commensurability classes in finitely many dimensions, which implies
Theorem 8. Moreover, there are no Q-arithmetic reflective lattices act-
ing on Hn`1 with n` 1 “ 20 or n` 1 ě 22, see [Ess96], so there are no
superintegral crystallographic packings in n “ 19 or n ě 21 dimensions.
Worse yet, crystallographic packings are not yet known to exist (nev-
ermind integrality) in dimensions n “ 14, 15, 16, 18 and 20, although
reflective lattices are known in one more than these dimensions [KN19].
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While the classification of commensurability types of superintegral
crystallographic packings awaits first that of arithmetic hyperbolic re-
flection groups, one can completely classify superintegral Kleinian pack-
ings in terms of arithmetic groups. The following is the first main
theorem of this paper.

Theorem 9 (Classification Theorem). A hyperbolic lattice is commen-
surable to a supergroup of a superintegral Kleinian packing if and only
if it is a non-uniform Q-arithmetic lattice of simplest type.

So in contradistinction with the Finiteness Theorem 8 for crystal-
lographic packings, more general Kleinian packings exist in every di-
mension. Moreover, the Classification Theorem 9 answers a question
posed in [KN19] on whether there exist superintegral crystallographic
packings with cocompact supergroups: there do not! We emphasize
again that the spheres in a superintegral Kleinian (or even just crys-

tallographic) packing could all be disjoint, but the supergroup rΓ must
have cusps. See Example 66.

Remark 10. The precise role of Q-isotropy of the corresponding qua-
dratic form leading to (super)integrality of packings is elucidated in
Lemma 52, which shows that the “covector” corresponding to the bend
is itself isotropic in the dual form.

Remark 11. Note that even if a symmetry group ΓS is geometrically
finite and the convex core M˚ of M “ Hn`1{ΓS has totally geodesic
boundary (so its limit set gives rise to a Kleinian packing P), and if

the supergroup rΓ of P is non-uniform and Q-arithmetic of simplest
type, it still need not be the case that the packing P is necessarily
integral, for any conformal choice of coordinates on Sn, see Example
67. But the next theorem states that, if M˚ has only one boundary
component (that is, ΓS acts transitively on the spheres in the packing),
then the packing is necessarily superintegral.

Theorem 12. piq Suppose that a supergroup rΓ of a packing P is a
non-uniform Q-arithmetic of simplest type (i.e. is commensurable to
OFpZq, where F is a rational hyperbolic quadratic form) and, moreover,

a symmetry group ΓS ă rΓ acts transitively on the set of spheres in the
packing P. Then there is always a conformal change of coordinates
such that P is superintegral.
piiq More generally, let Γ be any non-uniform Q-arithmetic group

of the simplest type and let S be a sphere for which the reflection RS

lies in Γ. Then the Γ-orbit of S can be made integral by a suitable
conformal change of coordinates.
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There are two main ingredients leading to the proof of the Classi-
fication Theorem 9, one geometric (constructing a Kleinian packing
from the Structure Theorem 22 below), and the second arithmetic, to
ensure that the packing thus constructed is indeed superintegral; it is
the second stage that forces Q-arithmeticity and non-uniformity of the
lattice.

A key step in the geometric argument relies on Millson’s theorem
[Mi76] that every arithmetic hyperbolic lattice of simplest type is com-

mensurable to a lattice rΓ such that Hn`1{rΓ contains a nonseparating
totally geodesic complete hypersurface of finite volume.

We will also show that, in each commensurability class, there are not
only infinitely many conformally inequivalent packings (as shown for
crystallographic packings in [KN19]), but their Hausdorff dimensions
can be made arbitrarily close to maximal.

Theorem 13 (Abundance Theorem). In every dimension n ě 2,
there exist quasiconformally inequivalent superintegral Kleinian pack-
ings, whose limit sets have Hausdorff dimension approaching n.

Note the contrast to Phillips-Sarnak’s and Doyle’s work on Schot-
tky groups [PS85, Theorem 5.4], [Do88], showing that their limit sets
have Hausdorff dimensions bounded strictly away from the ambient di-
mension n. Also note that the conformally inequivalent superintegral
Polyhedral Circle Packings in B8H3 constructed in [KN19, Thm 7] are
all Schottky, so their dimensions cannot approach n “ 2.

1.2. Packings over Number Fields.
To complete the discussion of Kleinian packings (before we turn to

Kleinian “bugs”), we show that the theory breaks down over number
fields, answering another question posed in [KN19]. For a totally real
number field k with ring of integers o, a packing is o-integral (resp.
o-superintegral) if every bend in its packing (resp. superpacking) lies
in o.

Proposition 14. The Subarithmeticity Theorem does not hold in num-
ber fields.

Indeed, already for the simplest case of the golden ring k “ Qp
?

5q,
there exist o-superintegral crystallographic packings whose supergroups
are non-arithmetic. (See Example 71.) But this is not the whole story,
as we also have the following.

Theorem 15. For any k-arithmetic hyperbolic lattice of simplest type
OFpoq, there is a totally real, quadratic extension k1 Ą k, with ring of
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B8Hn`1
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Figure 2. A portion of a polyhedron P having bound-
ing facet Fα lying in the hyperplane Hα. Also shown is
the ideal boundary Bα Ă B8Hn`1 of the complementary
half-space H´

α , and the cooriented round sphere B8Hα

bounding Bα.

integers o1, such that OFpoq is commensurable to the supergroup of an
o1-superintegral Kleinian packing.

Note that there is no condition on being non-uniform here, unlike
Theorem 9. Thus, even the Q-anisotropic form x2

1 ` x2
2 ` x2

3 ´ 7x2
4

has o1-superintegral Kleinian packings, for certain quadratic rings o1.
This leaves open the problem of giving a proper formulation for how
to characterize which o1-superintegral packings come from arithmetic
groups.

1.3. Kleinian Bugs.
To further extend the notion of a packing, we will allow spheres to

meet at a finite set of dihedral angles, as follows.
A cooriented round sphere in Sn is a round sphere together with a

choice of a nowhere vanishing normal vector field. Cooriented spheres
are in a natural bijective correspondence with cooriented hyperbolic
hyperplanes in Hn`1. A convex polyhedron, P , in Hn`1 is the inter-
section of a locally finite family of hyperbolic half-spaces H`

α in Hn`1.
It suffices to consider only half-spaces H`

α such that the hyperplanes
Hα intersect BP along facets Fα. We coorient these hyperplanes Hα so
that the normal vector fields point into the complementary half-spaces
H´
α . The ideal boundary B8H

´
α of the half-space H´

α is a round ball
Bα bounded by the cooriented round sphere B8Hα, see Figure 2.
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Definition 16. A bug B is an infinite collection of cooriented spheres
in Sn – B8Hn`1 containing facets of a convex polyhedron P “ PB Ă

Hn`1, with dihedral angles lying in a finite subset of
π

N
“

! π

m
: m P N

)

,

such that the union of round balls bounded by these spheres is dense in
Sn. As before, a bug is integral if its spheres all have integer bends.

In plainer terms (forgetting coorientations), a bug is a collection of
spheres, any pair of which is either disjoint, tangent or which intersect
at angles π{m, for finitely many m P N. See Figure 3 for an inte-
gral bug, and Figure 4 for the corresponding hyperbolic polyhedron P ,
which should justify our calling these objects “bugs.”

1.3.1. Geometric Aspects of Bugs.
Before turning to any arithmetic properties of bugs, we discuss purely

geometric aspects, culminating in the Structure Theorem 22. As in
(1), the reflection group generated by reflections through the spheres
in B, denoted ΓB, is discrete and has as its fundamental domain the
hyperbolic convex polyhedron P “ PB bounded by the hemispheres.

In this setting, we need a substitute for the limit set of the packing,
which will no longer necessarily contain spheres, see Figure 5(b).

Definition 17. The accumulation set ApBq of a bug B consists of
those points ξ P B8Hn`1 such that every neighborhood of ξ contains
infinitely many spheres in B.

As a first (it turns out, insufficient) step, we define “geometric” bugs
in terms of symmetry groups as before:

Definition 18. A bug B is geometric if there exists a geometrically
finite subgroup ΓS ă IsompHn`1q such that

(1) the accumulation set of the bug is the limit set of ΓS, and
(2) ΓS preserves the bug polyhedron P “ PB.

Such a ΓS is called a symmetry group of the bug.

Recall again that a symmetry group of a bug is not unique. But its
commensurability class is uniquely determined by the bug, provided
that the accumulation set of B consists of more than two points; see
Lemma 41.

The supergroup is defined in the now-familiar way:

Definition 19. Given a bug B and a symmetry group ΓS, the super-
group

rΓ :“ xΓS,ΓBy ă IsompHn`1
q,
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Figure 3. An integral bug with all dihedral angles π{3.
A number at the center of a circle denotes its bend, that
is, inverse radius. The thick unlabeled blue circle has
bend ´76. The color scheme is as described in Remark
24.

is defined as the group generated by the symmetry group ΓS and the
reflection group ΓB.

Naively, one could have expected that, as in the crystallographic or
Kleinian packing setting, the supergroup of a bug is a lattice; unfortu-
nately this is false in general (see Example 36), owing to the possible
“incompatibility” of parabolic subgroups. Recall that a discrete sub-
group Π ă IsompHn`1q is called parabolic6 if it contains a parabolic
element g and stabilizes the fixed point of g. Such a subgroup consists
of parabolic and elliptic elements.

Definition 20. An ordered pair of subgroups Γ1,Γ2 ă IsompHn`1q is
cusp-compatible if, for every maximal parabolic subgroup Π2 ă Γ2,

6Sadly, this classical terminology is inconsistent with the one used in the theory
of algebraic groups.
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Figure 4. View from H3 of the bug polyhedron P from
Figure 3. The polyhedron is exterior to all solid hemi-
spheres shown, and interior to the one opaque hemi-
sphere, which has bend ´76.

paq pbq

Figure 5. paq The bug is Kleinian with symmetry group
generated by reflections in the thick red circles. pbq The
accumulation set in B8Hn`1 does not in general contain
spheres.
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there exists a subgroup Π1 ă Γ1 such that the subgroup Π generated by
Π1,Π2 is virtually abelian of virtual rank n.

Note that cusp compatibility depends only on the commensurability
classes of Γ1,Γ2.

Definition 21. A bug B is called Kleinian if it is geometric with sym-
metry group ΓS, such that the ordered pair ΓB, ΓS is cusp-compatible.

We remark that, if B is not just a bug but also a packing, then the
cusp-compatibility condition is automatic, see Lemma 44.

In §2 we will prove the second main theorem of this paper, which is
the following extension of the Crystallographic Structure Theorem in
[KN19, Thm 28].

Theorem 22 (Structure Theorem for Kleinian Bugs and Packings).

1. If B is a Kleinian bug, then its supergroup rΓ is a lattice.

2. (i) Conversely, suppose we are given a lattice rΓ ă IsompHn`1q, a

convex fundamental polyhedron D of rΓ, and a finite set S 1 of elements

γj P rΓ pairing the facets of D. Let R Ă S 1 be a nonempty subset
consisting of reflections (assuming such exist) in some facets Fα Ă
BD, with α in an indexing set A. As before, let Hα be the cooriented
hyperbolic hyperplanes containing the facets Fα. Let S :“ S 1zR and

ΓS :“ xSy ă rΓ. Then the orbit of the set of cooriented spheres in
tB8Hα;α P Au under the group ΓS,

B :“ ΓS ¨ tB8Hα;α P Au,

is a Kleinian bug with a symmetry group ΓS.
(ii) Suppose, moreover, that: (a) the facets Fα, α P A, have pairwise

disjoint or tangent cooriented spheres B8Hα, (b) the hyperplanes Hα

meet the other bounding walls of D either tangentially or orthogonally
(or not at all). Then B is in fact a Kleinian packing, that is, if two
spheres of B intersect, they do so tangentially.

In particular, every lattice rΓ ă IsompHn`1q containing a reflection
yields a Kleinian bug.

Remark 23. While it is not hard to show that the supergroup of a
crystallographic or Kleinian packing is a lattice, the proof of Theorem
22 is rather more involved, see §2.

Remark 24. We applied the above construction to create the bug

in Figures 3–4 from the extended Bianchi group xBip19q7; namely, two

7Here and throughout, xBipDq denotes the extended Bianchi group, that is, the
maximal discrete subgroup of IsompH3q containing the group PSL2pODq, where OD

is the ring of integers of Qp
?
´Dq.
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reflective walls were chosen forR Ă S 1 from this lattice, and the bug was
created as the orbit of these two walls under the remaining generators.
The orbit of one wall was colored blue and the other red.

1.3.2. Arithmetic Aspects of Bugs.
Turning our attention to arithmetic properties of bugs, we mimic (2)

with the following.

Definition 25. The superbug rB of an (arbitrary) bug B is defined
as the orbit of the bug under its reflection group, ΓB:

rB :“ ΓB ¨B.

A bug is superintegral if every sphere in its superbug has integer bend.

The Subarithmeticity Theorem 3 applies just as well to bugs, giving
the following:

Theorem 26.

‚ If a bug (with no further structure imposed) is superintegral,
then its reflection group ΓB is Q-subarithmetic.

‚ If a bug is Kleinian and integral, then its symmetry group ΓS is
Q-subarithmetic.

‚ If a bug is Kleinian and superintegral, then its supergroup rΓ is
Q-arithmetic.

In the opposite direction, we already have from the Classification
Theorem 9 that every non-uniform Q-arithmetic lattice (of simplest
type) is commensurable to the supergroup of a superintegral Kleinian
packing (and hence bug). Similarly, we have from Theorem 12 that

if a symmetry group ΓS (resp. supergroup rΓ) of a Kleinian bug is
non-uniform and Q-subarithmetic (resp. Q-arithmetic), then there is a
conformal choice of coordinates for which the bug can be made integral
(resp. superintegral).

Remark 27. When a Kleinian bug (or just packing) is integral but not
superintegral, we have the following curious situation: its symmetry
group ΓS is a subgroup of some integer orthogonal group OFpZq, but

it is also contained in a (non-arithmetic) lattice, the supergroup rΓ.

Note further that there are essentially only three ways that a lattice
rΓ ă IsompHn`1q (with n ě 2) can be non-arithmetic. By Selberg’s

Rigidity [Sel60], after conjugation, rΓ is contained in some On`1,1pkq

where k is a number field with a given embedding to R. For rΓ to be
non-arithmetic, either:

piq k is not totally real, or
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piiq k is totally real but for at least one non-identity embedding ι,
the orthogonal group On`1,1pιpkqq is non-compact (that is, the
quadratic from is not hyperbolic), or

piiiq k is totally real and the quadratic form is hyperbolic, but the

entries of rΓ as elements of k have unbounded denominators.

Lattices satisfying the last condition piiiq are called quasi-arithmetic
by Vinberg. The only currently known integral but non-superintegral
bugs (e.g. the crystallographic packings constructed in [KN19, Lemma
20]) all come from this last situation (with k “ Q). It is interesting to
investigate whether this is the only non-arithmeticity type possible for
integral but not superintegral bugs. (Note that for o-superintegrality,
the non-arithmeticity in Proposition 14 is of type piiq; see Example 71.)

1.4. Outline of the paper.
In §2 we prove geometric results on bugs, including the key the Struc-

ture Theorem 22. We spend §3 discussing the arithmetic properties of
bugs, including the main Subarithmeticity Theorem 3. Of particular
interest to the reader may be §3.3 where a number of archetypal ex-
amples are constructed. We conclude in §4 with a discussion of Haus-
dorff dimensions of accumulation sets of superintegral bugs, proving
the Abundance Theorem 13.

Acknowledgements.
The second-named author would like to thank Curt McMullen and

Peter Sarnak for many enlightening conversations and suggestions.

2. Proof of the Structure Theorem 22

In what follows, d denotes the hyperbolic distance on Hn`1. For a
subset A Ă Hn`1 the ideal boundary of A, denoted B8A, is the accu-
mulation set of A in the ideal boundary sphere Sn “ B8Hn`1 of Hn`1.

Recall that for a discrete subgroup Γ ă IsompHn`1q, the convex hull
of the limit set Λ of Γ, denoted C “ CΓ, is the intersection of all Γ-
invariant closed convex nonempty subsets in Hn`1. The convex hull
has the property that B8C “ Λ unless Λ is a singleton (in which case
C “ H). The convex core M˚ of the orbifold M “ Hn`1{Γ is the
quotient C{Γ.

Definition 28. A discrete subgroup Γ ă IsompHn`1q is geometrically
finite if Γ is virtually torsion free and there is an ε-thickening of the
convex core M˚ of the orbifold M “ Hn`1{Γ that has finite volume.

A sufficient condition for geometric finiteness is the existence of a
finitely-sided fundamental polyhedron of Γ in Hn`1.
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Definition 29. A discrete subgroup Γ ă IsompHn`1q is called convex-
cocompact if its limit set is not a singleton and the convex core M˚

of the orbifold M “ Hn`1{Γ is compact. Equivalently, there exists a
closed convex nonempty Γ-invariant subset of Hn`1 on which Γ acts
cocompactly.

Convex-cocompact subgroups have the property that

(30) inftdpgx, xq : g P Γ˚, x P CΓu ą 0,

where Γ˚ Ă Γ consists of elements of infinite order.
We refer to [Bo93, Ra06] for more background on geometrically finite

and convex-cocompact isometry groups of hyperbolic space.

Part 1. Let B be a Kleinian bug and let P Ă Hn`1 be the corre-

sponding convex polyhedron. We wish to show that the supergroup rΓ
is a lattice.

If Φ Ă Hn`1 is a convex fundamental domain of an arbitrary discrete
subgroup Γ ă IsompHn`1q, then the Γ-orbit of the relative interior of
B8Φ (with respect to Sn) is dense in the domain of discontinuity of Γ
in Sn. Since B is a bug, for Φ “ P , this relative interior of B8P is
empty and, hence the limit set of ΓB is equal to the entire sphere Sn.

The ideal boundary B8P Ă B8Hn`1 “ Sn is the disjoint union

(31) B8P “ ApP q \ VpP q,
where each point of VpP q is isolated in the accumulation set ApP q :“
ApBq of B; elements of VpP q are the “ideal vertices” of P . For each
η P VpP q and every horoball B Ă Hn centered at η, the intersection
P X B has finite volume.

The convex polyhedron P “ PB is the fundamental domain of the
reflection group ΓB ă IsompHn`1q generated by isometric reflections
in facets of P , if and only if each dihedral angle of P belongs to π

N , see
[Ma88, Ra06].

We start the proof of Part 1 with two auxiliary lemmata.
For each nonempty closed convex subset C Ă Hn`1 we have the

nearest-point projection πC : Hn`1 Ñ C. This projection is a continu-
ous (actually, 1-Lipschitz) map.

Lemma 32. Suppose that C is a closed convex subset of Hn`1 and
C Ă A, where A is a closed subset of Hn`1 such that B8C “ B8A.
Then the restriction of πC to A is a proper map, i.e. preimages of
compact subsets of C are compact.

Proof. Assume that this is not the case. Then there exist sequences
yi P C and xi P A such that πpxiq “ yi, lim yi “ y P C, while limxi “
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ξ P B8A “ B8C. Let ρ “ yξ denote the geodesic ray in Hn`1 emanating
from y and asymptotic to ξ. By convexity of C, ρ is contained in C.
Since limxi “ ξ, the angles =xiyξ converge to zero as i Ñ 8, since
xi Ñ ξ. If follows that the points zi :“ πρpxiq satisfy

lim
iÑ8

dpxi, ziq

dpxi, yiq
“ lim

iÑ8

dpxi, ziq

dpxi, yq
“ 0.

This is a contradiction since zi P C and yi is the nearest-point projec-
tion of xi to C. �

Lemma 33. Suppose that Γ1CΓ ă IsompHn`1q – POpn` 1, 1q, where
Γ1 is a Zariski dense discrete subgroup. Then Γ is also discrete.8

Proof. Let γi P Γ be a sequence converging to 1 P POpn ` 1, 1q. Then
for every γ P Γ1 we have

lim
iÑ8

γiγγ
´1
i “ γ.

Since gi :“ γiγγ
´1
i P Γ1 and the latter is discrete, it follows that gi “ γ

for all sufficiently large i (depending on γ). Since Γ ă POpn` 1, 1q is
Zariski dense, it contains a Zariski dense Schottky subgroup Σ of finite
rank r ą 1 with free generators σ1, ...σr. Hence there exists i0 such
that for all i ě i0 we have that

γiσkγ
´1
i “ σk, k “ 1, ..., r.

By the Zariski density of Σ, we obtain that γi belongs to the center of
POpn` 1, 1q for all i ě i0. Since POpn` 1, 1q is centerless, γi “ 1 for
all i ě i0. Thus, Γ is discrete. �

Recall that Γ1 :“ ΓB ă IsompHn`1q is the discrete reflection group
with the convex fundamental polyhedron P Ă Hn`1. As we noted ear-
lier, the limit set of ΓB is the entire sphere at infinity Sn “ B8Hn`1;
in particular, ΓB is Zariski dense in POpn ` 1, 1q. Since B is a
bug, the polyhedron P has infinitely many faces, equivalently, ApP q is
nonempty. Thus, if we put an accumulation point in ApP q at infinity
(in the upper half-space model), then the spheres of B are cooriented
so that they bound round balls in Rn. In this setting, the density con-
dition simply means that the union of these round balls is dense in
Rn.

The group Γ2 :“ ΓS is a symmetry group of the bug B, i.e. a group
of isometries of Hn`1 preserving P . Then supergroup of the bug B is

the subgroup rΓ ă IsompHn`1q generated by Γ1,Γ2.

8The same holds for subgroups of arbitrary algebraic Lie groups with discrete
center.
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Since Γ2 preserves P , it normalizes Γ1; hence, Γ1 is a normal sub-

group of rΓ. In view of Lemma 33 and Zariski density of Γ1, the sub-

group rΓ ă IsompHn`1q is discrete. Our goal is to show that rΓ is not
just Zariski dense and discrete, but is also a lattice. We build up to
the general case from some initial assumptions which simplify the ex-
position.

Theorem 34. If, in addition to the above assumptions, Γ2 is convex-

cocompact and ApP q “ B8P (i.e. VpP q “ H), then the supergroup rΓ
is a uniform lattice in IsompHn`1q.

Proof. Since Hn`1{rΓ is homeomorphic (actually, isometric) to P {Γ2, it
suffices to show that the quotient P {Γ2 is compact. Since Γ2 is convex-
cocompact, it acts cocompactly on the convex hull C of its limit set
Λ “ B8P . Let K Ă C be a compact fundamental set of the action
of Γ2 on C, i.e. Γ2 ¨ K “ C. Then, by Lemma 32 (applied with
A “ P ), the preimage K 1 :“ π´1

C pKq X P is also compact. Since πC
is equivariant with respect to the action of Γ2, it follows that K 1 is
a compact fundamental set of the action of Γ2 on P . Hence, P {Γ2 is

compact and rΓ is a uniform lattice. �

Next we relax the assumption that the ideal boundary B8P coincides
with the accumulation set ApP q (that is, we allow VpP q in (31) to be
nonempty), while keeping convex-cocompactness of Γ2. We let µn`1

denote the Margulis constant of Hn`1 (see e.g. [Ka] or [Ra06]).

Theorem 35. If Γ2 is convex-cocompact, then the supergroup rΓ is a
lattice in IsompHn`1q.

Proof. Let C “ CΓ2 again denote the closed convex hull of the limit set
of Γ2.

Each ideal vertex ηj P VpP q, j P J , represents a finite volume cusp of
the orbifold O “ Hn`1{Γ1 – P ; its stabilizer Γ1,j in Γ1 is generated by
reflections in the faces of P asymptotic to ηj. We will be using certain
open horoballs Bηj Ă Hn`1 centered at the points ηj. We call such a
horoball B Ă Hn`1 an ε-Margulis horoball, where 0 ă ε ď µn`1, if it is
the maximal horoball such that for each x P B, there exists a parabolic
element g P Γ1,j satisfying

dpx, gpxqq ă ε.

The Margulis lemma implies that Margulis horoballs Bηj are pairwise
disjoint. In view of (30), we can choose ε such that each ε-Margulis
horoball is disjoint from C.9 From now on, we fix a collection Bηj , j P J ,

9This is not really necessary but provides a clearer picture of the situation.
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Figure 6. A Kleinian bug which is not cusp-compatible.

of such ε-Margulis horoballs. This collection is necessarily Γ2-invariant.

Since each intersection Bηj X P has finite volume and Hn`1{rΓ has the

same volume as P {Γ2, in order to prove that rΓ is a lattice it suffices to
show that the quotient

pP z
ď

jPJ

Bηjq{Γ2

is compact. (This will also force finiteness of the number of Γ2-orbits
of the horoballs Bηj .) Compactness of the quotient again follows by
applying Lemma 32 to the set

A :“ P z
ď

jPJ

Bηj

as in the proof of Theorem 34. �

Lastly, we would like to relax the convex-cocompactness assumption
on Γ2, replacing it with geometric finiteness. Unfortunately, in general,

the subgroup rΓ ă IsompHn`1q will not be a lattice, already in the case
n “ 3. This can happen even if the limit set ApP q is Zariski-dense in
Sn.

Example 36. A concrete example is the bug consisting of circles of
unit diameter centered at the set Zris Y p1

2
` 1

2
i ` Zrisq, that is, the

Gaussian integers and their translates by the vector 1
2
` 1

2
i. The group

Γ1 is generated by reflections in these circles. The group Γ2 is generated
by reflections in the lines t<pzq “ 0u and t<pzq “ 1u. The situation
is illustrated in Figure 6. The accumulation point is 8, and the group
rΓ “ xΓ1,Γ2y is a non-lattice. On the other hand, if we take Γ12 generated
by the reflections in the lines t<pzq “ 0u, t<pzq “ 1u, t=pzq “ 0u,

t=pzq “ 1u, then the group rΓ1 “ xΓ1,Γ
1
2y is a lattice.

Example 37. More generally, let Γ2 be a geometrically finite subgroup
of IsompH3q which has at least one rank-one cusp. Then (by either using
the Andreev–Thurston theorem, see [T81, §§13.6–13.7], or Brooks’s
theorem, see [Br86] or [Ka]) there exists a quasiconformal deformation
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Γ12 of Γ2 and a reflection group Γ1 such that the fundamental domain
of Γ1 is invariant under Γ12 and its accumulation set equals the limit
set of Γ12, but the groups Γ1, Γ12 are not cusp-compatible.

A necessary condition for rΓ to be a lattice is that the rΓ-stabilizer of
each parabolic fixed point of Γ2 is virtually abelian of virtual rank n.
(Recall that a group G is a virtually abelian if it contains a free abelian
subgroup of finite index. The virtual rank of G is defined to be the rank
of any maximal free abelian subgroup of G. By Bieberbach’s Theorem,
a discrete parabolic subgroup of IsompHn`1q is necessarily virtually
abelian of virtual rank ď n.) We thus arrive at the following definition
of cusp-compatibility, for the pair of discrete groups Γ1 “ ΓP , Γ2 “ ΓS,
repeated from Definition 20.

Definition 38. The subgroups Γ1,Γ2 ă IsompHn`1q are cusp-compati-
ble if for every maximal parabolic subgroup Π2 ă Γ2, there exists a
subgroup Π1 ă Γ1 such that the subgroup Π generated by Π1,Π2 is
virtually abelian of virtual rank n.

Observe that the subgroup Π1 in this definition necessarily fixes the
limit set (the single fixed point at infinity) tλu Ă Sn of Π2. Thus, Π

fixes λ as well. In view of the discreteness of rΓ (and, hence, of Π), we
can (and will) as well assume that Π1 is the full stabilizer of λ in Γ1.

(The group Π1 might be finite.) Since Γ1 is normal in rΓ, the subgroup
Π1 is normal in Π and Π splits as the semidirect product Π1 ¸ Π2.

Lemma 39. 1. The group Π1 is generated by reflections in the facets
of P asymptotic to λ and, hence, has a fundamental domain Pλ in
Hn`1 equal to the intersection of all half-spaces defined by facets of P
asymptotic to λ.

3. The fundamental domain Pλ is invariant under the action of Π2.

Proof. 1. Let sα denote the isometric reflections in the facets Fα of P
generating the reflection group Γ1. Every element γ P Γ1 is represented
by a reduced word w in the generators sα. Suppose that w has the form
u ¨ sα ¨ v, where v is the product of reflections in the facets of Pλ, while
sα is the reflection in a facet Fα not asymptototic to λ. Then sαvpP q is
contained in the half-space H´

α whose closure in Hn`1 Y B8Hn`1 does
not contain λ. It follows that u ¨ sα ¨ vpP q is also contained in H´

α and,
hence, γ cannot possibly fix λ.

2. Since P is preserved by Γ2, and, hence, by its subgroup Π2, and
Π2 fixes λ, the elements of Π2 send facets of P asymptotic to λ to facets
of P asymptotic to λ. �
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The following lemma provides a list of equivalent algebraic and geo-
metric characterizations of cusp-compatibility in the context of the pair
of groups Γ1 “ ΓP , Γ2 “ ΓS:

Lemma 40. The following are equivalent for subgroups Π1,Π2 of Γ1,Γ2

as above:

(1) The subgroup Π generated by Π1,Π2 is virtually abelian of vir-
tual rank n.

(2) Virtual ranks of Π1,Π2 add up to n.
(3) Π acts cocompactly on B8Hn`1 z tλu.
(4) Π2 acts cocompactly on the intersection Pλ X BB, for every

horoball B Ă Hn`1 centered at λ.
(5) Π2 acts cocompactly on the intersection PXBB, for every horoball

B Ă Hn`1 centered at λ.
(6) Π2 acts with finite covolume on the intersection Pλ X B, for

every horoball B Ă Hn`1 centered at λ.
(7) Π2 acts with finite covolume on the intersection PXB, for some

horoball B Ă Hn`1 centered at λ.

Proof. The equivalence (1) ô (2) follows from the semidirect product
decomposition Π “ Π1 ¸ Π2. The equivalence (1) ô (3) follows from
the fact that a discrete subgroup of Rn is a uniform lattice if and only
if this subgroup has rank n.

To prove the equivalence (3) ô (4) observe that, by Lemma 39, PλX
BB is the fundamental domain for the action of Π1 on the horosphere BB
and this intersection is invariant under Π2. Therefore, cocompactness
of the action of Π on the horosphere is equivalent to the cocompactness
of the action of Π2 on Pλ X BB.

The proofs of equivalences (3) ô (5) ô (6)ô (7) are similar to the
proof of (3) ô (4) and are left to the reader. �

Subgroups Π1,Π2 are called compatible if they satisfy one of the
equivalent conditions in this lemma. Note that since P Ă Pλ, com-
pactness of pPλ X BBq{Π2, implies that only finitely many Π2-orbits of
faces of P might intersect B. Moreover, the compatibility of Π1,Π2

(in the form of the 3rd condition) implies that any sequence of faces
of P converging to λ (possibly outside of a horoball B) is contained in
finitely many Π2-orbits of faces.

Lemma 41. Suppose that ApP q has cardinality ě 2. Then any two
symmetry groups of B are commensurable and, in particular, the cusp-
compatibility of the subgroups Γ1,Γ2 depends only on P .
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Proof. Suppose that Γ2,Γ
1
2 ă IsompHn`1q are geometrically finite sub-

groups preserving P and having ApP q as their limit sets. Since |ApP q| ě
2, by the definition of geometric finiteness, the groups Γ2,Γ

1
2 act with

finite covolume on the ε-neighborhood Y of the convex hull of ApP q
(which is their common limit set). Since both Γ2,Γ

1
2 preserve the poly-

hedron P , they generate a discrete subgroup Γ3 ă IsompHn`1q, which,
therefore, acts properly discontinuously, with finite covolume on Y . It
follows that |Γ3 : Γ2| ă 8, |Γ3 : Γ12| ă 8, which implies commensura-
bility of Γ2,Γ

1
2. Therefore, the pair pΓ1,Γ2q is cusp-compatible if and

only if pΓ1,Γ
1
2q is. �

Remark 42. Example 36 shows that, when |ApP q| “ 1, cusp-compatibi-
lity depends not only on P but also on Γ2.

Theorem 43. If Γ2 is geometrically finite and the pair Γ1,Γ2 is cusp-

compatible, then the subgroup rΓ generated by Γ1,Γ2 is a lattice in
IsompHn`1q.

Proof. Similarly to the proof of Theorem 35, we define open horoballs
Bηj , j P J . Since each ηj does not belong to ApP q, it follows that all
ηj’s lie in the discontinuity domain of the group Γ2. This, together
with geometric finiteness of Γ2 implies that there exists a collection
tB̄λi ; i P Iu of closed (Margulis) horoballs centered at parabolic fixed
points of Γ2, such that:

(1) The collection of horoballs is Γ2-invariant.
(2) The horoballs are pairwise disjoint and disjoint from the horoballs

B̄ηj .
(3) Each horoball B̄λi intersects only those faces of P which are

asymptotic to λi.

Set

A :“ P z

˜

ď

jPJ

Bηj Y
ď

iPI

Bλi

¸

.

There are two cases to consider. First, suppose that ApP q “ ΛpΓ2q

is a singleton tλu. Then tBλi : i P Iu consists of a single horoball
B. Consider the nearest-point projection πB̄ : Hn`1 Ñ B̄. For x R B̄,
this projection is given by the unique intersection point of the geodesic
ray xλ with the horosphere BB. As in the proof of Theorem 35, the
restriction of πB̄ to A is a proper map. The image πB̄pAq is contained in
BBX P : By the convexity of P , for each x P A the ray xλ is contained
in P , hence, the intersection point xλX BB belongs to BBX P .

Since the pair Γ1,Γ2 is cusp-compatible, by Lemma 40(5), the action
of Γ2 on P X BB is cocompact. Combining this with the fact that the
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map πB̄ : A Ñ B̄ is proper and its image is contained in BB X P , we
conclude that the quotient A{Γ2 is compact. Since pPXBq{Γ2 has finite
volume and the volume of each cusp P XBηj is finite, we conclude that

P {Γ2 has finite volume and, therefore, rΓ is a lattice.

We now consider the “generic” case, when Γ2 has at least two limit
points. As before, let C “ CΓ2 denote the closed convex hull in Hn`1

of the limit set Λ “ ΛpΓ2q. Since Λ “ ApP q Ă B8P , convexity of
P implies that C Ă P . We let C 1 Ă C be the complement to the
union of open horoballs Bλi , i P I. The group Γ2 acts cocompactly
on C 1 since it is geometrically finite. As in the proof of Theorem 35,
the restriction of πC to A is a proper map and pA X π´1

C pC
1qq{Γ2 is

compact. Lastly, Lemma 40 (and the discussion following it) implies
that for every horoball Bλi , i P I, its Γ2-stabilizer Πλi acts with finite
covolume on

P X π´1
C pBλiq.

Hence, P {Γ2 has finite volume and, since V olpP {Γ2q “ V olpHn`1{rΓq,

it follows that rΓ is a lattice. �

The next lemma establishes the cusp-compatibility condition in the
the special case of bugs which are packings.

Lemma 44. If B is a Kleinian packing then the cusp-compatibility
condition always holds.

Proof. Since B is a Kleinian packing, the polyhedron P is the intersec-
tion of half-spaces H`

α , which are bounded by pairwise disjoint hyper-
bolic hyperplanes Hα. In particular, B8P has no isolated points and,
hence, equals the accumulation set ApP q, which is the limit set Λ of
ΓS, and P “ CΓS

, the closed convex hull of Λ. Since ΓS is geometrically
finite, CΓS

{ΓS has finite volume. But CΓS
{ΓS “ P {ΓS is naturally iso-

metric to Hn`1{rΓ. We conclude that rΓ is a lattice, which is equivalent
to the cusp-compatibility condition. �

Part 2.
Proof of Part 2(i). Step 1. For each defining hyperplane Hα of D,

α R A, we let H`
α Ă Hn`1 denote the closed half-space bounded by Hα

and containing D. We define DS as the intersection of these half-spaces,

DS “
č

αRA

H`
α .

Each facet of DS is contained in one of the facets of D which is not of
the form Fα, α P A. And conversely, each facet of D not of the form
Fα, α P A, is contained in one of the facets of DS. The generators γ P S
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still pair the facets of DS. We leave it to the reader to check that, since
D is a fundamental polyhedron of Γ, the conditions of the Poincaré’s
Fundamental Domain Theorem (see [Ra06]) still hold for DS and the
face-pairing transformations γ P S, and, hence, DS is a fundamental
polyhedron of ΓS. Since, by the construction, DS is finitely-sided, the
group ΓS is geometrically finite with the fundamental domain DS.

Step 2. We let R denote the collection of all rΓ-images of the hy-

perplanes Hα, α P A. Since D is a fundamental domain of rΓ, none
of the hyperplanes in R intersects the interior of D. The hyperplanes
in R define a partition of Hn`1 into (convex) connected components;
the closure of one of these components, denoted P , contains D. We

let ΓR ă rΓ denote the subgroup generated by reflections in the hyper-
planes H P R. Thus, ΓR is a nontrivial normal subgroup in the lattice
rΓ; hence, the limit set of ΓR is the entire sphere Sn. The polyhedron
P is a fundamental domain of ΓR and ΓR is generated by reflections
in those hyperplanes H P R for which H X P are facets of P . Since

ΓR ă rΓ and the latter is a lattice, it follows that the dihedral angles of
P come from a finite subset of π

N . We conclude that P defines a bug
B.

Step 3. We next verify that ΓS is a symmetry group of the bug B.
We first check that the generators γ P S of ΓS preserve the polyhedron
P . It suffices to show that each γ sends facets of P to facets of P . The
element γ pairs a facet Fγ of D to a facet F 1γ of D. Let Gβ be a facet of
P and Hβ P R be the hyperbolic hyperplane containing Gβ. We pick
a generic base-point o in the interior of D and a generic point x on
the facet Gβ. Then, by the convexity of P and since o P D Ă P , the
geodesic segment ox is disjoint from all the hyperplanes H P R except
for the point x P Gβ. Similarly, the geodesic segment oγpoq is contained
in D Y γpDq and crosses their intersection at an interior point of F 1γ
(since o was chosen generically). It follows that the segment oγpoq is
also disjoint from all the hyperplanes in R. Thus, the union

oγpoq Y γpoqγpxq

is a path connecting o to γpxq and disjoint from all the hyperplanes in R
except for the point γpxq P γHβ. Hence, γpxq lies in a facet of P . Thus,
we verified that the generators γ P S have the property that they send
facets of P to facets of P and, moreover, respect their coorientation:
The half-space H`

α determined by a facet Fα and containing o, maps
to the half-space H`

α1 containing o. Therefore, the entire group ΓS
preserves P .
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Step 4. Since, by the construction, rΓ is a lattice generated by ΓR and
ΓS, the group ΓS acts on the set of facets of P with finitely many orbits.
Thus, if ξ is an accumulation point of the bug B, there is a facet Gα

of P and an infinite sequence γi P ΓS such that γipGαq converges to ξ.
In other words, ApBq is contained in the limit set of ΓS. The opposite
inclusion follows from the fact that ΓS preserves the polyhedron P .
We conclude, therefore, that ΓS is a symmetry group of B and B is
geometric with ΓR “ ΓB.

Step 5. Lastly, the cusp-compatibility of the pair of groups ΓR,ΓS
follows from the fact that they generate a lattice rΓ.

Thus, we proved that B is a Kleinian bug, which concludes the proof
of Part 2(i) of Theorem 22.

Proof of Part 2(ii). We continue with the notation from the proof of
Part 2(i). However, before starting the actual proof of (ii) we will have
a discussion related to combinatorics of convex fundamental polyhedra.
Each facet F of BD is paired with another facet F 1 by a unique generator
γ “ γF,F 1 P S

1; γpF q “ F 1, where, possibly, F “ F 1.

Remark 45. Following Ratcliffe in [Ra06], we require that if a gen-
erator γ P S 1 preserves a facet F of D, then it fixes F pointwise, i.e.
is a reflection in F . To achieve this, one performs, if necessary, a
subdivision of geometric facets of D. We refer to [Ra06] for details.
Accordingly, if F1, F2 are distinct facets of the same geometric facet of
BD and γi : Fi Ñ F 1i , i “ 1, 2, pair these facets, and it happens that

γ1 “ γ2 are equal as elements of rΓ, then we still regard γ1, γ2 as distinct
elements of S 1.

A ridge of a convex polyhedron in Hn`1 is the n ´ 1-dimensional
intersection of two facets.

The pseudogroup G. The pair pD,S 1q defines a pseudogroup G
acting on BD, which we discuss below. Each generator γ P S 1 is an
element of G; it is a partially defined map between the two facets of D
paired as γ : F Ñ F 1. Then the unique generator sending F 1 Ñ F is
γ´1. A composition γ2 ˝ γ1 of two generators

γ1 : F1 Ñ F 11, γ2 : F2 Ñ F 12

is admissible if F 11 X F2 is a common ridge of these facets. A (possibly
empty) word

w “ γl ˝ ... ˝ γ1, γi : Fi Ñ F 1i , i “ 1, ..., l,

is admissible if each consecutive composition in it is admissible. Thus,
each admissible word defines a map from one ridge E to another ridge
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E 1, the domain and the range of w (unless l “ 1 in which case the
domain and the range are facets). Here E is a boundary ridge of F1

and E 1 is a boundary ridge of E 1l . The pseudogroup G then consists of
admissible compositions of the generators. Note that each admissible
word is necessarily a reduced word in the alphabet S 1: γi`1 ‰ γ´1

i for
each i.

The pseudogroup G defines an equivalence relation „G on D: x „G y
(x is G-equivalent to y) if and only if there exists an element γ P
G sending x to y. This equivalence relation is the one obtained by
saturating the non-reflexive and non-transitive relation given by

x „ y, x P F, y P F 1, y “ γF,F 1pxq.

An important fact, coming from the assumption that D is a fundamen-
tal polyhedron of Γ is that the natural projection of quotient spaces

D{„G Ñ Hn`1
{rΓ

is a homeomorphism; this implies that two points in D are G-equivalent

if and only if they are rΓ-equivalent, i.e. belong to the same rΓ-orbit.

Ridge-chains and cycles. Suppose that E “ E1 “ F1 X F 10 is a
ridge of D. Let γ1 P S

1 denote the generator pairing the facet F1 to
another facet, F 11; this yields a new ridge E2 :“ γ1pE1q “ F 11XF2. Then
let γ2 P S

1 be the generator pairing F2 to a facet F 12. The composition
γ2 ˝ γ1 is admissible (by the construction). This composition process
continues (uniquely), until we return to the original ridge so that

γk : Ek Ñ E1, and γkpFkq “ F 1k “ F 10.

(The process has to terminate since D has only finitely many faces; in
the case of polyhedra with infinitely many faces, such termination is a
consequence of one of the axioms of fundamental polyhedra.) There is
an important caveat regarding this definition that applies in the special
case when the first return to the initial ridge yields F 1k “ F1 instead of
F 1k “ F 10; we discuss this in Remark 46 below.

The finite sequence

cE “ pγ1, γ2, ..., γkq

is called a ridge-cycle; it corresponds to the word

wcE “ γk ˝ ... ˝ γ1,

which is an admissible composition. Its subwords

wcE,E1
“ γl ˝ ... ˝ γ1, l ď k,
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correspond to ridge-chains

cE,E1 “ pγ1, γ2, ..., γlq,

where E 1 “ El`1 “ γlpElq. (The notation is slightly ambiguous since
the chain cE,E1 is not uniquely determined by E,E 1; the same, of course,
applies to the notation cE.) The element γcE,E1

P Γ corresponding to
the composition wcE,E1

sends E1 to Ek`1. We will refer to wcE,E1
as the

word of the ridge-chain cE,E1 .
We let θi denote the interior dihedral angles of D along the ridges

Ei; the sum

θcE,E1
“

l
ÿ

i“1

θi

is the total angle of the ridge-chain cE,E1 .

Remark 46. 1. In the sequence of facets given by a ridge-chain, we
could have F 1i “ Fi; this happens when γi is the reflection in the facet
Fi. Accordingly, in the case F 1i “ Fi we will have γipEiq “ Ei`1 “ Ei.

2. In this situation (i.e. F 1i “ Fi), the word wcE contains a prefix
subword which is a “palindrome”

u “ pγi´1 ˝ ... ˝ γ1q
´1
˝ γi ˝ pγi´1 ˝ ... ˝ γ1q.

The word u represents an element of Γ sending F1 back to itself and the
ridge E back to itself. In this case, of course, u does not send F1 to F 10
as required by the definition of a ridge-cycle. Thus, the actual cycle-
word w will be longer than u and will equal v ˝ u, where v is another
palindromic composition, starting with a face-pairing F 10 Ñ F0. As
a simple example of this situation, one can take the case when both
F 10, F1 are reflective facets with the corresponding generating reflections
γ0, γ1 respectively. Then w “ γ0 ˝ γ1.

3. Each ridge E of D defines exactly two ridge-cycles, which differ
by swapping the facets F1, F

1
0, reversing the order in the sequence pγiq

and inverting the generators in the cycle. The total angle is, of course,
independent of which of the two ridge-cycles is used.

Conversely, suppose we are given an admissible composition

w “ γl ˝ ... ˝ γ1

representing γ P rΓ sending a ridge E “ F 10XF1 to a ridge E 1. This alone,
however, does not guarantee that corresponding sequence of generators
is a chain since for some i, 1 ď i ă k, we may have that γi ˝ ... ˝ γ1

sends E to itself and γi : Fi Ñ F 1i “ F 10. Taking the minimal i with
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this property we obtain a ridge-cycle cE and the corresponding word
wcE . Hence, we decompose w as

w “ w1 ˝ pwcEq
t,

where w1 is a subword in wcE which represents an element γ1, γ1pEq “
E 1. In particular, w1 is the word of a ridge-chain cE,E1 .

The fact that D is a convex fundamental polyhedron of rΓ implies that
for every ridge E, the total angle θE is of the form 2π

m
, and γcE has order

m. Suppose now that the ridge-cycle cE is such that the consecutive
facets Fi, F

1
i are equal (this happens when γi is a reflection). In this

case the angle θi appears twice in the sum defining the total angle θE.
In particular, if θ1 “ θk “

π
2

and θs “
π
2

for some 1 ď s ď k, and γs, γk
are reflections, then both θ1, θs contribute twice to the total angle and,
thus, there are exactly two possibilities for the ridge-cycle cE:

1. k “ 2, s “ 1, E “ E1 “ E2, θcE “ π, and the ridge-cycle is
as in the simple example in Remark 46(2) above. In particular, the
reflections γ1, γ2 commute and γipHjq “ Hj, j “ 1, 2 is taken modulo
2.

2. k “ 4, s “ 2, E1 ‰ E2, θcE “ 2π, and, up to inversion,

wcE “ τ0 ˝ γ
´1
1 ˝ τ2 ˝ γ1

where τ2 “ γ2 is the reflection in the facet F2, while τ0 “ γ4 is the
reflection in the facet F 10 “ F4. The composition γcE then has order

1, i.e. the word wcE represents the neutral element of the group rΓ. In
particular, in this case,

τ2 “ γ1 ˝ τ0 ˝ γ
´1
1 .

In both cases 1 and 2, there are exactly four images of D (one of

which is D itself) under the elements of rΓ, sharing the ridge E, all with
right dihedral angles at E. The hyperplanes H0, H1 bounding these
images and containing the faces F 10, F1 are orthogonal to each other
and divide the hyperbolic space in four quadrants, each containing one

of the above images of D. The stabilizer of E in rΓ preserves both
hyperplanes.

We are now ready for the proof of Part 2(ii). Suppose that the bug
B is not a packing and two walls in R have nonempty transversal
intersection in the hyperbolic space; the intersection necessarily has

codimension 2. Since D is a fundamental polyhedron of rΓ, this inter-
section comes from D in the following sense: There exists a pair of
ridges E,E 1 (possibly equal!) formed, respectively, by pairs of facets
F1, F

1
0 (the ridge E) and Fs, F

1
s (the ridge E 1). The facets F 10, F

1
s are
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contained in hyperplanes H “ H0, H
1 “ Hs P R fixed by reflections

τ0, τs. There exists an element g P rΓ which carries E to E 1 and sends
H to a hyperplane gpHq which meets H 1 orthogonally along E 1. In

particular, E,E 1 are in the same rΓ-orbit. It follows that there exists
a chain cE,E1 corresponding to a word wE,E1 representing an element
γ “ γE,E1 which sends E to E 1. The element γ need not be equal to

g, but g “ γ1 ˝ γ, where γ1 P rΓ is an elliptic isometry preserving E 1.
Since H,H 1 are both in R, the dihedral angles of D along E,E 1 are
both right angles. Thus, the discussion above regarding the ridge-chain
wE,E1 applies. In particular, both H, gpHq define facets of D. Recall
that by the assumptions of Part 2(ii), the hyperplanes in R defining
facets of D are pairwise disjoint, which implies that gpHq “ H 1, a
contradiction.

This concludes the proof of Theorem 22. �

3. (Sub)Arithmeticity

In this section, we prove the various (sub)arithmeticity theorems.
We will be repeatedly using the Lorentzian model of hyperbolic space
Hn`1 and the corresponding parameterization of round spheres in Sn “
B8Hn`1 by unit vectors of the associated quadratic form.

Definition 47. A quadratic form F over a totally real number field k is
called hyperbolic if it has signature pn` 1, 1q in the identity embedding
k Ñ R, and is definite in all others embeddings. A quadratic space is
an pn`2q-dimensional real vector space V together with a real quadratic
form F on V defining a bilinear from x¨, ¨y in the usual way. A quadratic
space is said to be hyperbolic if F has signature pn` 1, 1q.

We let Q denote the standard hyperbolic quadratic form with half-
Hessian:

(48) Q “

¨

˝

´1
2

I
´1

2

˛

‚.

3.1. Inversive coordinates.
Before embarking on the proofs, we recall the very convenient (in this

context) inversive coordinate system (see, e.g., [K17, LMW02, Wil82]).
For convenience, we work here with the standard hyperbolic quadratic
form Q, but the entire discussion applies to all quadratic forms after
an appropriate change of coordinates.



28 MICHAEL KAPOVICH AND ALEX KONTOROVICH

To a cooriented round sphere S in the boundary Sn “ B8Hn`1 “

Rn Y t8u having center z “ px1, . . . , xnq and signed radius r, we asso-
ciate the column vector

vS :“ p1
r
, z
r
, 1
r̂
q
t
P Rn`2.

Here r̂ is the co-radius, defined to be the signed radius of the image of
S under reflection through the unit sphere; more concretely,

(49) r̂ “
r

|z|2 ´ r2
.

When S is a hyperplane, the inversive coordinates are those obtained
from a limit of spheres. That is, 1{r “ 0, 1{r̂ is half the distance
from the hyperplane to the origin, and z{r is the unit normal to the
cooriented hyperplane.

Rewriting (49) as

| z
r
|
2
´ 1

r
1
r̂
“ 1,

we see that QpvSq “ 1.
The Möbius group Mobn (the group of Möbius transformations of Sn)

acts on the space Sphpnq of (cooriented) round spheres and the group
OQ of automorphisms of the form Q acts on the 1-sheeted hyperboloid
tQpvq “ 1u.

Lemma 50. The map j : S ÞÑ vS is equivariant with respect to the
actions of Mobn and OQ. More precisely, j conjugates the Möbius
action on the space of cooriented spheres S P Sphpnq to the Lorentzian
action on the inversive coordinate vectors vS P tQS “ 1u.

Proof. The proof is essentially contained in the proof of [Iv92, Theorem
7.5]. Iversen constructs an equivariant map ι of Sn to the projectiviza-
tion of the conic tQ “ 0u. In the proof he verifies that

ιRSι
´1
“ τjpSq,

where RS is inversion in S P Sphpnq and τv is the Lorentzian reflection
in vK, the Lorentzian orthogonal complement to the vector v. To prove
equivariance of j it remains to observe that for every g P Mobn, S P
Sphpnq and vS “ jpSq,

ισgSι
´1
“ ιgRSg

´1ι´1
“ gιRSι

´1g´1
“ gτvSg

´1
“ τgvS .

Hence, j sends the sphere gS to gvS. �

Remark 51. Iversen uses the description of spheres S in Rn by the
quadratic equations

b xx, xy ´ 2 xx, fy ` a “ 0,
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Assuming the normalization |f |2 ´ ab “ 1, the inversive coordinates
then become (for r ă 8)

pb, f, aq.

The natural invariant, the negative of the cosine of the angle between
the spheres, is given by

xf1, f2y ´
1

2
pa1b2 ` b1a2q,

see [Iv92, sect. I.8], i.e. the Lorentzian inner product for vectors in
tQ “ ´1u. In the case when S is a cooriented hyperplane, b “ 0, f is
the unit vector normal to S and a “ r̂ is the coradius. This gives an
alternative proof of the lemma.

Fixing one sheet of the two-sheeted hyperboloid tQ “ ´1u as a model
of Hn`1, the original sphere S corresponds to the boundary at infinity
of the intersection with tQ “ ´1u of the plane Q-orthogonal to vS.
Then under the isomorphism j˚ induced by j, IsompHn`1q – O`QpRq,
where O`Q is the “orthochronous” subgroup of OQ which preserves the
two sheets of Q “ ´1 (rather than allowing them to interchange).

The pair pRn`2, Qq defines a hyperbolic quadratic space. Write
pRn`2q˚ for the dual vector space, and Q˚ for the induced dual form.
The key observation elucidating the role of isotropic vectors in the
study of the arithmetic of sphere packings is the following.

Lemma 52. The “bend” covector b “ p0, . . . , 0,´2q P pRn`2q˚ is
isotropic,

(53) Q˚pbq “ 0

and captures the bend of a sphere S with inversive coordinates vS “
p1
r
, z
r
, 1
r̂
qt. That is,

(54) bpvSq “
1

r
.

Similarly, the co-bend covector pb “ p´2, 0, . . . , 0q is also isotropic, and

has pbpvSq “
1
r̂
. In the dual inner product x¨, ¨y

˚
defined by Q˚, we have

(55)
A

b, pb
E

˚
“ ´2.

Proof. Direct and elementary computation. �

We can also identify the hyperbolic space Hn`1 with a component of
the two-sheeted hyperboloid tF “ ´1u, where pV,Fq is another real
hyperbolic quadratic space of the same dimension n` 2. A convenient
way to choose coordinates here is as follows. Let x¨, ¨yF denote the
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bilinear form on V corresponding to F , and let F˚ be the dual form
on the dual space V ˚.

Lemma 56. The dual space V ˚ admits an orthogonal splitting

(57) V ˚ “ V ˚1 ‘ V
˚

2

so that dimV ˚1 “ 2 with

(58) F˚

ˇ

ˇ

ˇ

ˇ

V ˚1

“

ˆ

0 ´2
´2 0

˙

,

and F˚ restricts to a definite form on the second factor.

Proof. Take two linearly independent light-like covectors α0, αn`1 P

V ˚ (i.e. F˚pα0q “ F˚pαn`1q “ 0), and rescale αn`1 to ensure that
xα0, αn`1yF˚ “ ´2, as in (55). Let V ˚1 be the span of these vectors.
Defining V ˚2 to be the orthogonal complement spanned by an arbitrary
orthonormal system α1, . . . , αn gives the required splitting. �

We next transition to the number-theoretic discussion.

Addendum 59. Suppose that F is a hyperbolic quadratic form on an
pn` 2q-dimensional real vector space V and there is a basis of V with
respect to which the form is a hyperbolic over a (totally real) field k.
Then:

1. There is field extension k1 Ą k of degree at most two with ring of
integers o1, and a choice of covectors α0, . . . , αn`1 so that the splitting
(57) is realized with V ˚1 spanned by α0, αn`1 and V ˚2 “ xα1, . . . , αny,
where α0 can be chosen to be defined over o1.

2. If k “ Q and F is isotropic over Q, then we can take k1 “ k “ Q
and o1 “ Z. Moreover, V contains a rational unit vector u (of F).

Proof. 1. For a general field k, we can find an isotropic covector α0

over a suitable quadratic extension k1.10 We may clear denominators
to ensure that α0 is defined over o1. Then we proceed as in the proof of
Lemma 56, finding a second isotropic vector αn`1 (again over k1) and
rescaling to ensure (58). Lastly, choose an orthonormal basis α1, . . . , αn
for the orthogonal complement V ˚2 of V ˚1 .

2. Since F is isotropic over Q, so is the dual form F˚. We then let
α0, αn`1 denote linearly independent rational isotropic vectors of F˚.
As before, by rescaling we may assume that α0 is an integer vector and

10As an aside, recall Godement’s compactness criterion, that OF poq is non-
uniform if and only if F is isotropic over k, see [BHC62]; and furthermore, if this
is the case, then k “ Q. Indeed, if F represents 0 nontrivially, then so does every
Galois conjugate Fσ. But Fσ is definite since F is hyperbolic, so there can be no
other Galois conjugates, and k “ Q.
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(58) is satisfied. In order to find a rational unit vector, we similarly
find two rational isotropic vectors v, w P V such that xv, wyF “ 1{2.
Then the vector u :“ v ` w has xu, uyF “ 1, as desired. �

3.2. Constructing (Super)Integral Kleinian Bugs/Packings.

Proof of Theorem 12. We first prove part piiq. Let Γ be a non-uniform
Q-arithmetic group of simplest type, commensurable to OFpZq, where
F is a hyperbolic quadratic form defined over Q (with respect to some
basis for V ). Let RS P Γ be a reflection with respect to a rational
vector u “ wS:

RS : x ÞÑ I ´ 2
xx,wSy

xwS, wSy
wS

Hence, a “ xwS, wSy is rational. Dividing F by a we obtain a new ra-
tional hyperbolic form a´1F , with respect to which wS is a unit vector.
Then we choose coordinates α0, . . . , αn`1 for V ˚ as in Addendum 59,
adapted to the form a´1F .

Since Γ is commensurable to OFpZq, all the vectors in the Γ-orbit
of the vector u have uniformly bounded denominators, hence, their
bends α0pΓuq also have uniformly bounded denominators. Under the
correspondence, γpSq ÞÑ γpuq defined in §3.1 (with respect to the form
a´1F), the radius of the sphere γpSq equals α0puq. Hence, by a suitable
rescaling in the Euclidean space Rn (equivalently, rescaling the choice
of α0 to clear the denominators), all the bends can be made integral,
as claimed.

The proof of part piq is now clear. By rescaling the form F , we
get a new form rational hyperbolic form a´1F such that the reflection
RS P Γ is given by a unit (with respect to a´1F) vector wS. The group
rΓ, of course, preserves the new form. Since, by the assumption, the

action of the symmetry group ΓS ă rΓ on the packing P is transitive,

so is the action of rΓ on the superpacking ĂP. Thus, by Part (ii), after

a suitable rescaling, the superpacking ĂP becomes integral. �

We now prepare for the proof of Theorem 15. Before getting to
questions of (super)integrality, we construct the necessary packings as
follows.

Proposition 60. Let OFpoq ă IsompHn`1q be a k-arithmetic lattice
of simplest type. Then there is a sequence of conformally inequivalent
Kleinian packings Pj such that OFpoq is commensurable to a super-

group rΓj of Pj which acts transitively on Pj.
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Proof. While this result is stated in arithmetic terms, most of the proof
is non-arithmetic.

Geometric setup. Suppose that Γ ă G “ IsompHn`1q is a torsion-
free lattice such that the hyperbolic manifold M “ Hn`1{Γ contains a
properly embedded complete connected nonseparating totally geodesic
hypersurface of finite n-dimensional volume N . The hypersurface N
lifts to a hyperplane H in Hn`1. We will assume that the reflection RH

in H normalizes the group Γ and let rΓ denote the subgroup of G gen-

erated by RH and Γ. The group rΓ contains Γ as an index 2 subgroup;

hence, rΓ is again a lattice. Since RH normalizes Γ, it descends to an
isometric reflection σ : M ÑM fixing N pointwise.

Remark 61. Abundance of examples of this type (comping from arith-
metic groups) was first established by John Millson in [Mi76]. More
precisely, he proved that every k-arithmetic lattice OFpoq in Opn` 1, 1q
of simplest type (where o is the ring of integers of the field k and F is

a hyperbolic quadratic form over k) is commensurable to a group rΓ as
above.

Our goal is define a sequence of Kleinian packings Pj with the su-

pergroups rΓj commensurable to rΓ and acting transitively on Pj.
The hypersurface N does not separate M and, hence, defines a non-

trivial element ξ of H1pMq, which is Poincaré-dual to the locally-finite
fundamental class of the hypersurface N . Since σ fixes N pointwise,
σ˚pξq “ ´ξ. The class ξ defines a homomorphism

φ : Γ Ñ H1pMq Ñ Z.

Let p : M̂ ÑM denote the infinite cyclic covering corresponding to the
kernel Kerpφq of φ. Since σ˚pξq “ ´ξ, Kerpφq is RH-invariant; hence σ

lifts to a reflection τ : M̂ Ñ M̂ fixing pointwise one of the components
N0 of the preimage of N in M̂ . We let D denote a component of
p´1pM ´ Nq whose boundary contains N0. Then D̄ is a fundamental
domain of the action of the deck-transformation group Z “ xθy of the

regular covering p : M̂ ÑM . Furthermore, for each j P N,

Dj :“
ď

´jďiďj

θipD̄q “
ď

0ďiďj

θipD̄q Y τp
ď

0ďiďj

θipD̄qq

is a fundamental domain for the index 2j subgroup in Z. Each domain
Dj is τ -invariant, has finite volume (2j times the volume of M) and

two boundary component, both totally geodesic in M̂ and isometric to
N via the restriction of the covering map p.
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Figure 7. Infinite cyclic covering11

Remark 62. For future reference, we record the following obvious
properties of the domains Dj:

1. clpDjq Ă Dj`1 for each j.

2.
Ť

jě1Dj “ M̂ .

The fundamental group Γj of Dj embeds in π1pM̂q (since Dj has
totally-geodesic boundary) and, hence, π1pMq. Since π1pMq is isomor-
phic to the lattice Γ, the group Γj will be identified with a subgroup
(again denoted Γj) of Γ. Then the preimage of Dj in Hn`1 under the

covering map q : Hn`1 Ñ M̂ contains a (unique) Γj-invariant compo-

nent Pj “ D̃j. Since BN is totally-geodesic, Pj is a convex domain
with totally-geodesic boundary. By the construction, each boundary

component of Pj is fixed by a reflection in rΓ conjugate to RH . Thus,
the collection of hyperplanes bounding Pj defines a sphere packing Pj

with the reflection group ΓR,j, generated by reflections in the walls
bounding Pj. The group Γj acts on Pj with quotient of finite volume
(isometric to Dj); in particular, the limit set Λj of Γj equals B8Pj and
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Pj is the closed convex hull of this limit set, Pj “ CΓj
. We conclude

that Γj is geometrically finite. Thus, Pj is a Kleinian packing.
The supergroup of the packing generated by ΓR,j and Γj, however,

acts on Pj with two orbits: These two orbits correspond to the two
connected components of BDj. To fix this problem, we note that the
reflection τ discussed above swaps these boundary components. Hence,

we lift τ to a reflection τ̃ in Hn`1 preserving Pj and let rΓj denote the

subgroup of IsompHn`1q generated by Γj and τ̃ . The group rΓj, which
is an index 2 extension of Γj, is still a symmetry group of the packing
Pj and acts transitively on the packing.

We are almost done with the proof of the proposition. It remains to
show that the packings Pj are conformally inequivalent for different
j’s; equivalently, we claim that the convex subsets Pj Ă Hn`1 are
pairwise non-isometric.

To distinguish the sets Pj, we define the following invariant:

ρj “ sup
x̄PDj

dpx̄, BDjq “ sup
xPPj

dpx, BPjq.

Here dpx, BPjq denotes the minimal distance from x to the points of
BPj, similar for dpx̄, BDjq. Since each Pj has finite volume, ρj is finite
for each j. Then Remark 62(1) implies that the sequence ρj is strictly
increasing with j and, hence Pj’s are pairwise non-isometric. �

Remark 63. 1. In §4 we will give a different argument for confor-
mal inequivalence of packings (possibly after passing to a subsequence)
using Hausdorff dimensions of the limit sets of the groups Γj.

2. Two Kleinian packings are conformally equivalent if and only if
they are quasiconformally (more precisely, quasisymmetrically) equiv-
alent, provided that n ě 2, see [Fr06, BKM09]. Hence, we obtain infin-
itely many quasiconformally inequivalent packings in every dimension
n ě 2.

Proof of Theorem 15.
We are given OFpoq, a k-arithmetic hyperbolic lattice of simplest

type, with o the ring of integers of k. In Proposition 60, we constructed
a Kleinian packing P “ ΓS ¨ S0 with a symmetry group ΓS which acts
transitively on the spheres in the packing, and an arithmetic super-

symmetry group rΓ (commensurable to OFpoq). The group rΓ contains
a reflection R through the sphere S0. As in the proof of Theorem 12,
the normal vector w P V to S0 has all coordinates in k. By Addendum
59, after a conformal change of coordinates on Rn, the “bend” covector
α0 is defined over o1, the ring of integers of a quadratic extension k1 of

11Many thanks to Jules Flin for this drawing.
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k. The supergroup rΓ of the packing is commensurable to OFpoq, and
so the orbit of w under the supergroup is defined entirely over k; it is
only when we measure the bends using the covector α0 (after a suitable
rescaling) that we obtain elements of o1. Regardless, the superpacking
has all bends in o1, as claimed. �

Proof of the Classification Theorem 9.
The same proof gives the forward direction of the Classification The-

orem 9; indeed, if F is defined over Q and isotropic, then by the same
argument as above, the packing constructed in Proposition 60 is super-
integral by Part piq of Theorem 12. The backwards direction is a direct
consequence of the Subarithmeticity Theorem 3, which we turn to now.
We will give two proofs, one that is basically identical to the proof of
[KN19, Thm 19], and another using somewhat different ideas. �

First Proof of Theorem 3.
Let Q be the standard quadratic form of the signature pn ` 1, 1q as

in equation (48), Γ ă G “ O`QpRq be a discrete, Zariski dense subgroup
acting on the inversive coordinates vS0 of a sphere S0, so that the bends,
that is, first entries, in the orbit O “ ΓvS0 are all integers. The action
of Γ is on the left (on column vectors) and involves all the entries of
vS0 ; we conjugate it to a right action just on (row vectors of) bends, as
follows.

By the Zariski density of Γ, the orbit O is also Zariski dense in the
one-sheeted hyperboloid Q “ 1, and hence contains n ` 2 linearly in-
dependent vectors tv1 “ vS0 , v2, . . . , vn`2u Ă O. These vectors provide
a coordinate system for the dual vector space pRn`2q˚ so that if one
applies these coordinates to the covector α0 (that is, the first coordi-
nate in Rn`2), one gets integers. Moreover, for each γ P Γ, the pairing
of vectors and covectors xγvi, α0y “ xvi,

˚γ´1α0y is also an integer.
Hence, the vectors vi evaluate to integers on the Γ-orbit of the covector
α0 in pRn`2q˚. Hence Γ preserves the finite index sublattice L gener-
ated by the Γ-orbit of α0 in pZn`2q˚; here pZn`2q˚ consists of covectors
with integer coordinates with respect to the coordinate system given by
v1, ..., vn`2. Thus Γ ă GL is a subgroup of GL “ tg P O`QpRq : gL “ Lu.
The latter group is easily seen to be (and is sometimes taken to be
the very definition of) a congruence subgroup. Note also that the co-
vector α0 is rational with respect to the integral structure given by L
and isotropic, see Lemma 52. It follows that GL, regarded as a lattice
acting on the dual vector space V ˚, is non-uniform, i.e. contains a
unipotent element. Then GL itself, regarded as a subgroup of G, con-
tains a unipotent element, and, hence, is non-uniform. To conclude:
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Γ is a subgroup of a non-uniform Q-arithmetic hyperbolic group of
simplest type, as claimed. �

Second Proof of Theorem 3.
Let Γ ă O`QpRq be a discrete, Zariski dense subgroup acting on the

inversive coordinates vS0 of a sphere S0, so that the bends, that is, first
entries, in the orbit O “ ΓvS0 are all integers. The first coordinate
on Rn`2 is a (nonzero) linear functional α on the real vector space
V “ Rn`2. The key is the following general lemma:

Lemma 64. Let V be a finite-dimensional real vector space, Γ ă

GLpV q an irreducible subgroup, i.e. a subgroup which has no proper
invariant subspaces. Let v P V, α P V ˚ be nonzero vectors with the
property that αpgvq P Z for all g P Γ. Define the Z-submodule L in V
generated by the orbit Γ ¨ v. Then L is a free Z-module of rank equal to
the dimension of V .

Proof. The group Γ obviously acts on L by automorphisms and α still
takes only integer values on L. The irreducibility of Γ implies that
L spans V as a real vector space. It remains to prove that L is a
discrete subgroup of V regarded as an abelian Lie group. Let L̄ denote
the closure of L in the classical topology on V and let W :“ L̄0 be
the identity component of this Lie subgroup of V ; this component is a
(real) linear subspace in V . The group Γ preserves this subspace. In
view of irreducibility of Γ, the subspace W is either t0u or the entire
V . However, α ‰ 0 still takes only integer values on W , hence, W ‰ V
and we conclude that W “ t0u, i.e. L is a discrete subgroup of V . �

We apply this lemma in our setting. The submodule L Ă V “ Rn`2

defines an integral structure on V . We claim that the quadratic form
Q is rational with respect to this integral structure. Since GZ, the set
of integer points in G “ OQ, contains Γ, it is Zariski dense in G, hence,
is an (arithmetic) lattice. It follows from Exercise 4 in [WM15, Sect.
5A] that G is defined over Q. We claim that the form Q is also defined
over Q. The proof is the same as the one of Exercise 4 in [WM15,
Sect. 5A]: Consider the vector space U of all quadratic forms on V . In
view of Zariski density of Γ in G, there is a unique Γ-invariant line in
U bC. Since Γ consists of integer matrices (with respect to the integer
structure on V defined by L), for every Galois automorphism σ of C,
for every q P U , we have

γ˚pqqσ “ γ˚pqσq, γ P Γ.

Therefore, since Q is Γ-invariant, so are the forms Qσ, σ P GalpCq.
Thus, the forms Qσ belong to the line CQ, i.e. for every σ P GalpQq
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paq pbq

Figure 8. paq A fundamental domain for the extended

Bianchi group xBip23q, and pbq a superintegral Kleinian
packing attached to it.

there exists z P Cˆ such that

Qσ
“ zQ.

Lastly, Qpvq “ 1 and v P L, hence,

z “ zQpvq “ Qσ
pvq “ Qσ

pvσq “ pQpvqqσ “ 1.

It follows that Q itself is a rational form with respect to the rational
structure on V defined by the lattice L.

Lastly, the argument that Γ is contained in a nonuniform lattice is
the same as in the first proof: The covector α0 is isotropic and rational
with respect to the integral structure defined by the lattice L. �

3.3. Caveats and Examples.
We collect here some examples that illustrate various caveats given

in the introduction to the main theorems. We begin with an explicit ex-
ample of a superintegral Kleinian packing which is not crystallographic.

Example 65. The extended Bianchi group xBip23q (see footnote 7)
is not reflective (see [BM13]). Indeed, applying Vinberg’s algorithm
[Vin72] to the quadratic form f “ ´2xy ` 2z2 ` 2zw ` 23`1

2
w2 shows

that the subgroup of Of pZq generated by all reflections has infinite
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1m “ 30

2

3

4

5

6
7

8

9

10

11

paq pbq

Figure 9. paq The Coxeter diagram for xBip30q, and pbq
a superintegral packing with all spheres disjoint.

index in Of pZq. One can give a fundamental domain in H3 for Of pZq
as shown in Figure 8paq; here the blue walls act by reflections, and there
is a pair of commuting unipotent elements, one identifying the green
walls, and another identifying the orange ones. By Part 2(ii) of the
Structure Theorem 22, we can construct a superintegral packing from
this fundamental polyhedron; see Figure 8pbq. So this is a superintegral
packing which is Kleinian but not crystallographic.12

As mentioned above Remark 10, a superintegral Kleinian packing
can have all spheres disjoint (as observed already in [KN19]); but its
supergroup must still be non-uniform and Q-arithmetic. One such is
the following.

Example 66. Consider the extended Bianchi group rΓ “ xBip30q. Equiv-

alently, rΓ – OFpZq is the integer orthogonal group preserving the form
F “ ´xy ` z2 ` 30w2. This group is reflective (see [BM13]), and ap-
plying Vinberg’s algorithm [Vin72] gives the Coxeter diagram13 shown
in Figure 9. The node marked “8” is totally isolated from the others,
being either orthogonal or some given distance apart from the other
generating reflective walls. (So are nodes “9”, “10”, and “11” but we
choose to use “8”.) Dropping this wall from the generators and letting
the remaining generators act on it by reflections (as in the Structure

12Note that this particular packing appeared previously in work of Stange [St18]
and Martin [Ma19] but was not recognized there as being dense (and hence wasn’t
considered a “packing” by our definition), due to the significant distances between
disjoint circles. The general theory given here makes this density apparent.

13The diagram has nodes for each facet, and facets that are orthogonal are not
connected; the dihedral angle π{3 is denoted by a single line, angle π{4 is a double
line, and angle π{8 “ 0 is a thick solid line. Nodes of separated facets are connected
with a dotted line.
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Theorem 22) gives the superintegral crystallographic packing shown in
Figure 9(b).

As observed already in [KN19], if a packing cannot be realized as
the orbit of a single sphere (that is, there is no symmetry group for
which the action on the spheres in the packing is transitive), then the
resulting packing (or bug) need not be superintegral (or even integral);
cf. Remark 11. Here is an explicit example of a non-integral bug with
non-uniform, Q-arithmetic supergroup.

Example 67. Let rΓ be the extended Bianchi group rΓ “ xBip6q. Equiv-

alently, rΓ – OFpZq is isomorphic to the integer orthogonal group pre-
serving the form F “ ´xy`z2`6w2. That it is reflective (generated by
reflections) is essentially due to Bianchi [Bia92]; see also [BM13]. Ap-
plying Vinberg’s algorithm to this group produces the following normal
vectors

p0, 0,´1, 0qt, p1, 0, 1, 0qt, p0, 0, 0,´1qt,

p6, 0, 0, 1qt, p´1, 1, 0, 0qt, p2, 2, 0, 1qt.

Making a (choice of) change of variables from F to the universal form
Q in (48), these correspond to spheres with the following (realization
of) inversive coordinates:

v1 “ p0,´1, 0, 0qt, v2 “ p0, 1, 0, 1q
t, v3 “ p0, 0,´1, 0qt,

(68) v4 “ p0, 0, 1,
?

6qt, v5 “ p1, 0, 0,´1qt, v6 “ p
?

2, 0,
?

3,
?

2qt.

See Figure 10(a) for the corresponding spheres (as circles in R2). Writ-
ing V for the 4ˆ 6 matrix whose columns are vj, we can compute the
6ˆ 6 Gramian of all Q-inner products:

V tQV “ G “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ´1 0 0 0 0
´1 1 0 0 ´1

2
´ 1?

2

0 0 1 ´1 0 ´
?

3

0 0 ´1 1 ´

b

3
2

0

0 ´1
2

0 ´

b

3
2

1 0

0 ´ 1?
2
´
?

3 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Equivalently, rΓ has the Coxeter diagram given in Figure 10(b). A
different realization of vj from (68) will of course have different inversive
coordinates V but the Gramian and Coxeter diagram are invariants.
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3 4
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paq pbq

Figure 10. paq The spheres with inversive coordinates
(68) in Example 67. pbq Their Coxeter diagram.

Figure 11. A non-integral bug; the bend of a circle is
shown at its center.

Now we construct the bug. Write Rj for the Möbius action of reflec-
tion through sphere vj, that is,

Rj “ I4ˆ4 ` 2vj ¨ v
t
j ¨Q.

We apply Part 2(i) of the Structure Theorem 22 with S 1 “ tR1, . . . , R6u,

xS 1y “ rΓ, and take R “ tR3, R6u so that S “ S 1zR. The bug we obtain
is then the orbit

(69) B “ xSy ¨ tv3, v6u,

as shown in Figure 11. This particular realization of the bug is evidently
non-integral, but we have not yet ruled out that there cannot be some
other conformally equivalent realization of this bug which is integral.
(Indeed, there exist realizations of the classical Apollonian packing that
are non-integral.)

Lemma 70. There does not exist a conformal realization of the bug in
(69) that is integral.

Proof. We mimic the first proof of Theorem 3 by looking at a right
“bends” action. This time, we will do it using an over-determined
system of equations, leading to an irrational linear relation among the
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bends, which is realization-independent (and hence the bug cannot ever
be integral).

To begin, notice that the spheres

v3, v6, R2 ¨ v6, R1 ˝R2 ¨ v6, and R5 ˝R1 ˝R2 ¨ v6

are all in the bug B. Write W for the 4ˆ 5 matrix whose columns are
the inversive coordinates of these spheres. The kernel of W ,

K :“ kerpW q :“ tg PMat5ˆ5pRq : Wg “ 0u,

is independent of the realization of the bug. Indeed, if g P IsompH3q is
any isometry and we move the whole bug by left-acting by g, then the
inversive coordinates matrix W changes to gW , leaving the kernel K
invariant. Notice that the kernel contains, e.g.,

K “

¨

˚

˚

˚

˚

˝

´
?

3 0 0 0 0
1 0 0 0 0
´3 0 0 0 0
0 0 0 0 0
1 0 0 0 0

˛

‹

‹

‹

‹

‚

P K.

So in any realization of this bug B, if the spheres in W have bends,
resp., a, b, c, d, and e, say, then

0 “ pa, b, c, d, eq ¨K ¨ p1, 0, 0, 0, 0qt “ ´
?

3a` b´ 3c` e.

Suppose this is the case with bends a, . . . , e all integers; then we
must have a “ 0. Note that this applies to not only one particular
realization of these five spheres, but to any such; in particular, the
entire orbit of these five spheres under the symmetry group Γ “ xSy
has the bend a “ 0. But then Γ satisfies an extra polynomial equation,
and is not Zariski dense, which is a contradiction. �

Lastly, we prove Proposition 14 by exhibiting the following.

Example 71. In [KN19], a procedure was given for construction a
packing P “ PpΠq modeled on a (convexly-realizable combinatorial
type of a) polyhedron Π. In the case of Π being the icosahedron, the
resulting packing shown in Figure 12. In can be shown that the entire

superpacking can be made to have bends in o “ Zrφs, where φ “ 1`
?

5
2

is the golden mean. But Vinberg’s criterion applied to the “super-
Gramian” (in the nomenclature of [KN19]) shows that the supergroup
is non-arithmetic, because the quadratic form it defines (over Qpφq)
fails to become definite under the Galois conjugate embedding. For
details of this computation, see http://math.rutgers.edu/~alexk/

maths/Icosahedron.nb.

http://math.rutgers.edu/~alexk/maths/Icosahedron.nb
http://math.rutgers.edu/~alexk/maths/Icosahedron.nb
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Figure 12. Icosahedral packing

4. Hausdorff dimensions of limit sets of packings

In Proposition 60 and its application to (the forward direction of)
the Classification Theorem 9, we showed how to construct superin-
tegral Kleinian packings from Q-arithmetic non-uniform lattices. We
now extend this construction to show that for infinitely many j’s the
Hausdorff dimensions of the limit sets of the groups Γj’s constructed
in the proof of Proposition 60 are pairwise distinct and, moreover, the
sequence of Hausdorff dimensions converges to the maximal Hausdorff
dimension, n. This will follow from the following theorem where dim
stands for the Hausdorff dimension, which implies Theorem 13. We
continue with the notation introduced in the proof of Proposition 60.

Theorem 72. limjÑ8 dimpΛpΓjqq “ n and for all j, dimpΛpΓjqq ă n.

Note first that the discrete groups Γj contain geometrically finite
subgroups which are conjugates of π1pNq. In particular,

δpΓjq ě dimpΛpπ1pNqqq “ n´ 1 ě
n

2
,

provided that n ě 2.
We next discuss a relation between the Hausdorff dimension of the

limit set, the critical exponent and the bottom of the spectrum of the
Laplacian.

For a complete connected Riemannian manifold M let λpMq denote
bottom of the L2-spectrum of the Laplacian of M . This number can
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be computed via Rayleigh quotients:

λ “ inf

ş

Ω
|∇u|2
ş

Ω
u2

where the infimum is taken over all smooth compactly supported func-
tions (called “test” or “trial” functions) u P C8c pMq and Ω :“ tu ą 0u.

Theorem 73 (Semicontinuity of λ). λpMq is upper semicontinuous
with respect to the topology of smooth Gromov–Hausdorff convergence:

Mi ÑM ñ lim inf
iÑ8

λpMiq ď λpMq.

Proof. This is clear using the Rayleigh quotient definition: Every test-
function on M is the C1-limit of a sequence of test-functions on Mi’s.

�

Remark 74. 1. The same theorem (and proof) applies to Riemannian
orbifolds.

2. The bottom of the spectrum is not continuous with respect to
the topology of smooth Gromov–Hausdorff convergence. For instance,
for n ě 3 let M be a hyperbolic n ` 1-manifold of finite volume, let
Mi Ñ M be a profinite sequence of (finite) covers of M . Then the
manifolds Mi converge to the hyperbolic n-space, λpMiq “ 0, while
λpHn`1q “ n2{4.

Given a discrete subgroup Γ ă IsompHn`1q, let δpΓq denote the
critical exponent of Γ (see e.g. [Ni89]). A discrete subgroup Γ ă

IsompHn`1q is called nonelementary if its limit set consists of more than
two points. If Γ is geometrically finite and nonelementary, then δpΓq
equals the Hausdorff dimension of the limit set of Γ, see [Pat76, Su84,
Tu84, Ni89]. We will need the Elstrod–Patterson–Sullivan formula (see
e.g. [Ni89]), relating, for a discrete subgroup Γ ă IsompHn`1q, the crit-
ical exponent δ “ δpΓq and the bottom of the spectrum λ “ λpHn`1{Γq:

Theorem 75.

λ “
´n

2

¯2

, if δ ď
n

2
,

λ “ δpn´ δq, if δ ě
n

2
.

Definition 76. A sequence of closed subgroups Γi of a Lie group G
is said to converge to a closed subgroup Γ ă G geometrically or in
Chabauty topology if the following two conditions are met:

1. For every γ P Γ there exists a sequence γi P Γi which converges to
γ.

2. If a sequence γi P Γi subconverges to γ P G, then γ P Γ.



44 MICHAEL KAPOVICH AND ALEX KONTOROVICH

Suppose now that X is a complete connected Riemannian manifold,
G is the isometry group of X. Then G (equipped with the compact-
open topology) is a Lie group. Fix a base-point x P X. Consider a
sequence of subgroups Γi ă G and a subgroup Γ ă G and quotient
manifolds/orbifolds Mi “ X{Γi,M “ X{Γ. Let x̄i, x̄ denote the pro-
jections of x to Mi, M respectively.

The following theorem was proven in [BP92] in the case when X
is the hyperbolic space (which will suffice for us), but the same proof
works for any complete connected Riemannian manifold.

Theorem 77 (See [BP92]). A sequence of discrete subgroups Γi ă G
converges geometrically to a discrete subgroup Γ ă G if and only if the
sequence of pointed Riemannian manifolds/orbifolds pMi, x̄iq converges
to pM, x̄q in the smooth Gromov–Hausdorff topology.

Corollary 78 (Semicontinuity of λ and δ). (a) Suppose that Γi is a
sequence of discrete (nonelementary) subgroups of IsompHn`1q converg-
ing to a discrete subgroup Γ ă IsompHn`1q. Then

lim inf
iÑ8

λpHn`1
{Γiq ď λpHn`1

{Γq.

(b) Suppose, in addition, that inftδpΓq, δpΓiq, i P Nu ě n{2. Then

(79) lim inf
iÑ8

δpΓiq ě δpΓq.

In particular, if δpΓiq ď δpΓq for all i (e.g. if Γi ă Γ) then

lim
iÑ8

δpΓiq “ δpΓq.

Proof. The first inequality is a direct corollary of the two theorems
above. The second inequality follows from the relation of δ and λ:

λ “ δpn´ δq if δ ě
n

2
,

see Theorem 75. �
Lastly, we need the following theorem due to T. Roblin [Ro05] (see

also R. Brooks [Br85]):

Theorem 80. Let Γ ă IsompHn`1q be a geometrically finite14 subgroup

and Γ̂ ă Γ a normal subgroup with amenable quotient Γ{Γ̂. Then

δpΓ̂q “ δpΓq.

14More generally, a group of divergence type, i.e. a group whose Poincaré series
diverges at the critical exponent.
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Thus, if Γ is a lattice and Γ̂ ă Γ is a normal subgroup with cyclic
quotient, then δpΓ̂q “ n.

We can now finish the proof of Theorem 72. Let Γj be the discrete
groups as in the theorem.

Lemma 81. The sequence Γj geometrically converges to Γ̂.

Proof. This follows from the fact that the sequence of domains Dj

exhausts M̂ (see Remark 62), which ensures Gromov–Hausdorff con-
vergence of the corresponding hyperbolic manifolds, hence, geometric
convergence of discrete subgroups. �

Thus, we conclude that

lim
jÑ8

dimpΛpΓjqq “ dimpΛpΓqq “ n.

On the other hand, δpΓjq ă n since each Γj is geometrically finite
and its limit set is a proper subset of Sn, (Sullivan [Su84] and Tukia
[Tu84], independently). This concludes the proof of Theorem 72 and,
hence, of Theorem 13. �
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