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ABsTRACT. In this paper we prove that for any hyperbolic 4-manifold M , which
is R? bundle over surface ¥, the absolute value of the Euler number e(¢) of the
fibration ¢ : M — ¥ is not greater than exp(exp(108|x(2)])). This result partially
corroborates a conjecture of Gromov, Lawson and Thurston that |e(€)] < |x(2)].

1. INTRODUCTION

1.1. The problem:

“Which 4-manifolds fibered over surfaces can have a complete hyperbolic metric 7”
first appears in the paper of W.Goldman [G] in the context of flat conformal struc-
tures on 3-manifolds. It is easy to construct a hyperbolic structure on the trivial
R2-bundle over any surface ¥ of nonpositive Euler characteristic. On the other
hand, the total space of any nontrivial orientable R®-bundle over the torus can’t
have any hyperbolic metric metric. The problem becomes much more difficult in
the case of R2-bundles over hyperbolic surfaces. First examples of hyperbolic met-
rics on such manifolds were independently constructed by M.Gromov, H.B.Lawson
and W.Thurston [GLT] and the author [Ka 1, Ka 4]. The original constructions
and estimates were considerably improved in papers of N.Kuiper [Ku 1, Ku 2] and
F.Luo [L]. The best (to the current date) result in this direction was obtained by
N.Kuiper and P.Waterman [K W]:

THEOREM 1. For any pair of integers (e, g) such that
le] <g—1 (1.1)
the manifold M* = M(g,e) admits a complete hyperbolic structure. Here and

below we denote by M (g, e) the total space of the oriented R2—bundle ¢ : M (g,e) —
Y, where e = e(£) is the Euler number of ¢ and ¢ is the genus of X.

CONJECTURE 1 [GLT]. The inequality
le] <2g—2 (1.2)

is necessary condition for existence of a complete hyperbolic structure on the man-
ifold M(g,e).
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There are several reasons in favor of this conjecture. All known examples satisfy
the inequality (1.2). It was proven by N.Kuiper [Ku 3] and V.Marenich [Mar] that
for any hyperbolic 4-manifold M and any imbedded minimal surface ¥ C M with
the genus g and self-intersection number e the inequality (1.2) is satisfied (actually
in such case |e| < 2g —2). Finally (as it was noticed in [GLT]), the inequality (1.2)
appears in many cases in low-dimensional topology (we shall discuss this in the
section 6).

1.2. The present paper is another corroboration of Conjecture 1. We prove

THEOREM 2. Suppose that M is a complete oriented hyperbolic 4-manifold
so that 71 (M) = m1(X) where X is a closed oriented surface of genus g. Then

| <[], [Z] > | < exp(exp(10%[x(2)])) (1.3)

where < [X],[X] > is the value of the intersection form of M on the generator of
Hy(M) represented by the homotopy— equivalence ¥ — M.

So, our result is valid for a class of 4-manifolds which is slightly bigger than
the class of plane bundles over Y. In such class we can’t expect the estimate
| < [X],[X] > | <2(9 — 1) because of another example constructed by N.Kuiper:

THEOREM 3 [Ku 2]. There is a sequence of complete hyperbolic 4-manifolds
M, which are homotopy equivalent to closed surfaces ¥, of genus g such that:

Jim <[], [%) > /(29 - 2) = 2/V3 > 1 (1.4)

In this paper we also prove the following application of our results to flat confor-
mal structures on 3-manifolds. Denote by S(g,e) the orientable 3-manifold which
is a circle bundle over the closed oriented surface of genus g such that the Euler
number of the fibration is e.

THEOREM 4. The condition

le] < exp(exp(10°|x(2)]))

is necessary for existence of flat conformal structures with nonsurjective develop-
ment maps on the manifold S(g,e).

1.3. One can try to generalize the results of this paper in several directions.

THEOREM 5. There exists a function f(B) of negatively curved oriented
compact k-manifold B so that:

if the total space of RE-bundle ¢ : M?* — B has a complete hyperbolic metric,
then

le(§)| < f(B) (1.5)

This result is an application of a deep compactness theorem due to Thurston,
Morgan, Rips, Bestvina and Feighn. Unfortunately we have no any idea how the
function f looks like.

In the subsequent paper [Ka 6] we will prove the following generalization of
Theorem 2:
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THEOREM 6. There exists a function C(.,.) such that for any complete
hyperbolic 4-manifold M and for any classes [o1],[02] in Ha(M,Z) which have
incompressible representatives o; : ¥; — M, we have:

| <ol [o2] > [ < C(Ix(E)s [x(E2)]) (1.6)

1.4. Probably it’s possible to prove Theorem 2 for certain hyperbolic 4-manifolds
by comparing two n-invariants for flat conformal manifolds at infinity [Ka 2, 3].
More realistic idea was suggested to the author by M.Gromov who proposed to
compactify the moduli space of all hyperbolic structures on the given fiber bun-
dle. Formally speaking this idea doesn’t work, since arbitrary large number of
self-intersections of zero section can be pinched to point in the limit. However,
what we are using in this paper are “pre-limit” considerations based on Mamford’s
compactness theorem and existence of the Margulis constant.

1.5. Idea of the proof of Theorem 2.

Suppose that the radius of injectivity of the manifold M is not less than e. Then
we can realize the class [o] by two transversal immersed piecewise-geodesic surfaces
31,29 in M so that :

the number of simplices in both 31, Y5 is bounded from above by 4(¢ — 1) and
diameter of each triangle is bounded from above by (2g — 2)/e. Then the fact that
2 geodesic planes in H* intersect transversally by not more than one point implies
that the number of points of intersection between X1, Y5 is at most

8(g —1)(2g — 1) exp(12(g — 1) /e +€/2) - €73 (1.7)

This implies the assertion of Theorem 2. Omne can improve this estimate by con-
structing ¥; such that the diameter of each triangle is at most ¢ and the number
of triangles is at most

107(g —1)/¢ (1.8)

(see Lemma 8). Then the number of points of intersection is at most
2-10%% " exp(9¢) (g — 1)?

Even so, the estimate is quadratic with respect to g.

It’s impossible in general to estimate from below the radius of injectivity by
a universal constant. However one can construct piecewise-geodesic surfaces X;
so that the “long” triangles of X, Y. are contained in the e(g)—“thin” part of
the manifold M which has very simple topological structure. Unfortunately, the
function €(g) has exponential decay as g — oo. Therefore, our estimate of the
number of points of intersection of “small” triangles is at least an exponential
function of g. The double exponent in (1.3) appear because of intersections between
“short” and “long” triangles. Apriori, the “long triangles” in ¥, can have a lot of
intersections since their diameter is apriori unbounded from above and the radius
of injectivity at these triangles is apriori unbounded from below. However, detailed
analysis of the geometry in the “thin” part of M (Section 2) and correct choice of
the surfaces ¥; (Section 3) give the desired result.
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In the section 2 we discuss the geometry of components of the “thin” parts
of hyperbolic manifolds (“Margulis tubes 7). The following is the reason of the
difference between dimensions 3 and 4. Let < g > be an infinite cyclic group of
(orientation preserving) isometries of H". Consider the set of points (< g >,v) =
{z € H" : d(z,¢%(x)) < v for some v # 0} ; define

¢(z) = minimal & > 0 such that d(z, g*(z)) < v

Then, for n < 3 the function ¢ is constant on OK(< g >,v). However it’s not
longer true for n > 4. It’s well known that the situation is the worst in the case of
parabolic g, when ¢(x) can have infinitely many different values. If g is loxodromic,
then the image of ¢ is still finite, but it depends on the element g. Something
similar occurs even for n < 3 if g doesn’t preserve the orientation; however, in this
case ¢ can have not more than 2 different values.

1.6. The first version of this paper and [Ka 6] was published by the author as
a preprint of MSRI [Ka 5]. The proof in [Ka 5] is essentially the same as in the
present paper, but in [Ka 5] we had an error in evaluation of the upper bound on
the Euler number (single exponent instead of the double exponential function).

Acknowledgements. I am deeply grateful to Misha Gromov and Nicolaas
Kuiper for reviving my interest in subject of the current paper (Conjecture 1),
helpful advices and discussions. This work was supported by NSF grants numbers
8505550, 8902619 and 9306140 administered through the University of Maryland at
College Park, MSRI and University of Utah which the author gratefully acknowl-
edges.

2. GEOMETRY OF MARGULIS CONES

Many results of this section are well known, we present their proofs for the sake
of completeness.

2.1. DEFINITIONS AND NOTATIONS.

We shall consider the n-dimensional hyperbolic space H™ which has the curvature
(=1), d(. , .) will denote the distance in H™. We shall use the upper half-space
model for H™:

H" =R} ={z €R" : 2, >0} (2.1)

| —b]

sinh(d(a,b)/2) = 2anbn) 2

(2.2)

where |a — b| is the Euclidean distance between a,b € R}. The ideal boundary of
I is S* 1 =R""" = R*! U {co}.

For each pair of points a,b € H" we shall denote by [a, b] the geodesic segment
connecting them. We denote by [a, b, c] the totally geodesic 2-dimensional triangle
with the vertices a, b, ¢ € H". The union of edges of a triangle A is denoted by A,
We shall denote by A(©) the set of vertices of a triangle A. If  is a triangulation,
then QU) will denote the j-dimensional skeleton of .
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If N is a metric space then by [x(vy) we denote the length of the curve 7 in the
space N.
We shall denote by

dist(z,Y) =d(z,Y) = inf{d(z,y) :y € Y}

the hyperbolic distance between the one-point set {:} and a nonempty set Y C H".
The open ball with the center at x and radius r will be denoted by B(z,r). If N
is a Riemannian manifold then RadInjy(z) denotes the injectivity radius of N at
the point z € N. If h € Isom(H") then

T x — d(z, h(x)) (2.3)

is the displacement function of h. We shall denote by (k) the infimum of 7, in
H". The set

Qr = {z: m(w) <7} (2.4)

is known to be convex for every r (see [BGS]). We recall that the element h €
Isom(H") is called loxodromic if it has exactly two fixed points in H* US"~1. The
element h is parabolic if it has only one fixed point in S?~1.

If G C Isom(H"), x € H" then Irg(xz) = dist(x,Gz)/2 is the injectivity radius
RadInj([z]) at the projection [z] of z in H"/G. We shall assume that all groups
below are torsion-free.

If h is a loxodromic then Ay will denote the axis of h which is a geodesic where
7, attains its minimum. Suppose that A is a parabolic element with the fixed point
p € S*~1. Then any horosphere F' in H* which is tangent to S™ at the point p
is invariant under h. There exists at least one hyperbolic plane X in H™ which is
invariant under h. We choose X and F and denote by A, = FFN X an invariant
horocycle of h. This horocycle (unlike the axis of a loxodromic element) is not
uniquely determined by h. However, all invariant horocycles of h are parallel in
the sense that for any two invariant horocycles Ay, A} the function dist(x, Ap) is
constant on Aj.

If A is a loxodromic or parabolic transformation in H" then we denote by II the
canonical foliation of H" by totally geodesic hyperplanes orthogonal to Ay. It is
easy to see that this foliation doesn’t depend on the choice of Aj in the parabolic
case. The projection of IT to H” / < h > will be called the canonical foliation of
H"/ < h > associated with < h >.

For any almost Abelian discrete group H C Isom(H") define the Margulis cone
as

KH,v)={ze€H" : Irg(z) <v/2} (2.5)

The quotient
T(H,v)=K(H,v)/H (2.6)

is the Margulis tube in H"/H (we assume that Margulis tubes can be noncom-
pact; in particular cusps are also considered as Margulis tubes).
The set (< h >,v) is the union of convex subsets

{Thn () < v/2}nez\f0y (2.7)
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but in general it is not convex itself.

Suppose that the hyperbolic n-space is realized as the “upper half-space”, and
the loxodromic element h is a Euclidean similarity. The problem concerned with
Margulis tubes in the dimension 4 (and higher) is that even for the cyclic loxodromic
group < h >= H CIsom(H") the boundary of the Margulis cone K(H,v) is very far
from been a “round” cone (like in dimensions 2 and 3), but rather looks as a cone
over an ellipsoid, where the ratio of the largest and smallest axes can be arbitrary
large.

We recall now a particular form of Kazdan-Margulis-Zassenhaus Theorem. Put
fin, = 9—[n/2]—2.

Theorem 7. For every torsion-free discrete group generated by two elements
g, h € Isom(H™) which is not almost Abelian and for every point z € H” we have

max {7 (z), 74(x)} > pin (2.8)

(We use here a calculation of the Margulis constant j,, made by G.Martin in [Mart
2].)

Suppose that T is a torsion-free discrete subgroup of Isom(H") with the quotient
M = H"/T. We fix the dimension n and let y = p,. Denote by M , the subset
of M = H" /T’ which consists of points with injectivity radius not greater than p/2.
This subset is called p-thin part of the manifold M. Let M — Mg ;) = M, 00)-
This subset is called pu-thick part of M. Then Theorem 7 implies that Mg, is the
disjoint union of embedded Margulis tubes

T(Hbu) C M7 J = 1727 (29)

where {H;,j =1,2,...} is a family of almost Abelian subgroups of I

Suppose H =< h >¢€ Isom(H*) is a group generated by a parabolic or loxo-
dromic element h; pick a pair of points a,b € T (H,v) which belong to one and
the same fiber II; of the canonical foliation on H*/H associated with h. Then we
define the piecewise-geodesic annulus Fj,, as follows. First connect a,b by
the geodesic segments I, .J so that I C II; and the closed loop I UJ is homotopic to
h. Denote by 74, v the shortest loops in H*/H which contain z,y and homotopic
to h. Then take the pair of geodesic triangles in M whose edges are I, .J, v, and
I, J,~yp respectively. The union of these triangles is the desired annulus Fpqp. (See
Figure 1 for the lift of Fjqp in H*).

In general Fjqp is not entirely contained in 7 (H,v).

2.2. LEMMA 1. Let z € H* and H C Isom(H") be such that
Irg(z) > v for some positive v. Then the ball B(z,r) contains not more than

exp((n — 1)(r +v))

(2.10)

VTL

points from the orbit Hz.
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PROOF. The balls {B(hz,v) : h € H} are disjoint. Therefore, if the points
z; € Hx (j =1,...,m) belong to B(z,r), then the volume of the union

U B(=)) (2.11)

m
J=1

is equal to mVol(B(z,v)) > mv™ 1. On the other hand, this volume can’t be
greater than Vol(B(x,r + v)) < exp((n — 1)(r + v)). This implies the inequality
(2.3). m

LEMMA 2. Under conditions of Lemma 1 the number of elements h € H such
that the intersection h(B(z,r)) N B(x,r) is not empty is not more than

exp((n — 1)(2r + v))

Vn—l

(2.13)

The proof of this statement is completely analogous to the proof of Lemma 1
and we omit it.

Given two numbers r, v we define

exp(6(n — 1)r + 2v)

p(n,r,v) = , Ci(n,r,v) =2r/p(r,v) (2.14)

VTL
LEMMA 3. Let H be a discrete subgroup of Isom(H?*) and v/2 = Irg(x).
Suppose that d(z,y) < r. Then Irg(y) > Ci(n,r,v)/2.

PROOF.

Let h be arbitrary nontrivial element of the group H. Let py be such that
d(xz, hP°(x)) > 3r. Then d(y, hP°(y)) > r and d(y, h(y)) > r/po. So, our aim is to
estimate this py from above. Notice that for p = p(n,r,v) among the elements

(1, hy ... P}

there is k¥ such that d(x, h*(x)) > 3r (by Lemma 1). Then we can take py < p
and d(y,h(y)) > r/p for every h € H — {1}. &

REMARK 1. The function Cy(n,r,v) has exponential decay as r — oc.

2.3. In Lemmas 4 and 5 below we shall prove a property of Margulis cones and
displacement functions which will be crucial in our paper.

2.4. Let g be either parabolic or loxodromic element of Isom(H?*). We can
assume that oo is a fixed point of g.

In the loxodromic case we shall suppose that g = © o A is a similarity in E*
preserving H*, g(0) = 0, A = A, is the axis of g, d(z,4) > 2. Here A is the
dilation A : z — Az and © is the rotation to the angle 6 around A.
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In the parabolic case we assume that g = GoA, where A is a Euclidean translation
to the distance A along A, and © is the rotation to the angle 6 around A, = A.

Let L be the geodesic containing the points oo, z; let w € L be a point such that
z lies between w and oco. (See Figure 2).

LEMMA 4. Suppose that under conditions above:

v <d(g(z),2) < R; d(g(w),w) <R (2.15)

Then d(z,w) < R+

R =

PROOF. First we consider the case of parabolic transformation. The points
z,2" = g(z) belong to a horosphere F', the points w,w’ = g(w) belong to a horo-
sphere F’. Therefore, the formula (2.2) for the distance d implies that

R > d(w,w') > d(z,2") +d(z,w) (2.16)

Hence,
diz,w) < R—v < R+v* (2.17)

This concludes the proof in the parabolic case.

Now we consider the more difficult case of loxodromic transformations.

Step 1. Put g(z) = 2/ ,g(w) = w'. Denote by «a(u) the angle between the
horosphere P with center at oo containing the point z and the Euclidean line
passing through the points z,u ; a(u) < 7/2 . Then the condition d(z, A) > 2
guarantees that a(Az) < w/3. However |z — ©Az| > |z — Az|, thus

B=a(gz) <aAz) <n/3 (2.18)

Step 2. Due to the Step 1 it suffice to consider the case: z, 2z’ = Az, w, w' =
Mw e H? C C,arg(z) = 3 <7/3; d(z,w) = d(2',w’), Re(z) = Re(w). (Figure 3).
Without loss of generality we can suppose that Im(z) = 1,y = Im(2').

Then we have: p = |z — 2/|,y = psin(B) + 1,

— 9ainh Hz2) o p
q = 2sinh == = Vi = i)’

So ¢* + pg*sin(f) — p* =0,

p= <q2 sin(f3) + \/q4 sin?(8) + 4q2> /2>q> 2sinhg (2.19)

On the other hand we have: sin 8 < v/3/2, so p < 2¢® + 2 < 8sinh?*(R/2) + 2,
sinhv/2 <sinhd(z,2")/2 = |z — 2"|/2 = p(cos B) /2 (2.20)

< (8sinh?(R/2) + 2) cos B < 8sinh?(R/2) + 2 (2.21)

and d(w,w") > d(w,w") — d(w',w") > d(w',w") — R.
Let s = Im(w), then d(z,w) = log(1/s) and

sinh(d(w,w")/2) = |z — 2"|/(25) > p/(4s) > sinh(v/2)/(2s) (2.22)
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6> sinh(v/2) > s1n.h(y/2) (2.23)
2sinh(d(w,w”)/2) — 2sinh(R)
since d(w,w") < R+ d(w,w’) and d(w,w’) < R. Now
d(z,w) = log(1/s) < log2 + log sinh(R) — log(sinh(r/2)) (2.24)
However logsinha = (a? — 1)/2a and 2sinh b < e®. Therefore: d(z,w) < R+ L.

Lemma 4 is proved. B
Now suppose that a,b, z € H* be points such that: d(z,[a,b]) < R.
Denote by L,, L; the geodesic rays connecting the points a,b and the point

oo € S3. For a point w € H* we denote by m(w) the number

m(w) = min{d(w, L,) ,d(w, Ly) } (2.25)
PROPOSITION 4. (Cf. [B]) Under the conditions above we have:
m(z) <2+ R (2.26)

PROOF. Denote by ¢ the point of [a,b] such that d(c,z) < R. Let L), be the
geodesic containing L,. Then we have:

1
hdist(c, L)) = —— hdist(c,L}) = —— 2.27
cosh dist(c, L) oo coshdis (c, Ly) s (2.27)

(see Figure 4) and o+ 8 > 7/2 so
sin? a +sin® 8 > 1 (2.28)

Now there are two possibilities (up to the change of notations: § < «):

(i) by > wy for every w € [a, b]

(ii) otherwise.

Consider (ii). Then ¢ < 7/2 ,9 < w/2 where ¢,1) are nonzero angles of the
triangle formed by L, Ly, [a,b]. Therefore:

dist(c, L)) = dist(c, L) , dist(c, L) = dist(c, Ly) (2.29)

Now if sin? a < 1/4 then sin~! g < 2.
This means that

min{cosh dist(c, L), cosh dist(c, Ly)} < 2 (2.30)

so m(z) <2+ R in the case (ii).

Consider the case (i). Then ¢ < 7/2 ,4¢ > 7/2, however o > /4 (since the arc
of the geodesic passing through a, b is greater then the quarter of circle).

Then 1/sina < /2 and €*/2 < coshx = cosh(d(c, L)) < v/2; z < log(3) < 2.

However ¢ < w/2 , then d(c, L) = d(c, L,) that means d(c, L,) < 2.
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Therefore
m(z) <2+d(c,2) <2+ R (2.31)
|

2.5. LEMMA 5. Suppose that g € Isom(H*) is a loxodromic or parabolic
element. If g is loxodromic we put A = A, as in Lemma 4, otherwise let A = ().
Let a,b, 2 € H* be points such that:

dist(z,la,b]) < R,dist(z,A) > 2+ R (2.32)
v <d(g(z),z) < R,d(a,g(a)) < R,d(b,g(b)) < R (2.33)

Then:
min{d(z,a),d(z,b)} <4R+ 6+ 1/k (2.34)

where
k=k(R,v) =2(2+ R)v*/exp(18(2 + R) + 2v) (2.35)

PROOF. According to Proposition 4 we can assume that d(z, L,) < 2+ R. Let
u € L, be a point such that d(z,u) < 2+ R. Then we have: dist(u, A) > 2 (in the
loxodromic case), k < d(g(u),u) < 3R + 4 (the last follows from Lemma 3). Now
we can apply Lemma 4 to the points a,u to obtain: d(a,u) < 3R+ 4 = 1/k and
d(z,a) <4R+ 6+ 1/k.

B

COROLLARY 5. Let h be a parabolic or loxodromic isometry of H*, z € H*
is such that: Ir<p~(x) > v and there is a geodesic segment L = [a, b] such that
d(z,L) < R for some R and

max{ty(z), m™(a), T(b)} < R (2.36)
Then either

min{d(z,a),d(z,b)} < C1(R,v) = 4R+6+1/k (the parabolic alternative) (2.37)

or [(h) > C_(R,v) =C1(R+2,v) >0 (the hyperbolic alternative)  (2.38)

Here k = 2(2 + R)v3/ exp(18(2 + R) + 2v) (as in (2.35)) and the function C; is
defined by Lemma, 3.

PROOF. Combine Lemma 5 and Lemma 3. R

Denote by H(t, A) = {w € H? : dist(w, A) = t} the “hypercycle” whose axis is
the geodesic A.

2.6. LEMMA 6. Let zq, z belong to a connected component of H(t, A). Then
drt,a) (21, 2) < 2sinh(d(z1,2)/2) (2.39)

where dp is the metric on H = H (¢, A) induced from the hyperbolic plane.
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PROOF. We can suppose that |z1| = 1,|z| = r, logr is the distance between
orthogonal projections of the points z1,z on the geodesic A. Let m — 20 be the
Euclidean angle at the vertex of H(t, A). Then

2 sinh(d(z1, 2)/2) = m (2.40)
for cosh(t) sin@ = 1. Moreover,
a=dg(z,z) =log(r)/sinf,asinf = logr (2.41)
Our aim is to show that:
log(r) < rel_ r— L (2.42)

VT VT

if r > 1. Let x = \/r, then 2logxz < x — 1/x since for x = 1 we have the equality
and derivative of the left side is not greater than derivative of the right side. W

REMARK 2. In this situation we have also:

. d(z1,2)
logr SlnhT (24:3)

cosht <2

2.7. We will need some facts about triangulations of hyperbolic surfaces. Let
S be a closed hyperbolic surface, v > 0 be a number such that the v-thin part
S(o, of the surface S is a disjoint union of tubes. We denote by S’ the closure of
the complement S(, .y = S — S(0,,- According to Lemma 6, the length of each
boundary component of S’ is at most 2sinh(r/2). We denote by g the genus of S
and by m the number of boundary curves of S* (m < 2(¢g+1)). Our aim is to find
a triangulation of S’ so that the edges of triangulation are either geodesic segments
or arcs of 3S’, the number of triangles s(g, v) is a linear function of g and diameter
of triangles is bounded from above by v.

Consider the Riemannian metric on S’ induced from S and the corresponding
distance function on connected components.

Cover S’ by a maximal set of disjoint discs D(z;,v/4). Put points z; on each
boundary curve such that distance between any two consecutive points is /2 (with
exception of two points on each boundary component which have distance at most
v/2). Let n be the number of these points. The number of the discs is at most

4Area(S")/v? < 8(g —1)/v? (2.44)
The number of points on 95’ is at most
2msinhv/(2v) < 4(g + 1) (2.45)

The set of points Z = {z;}; has the following properties:
(a) for each point z € S’ there is at least 4 points from Z on the distance < v;
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(b) for each point 2 € S’ there is at most 25 points from Z at the distance < v;
(¢) the number of points in Z is

#(Z) <8(g— 1)/v* +4(g+ 1) (2.46)

This implies
LEMMA 7. (Cf. [Bo], [Ab]) The diameter of each component of S’ is at most

Cy(g,v)=16(g —1)/v

Now we connect any two points in Z by geodesic segment (which can be a
boundary arc) iff the distance between these points is at most v. This gives us a
cell decomposition of S’. Each segment that we construct this way can intersect
not more than 300 other segments. Therefore, the total number of vertices in this
cell decomposition is at most

#(Z)-45- 103 (2.47)

Each cell in the decomposition has at most 25 vertices. Therefore, if we complete
this cell decomposition to a triangulation of S’, then the number of triangles in the
triangulation is at most

#(Z)-45-25-10° < 9-10%(g — 1)/v? (2.48)

which is a linear function of g and the diameter of each triangle is at most v. Thus,
we proved

LEMMA 8. The surface S = S(,, o) admits a geodesic triangulation such that
the diameter of each triangle is at most v and the number of triangles is at most

9.10%g —1)/v? (2.49)

2.8. Now we extend the triangulation to the whole surface S. On each component
v* of 0S5’ we single out a point z, € Z. In our original triangulation we substitute
each arc on every boundary curve v* by the shortest geodesic segment in S with
the same vertices. Let curve v* be adjacent to a certain tube W in S — S’. Denote
second boundary component of W by a*. Let z, be another distinguished point of
Z on «a. Connect zy by the shortest geodesic segments with each point z; € Z Ny*
and repeat the same for z,. All these segments are contained in W. Finally, we
construct two “long triangles” which intersect both curves o*,~* as follows.

Take the shortest curve in S which contains z, and the shortest curve which
contains z,. Connect z, and z, by two geodesic segments in W. The choice of
these segments is not canonical, we shall discuss this in the section 3.7. So, for the
pair (z., zo) we have constructed 4 segments in S which bound “long” two triangles.
(See Figure 1.)

Thus, we have a triangulation of S such that the number of triangles is not
greater than

9-10%(g —1)/v? +10(g — 1) (2.50)
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This triangulation has 2 “long” triangles for each component of S — S’. All other
triangles will be called “short”. Their diameters do not exceed v.

3. PROOF of THEOREM 2

3.1. Step 1. Suppose that M = H*/G is a hyperbolic manifold where G is
isomorphic to the fundamental group of a closed orientable surface . Denote by
Y : m1(3) — G the corresponding isomorphism and let

T HY - M

be the universal covering with the group G of the deck transformations.
Let [0] € H2(M,Z) be a homology class represented by the homotopy-equiva-

lence
oc:x—~ M

We recall that = 1/9% is the Margulis constant for H*.

3.2. Step 2. The group G = ¢(71(X)) contains at least one loxodromic element
and is not almost cyclic; hence there is a hyperbolic structure on ¥ and a pleated
map

f°:¥ — M inducing ¢ : 71 (X) = G (3.1)
(see [Th 1, Th 2], [Bo]).

Pick a maximal union L of simple closed disjoint geodesics v on ¥ such that

0 <In(y) < (3.2)

3.3. Step 3. For every component P; C ¥ — Lg define the set
W, (P;) ={z € Pj : Radlnjs(z) < p/2} (3.3)

Each ideal boundary component o C dP; has orientation induced from P; so
we shall distinguish curves a C Lo with different orientations but equal underlying
sets. Put:

W, (a, Pj) = {z € P; : there exists a loop 3, on P;

which is homotopic to o and passes through z, so that Ix(5,) < u} (3.4)

Then

Wu(P) = |J Wula, Py) (3.5)
aCOP;

The properties of the Margulis constant imply that for different boundary compo-
nents «, 3 of P; we have :

W, Py) " Wu(B, Pj) = 1) (3.6)

Put
Y, ={z€X: Radlnj(z) > p/2} (3.7)
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Let P} = P;j — W,(P) for every j.
We recall that diameter of each component P} is at most Ca(g, ) = 16(g —1)/p
(Lemma 7).

REMARK 3. Unfortunately it isn’t true that 3, has a decomposition in a
union of pairs of pants such that the diameter of each component is bounded from
above by a constant which is independent of g. For example, let I' C PSL(2,R) be
a cocompact arithmetic group, I' D I'(2) D ... D I'(p)... be a decreasing sequence
of congruence subgroups. Put ¥(p) = H2/I'(p). Then for sufficiently large p the
surface ¥, (p) coincides with ¥(p) and the length of the smallest closed geodesic
on X(p) grows linearly as p — oco. As we shall see later this is the reason of the
exponential estimate in Theorem 2.

3.5. Step 4.

For each v C Lo we pick the Margulis tube T, (1) C Mg, whose fundamental
group is generated by an element in the free homotopy class of f0(v).

For every such geodesic v we have two (possibly equal) components P;, P; C
> — Ly adjacent to . Then

PP (Wiuly, ) € Ty(p) (k =1, j)
Choose points xp = x5, € OW, (7, P;) (k =1, j) such that:
[2(@i), [(w;) € T,
for some fiber of the canonical foliation of T',(x) associated with (). Let

v = RadInjy(f°(X,)) (3.8)

Lemma 9. Put
Cs(g) = C1(4,Ca(g, 1), 1) (3.9)

Then v > Cs(g).
PROOF. For every i we have a point 0; € P; — (f°) ™1 (M ,) since (w1 (F;))
is not almost Abelian (because ¢ is a monomorphism). Then for each z € P?

dM(fOOhfox) < 02(/1’79) (310)
(by Lemma 7). Therefore (by Lemma 3)

RadInjy (%) > C1(4, Ca(g, ), 1) = Cs(g) (3.11)

|
REMARK 4. The function C3(g) has exponential decay as g — oo and

Cs(g) > 7-107%(g — 1) exp(—2-10°(g — 1)) (3.12)

Let o}, B35, ...,w; be the boundary components of P.
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Then we can triangulate ¥ as in Sections 2.8, 2.7 so that:

(a) for each k the points x4, 23k, ..., Zw k. belong to the set of vertices of this
triangulation Q¢ (they are “distinguished points” as in Section 2.8);

(b) all vertices of the triangulation are contained in 3,

(c) diameters of all “short” triangles are bounded from above by u,

(d) the number of triangles is not greater than

2-101%g —1)/v® +10(g — 1) (3.13)

3.6. Step 5. Now, for each k we map the triangulated surface P,g to a piecewise-
geodesic surface in M by the new map f : PY — M which is a (local) isometry on
each triangle so that:

for every edge e of the triangulation we have: f(e) ~ fO(e)(rel de).

Hence Ipr(f(e)) < lIs(e) < p.

Now consider the thin part of the surface 3.

3.7. Step 6. Fix z,; , v, ; lying on the components P; , P; adjacent to
a curve v C Lg. Then connect the images f(zy;) , f(x,;) by the piecewise-
geodesic annulus

F = Fy() f(2,0) f(24,5)

(see Definition 2). The boundary of F is equal to f; U fv;. The annulus F' consists
of two geodesic triangles. These triangles will be called “long” triangles correspond-
ing to T (p). The annulus F' itself will be called “long piecewise-geodesic annulus
corresponding to 77, (u)”.

Finally, we can resolve the ambiguity in the choice of triangulation in Section
2.8. Namely, we connect the points z,; , ©, ; € X by geodesic segments which are
homotopic to the pull-back of the 1-dimensional skeleton of F'. So we extended our
map from ¥, to the piecewise-geodesic map f : ¥ — M which is homotopic to o.
We also constructed a triangulation Q¢ of the surface ¥. The map f is geodesic on
each triangle of €.

We shall use the notation 3# for the union of “short” triangles in X, then ¥, C
DI

We recall that the upper bound for the diameter of each component of ¥# is

R=Cy(g,p) =16(9 —1)/pn=16-9*(g — 1) (3.14)

LEMMA 10. Suppose that 1 () is loxodromic and d(7(Ay~),z) < p+ 2 for
some z € f(X,). Then

diam(fA) < 4sinh(y1/2)

3.15
~CL(4, R+ p+2, ) (3.15)

for every long triangle f(A) corresponding in T (u).
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PROOF. We have d(z, f 0;) < R, f(0i) € M,.00) N f(P),d(f(0i), 7(Ayy)) <
R+ 2+ p and thus I(y) > C1(4, R+ p+ 2, ) by Lemma 3. On the other hand, for
every z € f(A) we have the inequality:

Ty (2) < (3.16)

and therefore

2sinh(u/2)
AWl An):2) < G R it o)

for every z € f(A). Hence for the triangle f(A) corresponding in T, (p) we have:

(3.17)

J(A) CTy(w)

and Ssinh(/2)
, sinh(p
d A) <
iam(A) < Ci(4,R+p+2,p)

Our construction of the map f is sufficiently flexible; thus, varying points z, ;,
we can construct (as above) two transversal piecewise-geodesic maps f; : X — M
which are homotopic to f°.

3.8. Step 7. Below we summarize the properties of the maps f;.

(1) f; are piecewise-geodesic with respect to triangulations €2; of the surfaces .
The number of triangles in ; is not greater than 2-10'9(g — 1)/v% +10(g — 1).

(2) In the triangulation €; there are “short” and “long” triangles. Namely,
internal diameter of each “short” triangle is not greater than g and the union of
short triangles is a surface X! so that ¥ — X! = W, ; is the union of pairwise
disjoint nonhomotopic tubes. All vertices of €; are contained in X#. Each point
z € OW,, ; and curve v* C X! passing through z have the property:

Tw(v*)(z) <2u

(3) Put v = v(g) = C3(g) as in Lemma 9. Then f;(0— skeleton of Q;) C M, ).
(4) Every component Qj; C W, ; consists of two “long” triangles. The tube Q;;
contains a geodesic 7; so that the maps

fi: Q- =M (3.18)

can be lifted to the fundamental domain ®; C H* of the group < t(v;) >. The
fundamental domain ®; is bounded by a pair of fibers of the canonical foliation of
H* corresponding to < ¥(v;) >. This fundamental domain depends only on the
component ();; and doesn’t depend on 7 = 1,2.

(5) Suppose that d(m(Ay,,), 2) < p+2 for some z € f;(Xf), where ; is generator
of m1(Q;;) which has loxodromic image under ¢. Then

diam(f; A) < 2sinh(p/2)/Ci(R+ 2+ p, 1) (3.19)
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for every long triangle A C @Q;;, for both ¢ = 1,2 (see Lemma 10).

3.9. Step 8. Now we can count the number of points of intersection

#(f1(X1) N f2(22)) (3.20)

(i) Consider intersections of “short” triangles. Pick a pair of such triangles

f1(A1) C f1(2), f2(A2) C f2(2)

let Aj C H* be the geodesic triangles covering them (5 = 1,2). Then we have to
estimate the~ number of elements h € G su~ch that hA; N Ag isn’t empty. Recall
that diam A; < p and for any point y; € A; we have

Irg(y;) = v = Cs(g)
(Lemma 9). Therefore we can apply Lemma 2 to obtain:

#(f1(A1) N f2(A2)) < exp(36p + 2C3(g))C3(g) > (3.19)

Therefore, the number of points of intersection f1(34) N f2(X5) is not greater than

541029 - 1)2

exp(36p + 2C5(g))Cs(g) Ca(g)?
4C3(g) " exp(36u + 2C5(g)) - 10%°(g — 1)?
< exp(15-10%(g — 1)) (3.20)

(ii) Consider the case when A; is short while A, is long.
Suppose that h(z) € (A1) N Ag. Then we can apply Lemma 5 and the property
6 of the maps maps f; to obtain

4sinh(p/2)
Ci(p+2+ R, p)

d(z, AYY) < max{C\ (u,v), p + b=Ci (3.21)

A (0
Let {wy,ws, w3} = Ag ),
Hence we obtain estimate in the same manner as in the case (i):

#(f1(A1) N f2(A2)) < #{h € G : h(B(w;,Cy)) N AL #0,i = 1,2,3}

< 3exp(Cy + p1/2))/v? (3.22)
since diam A; < p.
Direct calculation shows that
4sinh(p/2)
Cy(p,v)>p+
+nv) > Ci(u+2+ R, p)

(3.23)
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and
Cy <10%%(g — 1) 3 exp(6-10%(g — 1)) (3.24)

Therefore, the number of points of intersection between short and long triangles is
not greater than

12-107(g — 1)%exp[3-103%(g — 1) 3 exp(6 - 10°(g — 1))]/v° (3.25)

(iii) Assume now that both A, Ay are long. Denote by T, (1) C M, the
corresponding Margulis tubes so that f;(A;) C Ty, ().

If these tubes are different then the intersection between f1(A1), f2(Az) is empty.
This, we can assume that

f1A1, foAg are in the same tube T (u) C Mg ). The lifts Aj to H* belong to
one and the same fundamental domain of the cyclic group < ¢ (vy) > (property 4
of the maps f;). Thus we have not more than 1 point of intersection between the
“long” triangles f1(A1), f2(A2).

Hence the total estimate of the number of points of intersection between long
triangles is

6(g—1) (3.26)

Therefore, the number | < [o],[o] > | can be estimated as:
3-10%(g — 1)%exp[3 - 10°°(g — 1) 2 exp(6 - 10%(g — 1))]/v° <

3-108(g — 1) 2 exp[3-10%°(g — 1) exp(6 - 10%(g — 1))]103°7® exp(107(g — 1)) <
2-10%(g — 1) % exp(107(g — 1)) exp[3 - 10°°(g — 1) exp(6 - 10°(g — 1))] <
explexp(10°(g — 1))] (3.27)
This finishes the proof of Theorem 2. |

REMARK 5. Actually, we proved somesing stronger. Namely, denote by o
the homotopy class of continuous maps o : ¥ — M which induce the isomorphism

Y : w1 (X) = w1 (M). Then define the geometric intersection number j(o,0) in
M to be the
min{#(h1(X) N he(X)): hj €0}

where #(h1(X) N he(X)) is the number of points of intersection between hq(3) and
ho(X). It’s clear that j(o,0) > | < [o],[o] > |. So, our result is:

j(o,0) < explexp(10®(g — 1))] (3.28)

4. FLAT CONFORMAL STRUCTURES on SEIFERT MANIFOLDS

We recall that a flat conformal structure on a manifold M of dimension n > 3 is
a maximal atlas C' on M with Moebius transition maps. For any conformally flat
manifold (M, C) there is a conformal developing map

d: (M,C)—S"
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where (M , é) is the universal covering of (M, C). This map is unique up to com-
position with conformal transformations of S™. The holonomy representation of
(M, C) is a homomorphims

dy : w1 (M) — Isom(H" 1)

such that
doy=di(y)od forevery v € m (M)

where we consider 71(M) as the groups of deck transformation for the covering
M — M. If M is compact and has infinite fundamental group then it is known
that d is a covering onto its image iff it’s not surjective ([GK], [Kam]). We restrict
ourselves to the case of orientable 3-manifolds M which are nontrivial circle bundles
over orientable hyperbolic surfaces. If the genus of the base ¥ = X is equal to g and
the Euler number of the fibration is equal to e € Z then manifold M will be denoted
by S(g,e). If e # 0 and C' is a flat conformal structure on M = S(e, g), then the
developing map d is not surjective implies that the holonomy group d. (71 (M)) = G
is discrete [GK].

THEOREM 4. Suppose that M = S(g,e) admits a flat conformal structure
with nonsurjective developing map. Then

le| < explexp(103(g — 1)]

PROOF. Under the hypothesis of Theorem 4 the kernel of the representation
d, must coincide with the center of 71 (M) [Ka 7] and the manifold M is a finite
covering over the circle bundle N = Q(G)/G. Therefore, the Euler number e of
the fibration N — X, is not less than e. Unfortunately we can’t prove that the
manifold X* = H*/G is homeomorphic to a plane bundle over ¥4, however X 4
satisfies the conditions of Theorem 2. We shall denote by Y the manifold X* U M.
Let T be a compact solid torus in M which is a union of fibers of M — .. The solid
torus T' admits a homeomorphic lift 7' in Q(G). There exists a smooth embedding
f of the handle D* to H* so that f(D*)NS3 = T. Apriori we can’t guarantee that
[ projects to a an embedding D* — Y. However, residual finiteness of the group G
implies that there exists a subgroup Gy C G of a finite index £ such that f projects
to the embedding f : D* — Y; where

Yy = (H* UQ(G))/Go

We denote by Sy the base of the circle bundle py : My = Q(G)/Gy — Sp. The
projection of T to So is a disc D?. There exists a section oo of py over Sy — D2.
Then o¢(0D?) is (ke, 1)-smooth torus knot on the boundary of D*, therefore, there
exists a smooth embedding 7 : D? — f(D*) which extends the map oq. Thus, we
constructed an embedding the o : Sy — Y which coincides with oy on Sy — D? and
is equal to 7 on D?. Now it’s easy to see that the algebraic self-intersection number
of o in Yy is the same as the Euler number of the fibration My — Sg. The last
number is equal to € - k. Therefore, for the manifold X* and homotopy-equivalence
oYXy — X* we have:
<lo],lo] >x1=¢
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Now, Theorem 2 implies the inequality

le| < e < explexp(108(g — 1)]

REMARK 6. The problem about existence of flat conformal structures on
Seifert manifolds with surjective developing maps is highly nontrivial. Such struc-
tures do not exist if the fundamental group is almost solvable [G]. N.Kuiper and
P.Waterman [KP] proved that for every triangle group

T =T(2,3,n) C PSL(2,R)

any representation p : T — SO(4,1) has either a fixed point in H* U S® or an
invariant totally geodesic subspace. Let O be the hyperbolic orbifold with the
fundamental group 7'(2,3,n). Combined with [Ka 7] this result implies that on
any Seifert manifold M3 which is fibered over O, there is no any flat conformal
structure with surjective developing map.

5. HIGHER DIMENSIONAL FIBER BUNDLES

First we recall the result of M.Anderson [A] about metrics of negative curvature
on fiber bundles over negatively curved manifolds.

THEOREM 8. Let ¢ : E — B be any smooth vector bundle with the compact
base B of negative sectional curvature. Then the total space F admits a Riemannian
metric with strictly negatively pinched sectional curvature Kg:

0>CLEZKE'Z—1 (51)

for some constant ag depending on the bundle.

However, in the case when we fix the pinching constant ag there are some re-
strictions on the topology of E. We consider only the case of constant sectional
curvature.

THEOREM 5. There exists a function f(B) of negatively curved oriented
compact k-manifold B so that,

if the total space of R¥-bundle ¢ : M?* — B has a complete hyperbolic metric,
then

le(§)| < f(B) (5.2)

To prove this theorem we will need some fact about fundamental groups of
negatively curved manifolds.

THEOREM 6. Let B be a closed manifold of negative curvature which has
dimension k > 2. Suppose that the fundamental group m(B) = T splits in a
nontrivial amalgamated free product I'y ¥ 4 I'y or HNN extension I'1 4 g with amal-
gamation over a finite extension of a cyclic group. Then either for j =1 or j = 2
the group G is a finite extension of A.
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PROOF. We shall consider only the case of amalgamated free product, the
arguments in the case of HNN extension are essentially the same. There exists an
aspherical CW-complex K with the fundamental group I' so that

K=K Ug Ky
where K; are aspherical CW-complexes with the fundamental groups I'; and
1 (C ) =A

(see [CS]). Let h : M — K be a homotopy—equivalence inducing the isomorphism
I' » 7 (K). Then, applying the general position arguments of [CS], we conclude
that K and h can be chosen so that h~'C' contains a smooth connected hypersurface
F in M which decomposes M in the union M; U M so that images G of m1(M;)
in I" are not finite extensions of Z and the image of 71 (F') in I is an (almost) cyclic
group Z. Consider a component F of the lift of F' to the universal cover X of B.
The ideal boundary d., X of X is homeomorphic to a k£ —1 dimensional sphere. The
set of accumulation points of F' at ds X is the limit set A(Z) of the group Z and
consists of two points. Therefore, this set doesn’t separate the sphere 0., X. The
hypersurface F' split X in two components P, Q. We conclude that one of these
components (say P) is such that the set of accumulation points of P in 0, X is
again A(Z). One component (say) M; of the lift of M — F in X is contained in
P and is adjacent to F. The stabilizer G; of My in I' is isomorphic to m; (My).
However, the set of accumulation points of M; in 9 X is again the two-point set
A(Z) = {z,y}. Therefore, the geodesic between x and y in X must be invariant
under the group G;. Hence, either G is a Zs-extension of Z or G; = Z. This
proves Theorem. B

If I is a finitely generated group, then we shall denote by
D(T,q)
the projection of the space of discrete and faithful representations of I' to
Hom(T',Isom(H?))/ Isom(H?) (5.3)

We recall the following fundamental compactness theorem due to Chuckrow [C],
Thurston [Th 2], Morgan [Mor 1 , Mor 2], Rips [R], Bestvina and Feighn [BF] (see
also [Mart 1]).

THEOREM 9. Suppose that I' is a group satisfying the conclusion of Theorem
6. Then D(T,q) is compact.

PROOF of THEOREM 4.

Fix a k-dimensional compact manifold of negative curvature B as above. Our aim
is to prove that there is a number f(B) with the following property. If { : M — B
is R¥ bundle over B with the Euler number e and M admits a hyperbolic structure
then |e| > f(B).
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Otherwise there exists a sequence of fiber bundles &,, : M,, — B with the Euler
numbers e,, — oo such that M,, are 2k-dimensional hyperbolic manifolds. Thus, we
have a sequence of discrete and faithful holonomy representations of these manifolds

pn : m(B) =T — Isom(H?)
Theorems 6 and 9 imply that the space D(T', 2k) is compact in
Hom(T, Isom(H2*)) / Isom(H?*)

Therefore, for any system of generators vi,...,7, of I' there is a point z € H?* and
a number a << oo such that

d(pn(j)(2),2) <a  (j=1,...,p) (5.4)

Fix a triangulation 7' of B. Then (5.4) implies that there exists a constant r =

r(T, A) with the property:

for each n there is a continuous map h,, : B — M, such that the image of each

simplex A in T is a geodesic simplex in M,, and diameter of f(A) is at most 7.
The radius of injectivity of M,, at the compact subset f(B) is bounded from

below by the number

v = C1(2k, (#T) - C, par)

where #T is the number of simplices in T' (see Lemma 3). Therefore, applying the
same arguments as in proof of Theorem 2, we conclude that

sexp((2k — 1)(2r + 2v))
2k—1

| <[hn], [Bn] > | < (#T)

where [h,,] is the cycle in Hy(M,,) represented by h,.
This proves Theorem. H

6. Final Remarks

There are several other results and conjectures that seems to be similar to The-
orem 2 and Conjecture 1.

6.1. If ¢' is a smooth curve of genus g in a complex surface X and K is a
canonical class of X then

29 —2=<C,C>+K-C

(see [F]), which is a general form of the Besout theorem.

R.Kirby [Ki] conjectured that for any smooth embedded 2-manifold ¥ in the
same homology class as C' then genus of ¥ isn’t less than g.

Conjecture of J.Morgan is that for any smooth oriented 4-manifold for which
Donaldson’s polynomials are defined and non-zero, and any smoothly embedded
oriented surface ¥ C M with positive self-intersection one have the inequality

29—2> <%U,% >
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P.Kronheimer and T.Mrowka [KM] proved the following
Theorem 10. Let X any smooth closed oriented simply connected 4-manifold
X with nontrivial polynomial invariants and which has b odd and not less than 3.
Then the genus of any orientable smoothly embedded surface ¥ other than sphere
of self-intersection —1 or an inessential sphere of self-intersection 0 satisfies the
inequality:
20—-2> <X, ¥ >

The reader can find further information in the paper of P.Kronheimer [Kr].

6.2. Let £ : S(e,g) — X be a circle bundle. Then the inequality

e =[x < x(X)| =29 -2

is necessary and sufficient condition for existence of a reduction of ¢ to a flat bundle
(see [W]).

6.3. Suppose that M is a complex hyperbolic surface and f : ¥, — M is a
homotopy-equivalence. Let wjy; denote the Kahler form on M. Then D.Toledo has
proved [To 1] that the number

1 *
c= /z: [rwnm

is an integer independent of f which satisfies
2—-29<c<2g—-2

Furthermore Toledo [To 2] proved that M is a quotient by a cocompact lattice in
U(L,1) if and only if |¢| = 2¢g — 2.

In [KG] we proved that, subject to Toledo’s necessary conditions, every even
value of ¢ is realized by a complex hyperbolic surface N(c,g) homeomorphic to
M(e,g), where

e=e(g,c) =c/2+2—2g9=c/2+ x(%)
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