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Abstract. In this paper I describe two geometric algorithms for certifying discreteness and freeness of finitely

generated subgroups of Opn, 1q, SLpn,Rq and, more generally, algorithms for discreteness and faithfulness of
certain linear representations of finitely-presented groups.

1. Introduction

The goal of this paper is to describe two algorithms1 for certifying discreteness of finitely generated subgroups
of SLpn,Rq and, more generally, algorithms for discreteness and faithfulness of certain representations of finitely-
presented groups. The fundamental questions that these algorithms aim to address are:

Question 1.1. 1. Suppose that Γ is a hyperbolic group defined via its finite presentation. Given a homo-
morphism ρ : Γ Ñ SLpn,Rq “ G, determine if ρ has finite kernel and discrete image.

2. Given matrices A1, ..., Ak P G determine if the subgroup Γ “ xA1, ..., Aky generated by these elements is
discrete and/or free of rank k.

There is a separate issue as to what an algorithm even means in this setting. One approach is to work with
the BSS (Blum–Schub–Smale) or Real Ram model of computability over the real numbers. Another approach
is to assume that Γ lies in SLpn, F q, where F is a number field, e.g. Γ is a subgroup of an arithmetic group. We
refer the reader to the papers by Jane Gilman [G2, G3] and the author, [K1], for discussion of the problems
one is facing here. In this paper, we will ignore these foundational issues and concentrate on the geometric side
of the problem. We also refer to the paper by Gilman and Maskit [GM] as well as other papers by Gilman,
[G1, G2, G3] for the description and discussion of a very different geometric algorithm for discreteness of
subgroups of PSLp2,Rq.

In the first part of the paper, we discuss geometric algorithms dealing with the case of subgroups of
G “ O`pn, 1q where much is known. In the second part, we discuss the general case, which is far less studied.

Acknowledgement. I am grateful to the referees of the paper for doing very thorough refereeing job.

2. Basic hyperbolic geometry

All the material of this and the next two sections is standard; proofs can be found for instance in Ratcliffe’s
book [Ra].

We let V be an n ` 1-dimensional real vector space equipped with the Lorentzian bilinear form x¨, ¨y of
signature pn, 1q. Concretely, V “ Rn`1 and

xx,yy “ ´x0y0 ` x1y1 ` ...` xnyn.

We let V ´ denote the subset of V consisting of future-directed (i.e. satisfying xx, e0y ą 0) and negative
(also known as time-like, i.e. satisfying xx,xy ă 0) vectors in V . We will be identifying the hyperbolic n-space
Hn with the imaginary unit sphere in V ´:

H “ tx P V ´ : xx,xy “ ´1u.

The group Opn, 1q “ OpV, x¨, ¨yq of linear transformations preserving the form x¨, ¨y is disconnected. We let
O`pn, 1q denote the index two subgroup of Opn, 1q preserving the cone V ´. This subgroup also preserves the
imaginary unit sphere H and equals the isometry group of the hyperbolic n-space Hn.

1991 Mathematics Subject Classification. Primary 22E40, 20-08; Secondary 20F67, 53C35.
Key words and phrases. Discrete groups, symmetric spaces.
1I am not discussing here various versions of the ping-pong argument, since this argument is widely known.

1



2 MICHAEL KAPOVICH

By abusing the notation, we call vectors x satisfying xx,xy “ ´1, the unit vectors. The tangent space TxH
to H at x P H is defined as the space of vectors orthogonal to x:

TxH “ tv P V : xx,vy “ 0u.

All nonzero vectors in this tangent space are space-like, i.e. satisfy

xv,vy ą 0.

For space-like vectors we have the Lorentzian norm |v| “
a

xv,vy, while for time-like vectors we also have the

“norm” |v| “
a

´xv,vy. The angle α “ =pu,vq between space-like vectors is defined by the usual formula:

xu,vy “ cospαq|u| ¨ |v|.

It is also convenient to use for points in Hn the equivalence classes of vectors in V ´, where two vectors are
equivalent if they are multiples of each other. For a vector x P V ´, we define its ‘normalization’, the unit vector

x̄ “
x

|x|
.

Hyperbolic distance. For x,y P V ´ we have the following formula for the hyperbolic distance dpx,yq:

cosh dpx,yq “ ´
xx,yy

|x| ¨ |y|
.

To be more precise, this formula defines the hyperbolic distance between the normalizations x̄, ȳ P H.
The geodesic segment xy between points x,y P H is defined as

xy “ tz̄ : z “ p1´ tqx` ty, t P r0, 1su.

Accordingly, the midpoint mpx,yq (the point on xy dividing this segment in two equal parts) is given by

(2.1) mpx,yq “
x` y

|x` y|
.

We also define the (space-like) vector v “ vpx,yq as a (not necessarily unit) vector tangent to xy at the
point x:

v “ vpx,yq “ y ` xx,yyx.

Then
|v|2 “ xx,yy2 ´ 1.

Hyperbolic angle. The hyperbolic angle α “ =xpu,vq between two nonzero tangent vectors u,v P TxH
at x P H is given, as above, by the formula

xu,vy “ cospαq|u| ¨ |v|.

Lastly, the hyperbolic angle α “ =yxz of a hyperbolic triangle xyz Ă H at the vertex x is defined by the
formula

α “ =pvpx,yq,vpx, zqq,

i.e.

cospαq “
xvpx,yq,vpx, zqy

|vpx,yq| |vpx, zq|
“

xy, zy ` xx,yyxx, zy

pxx,yy2 ´ 1q1{2pxx, zy2 ´ 1q1{2

Remark 2.1. Computing (or, at least, estimating from below) sinpα{2q will be useful for the algorithms
described in sections 8, 9.

For instance, α ě π{2 if and only if

xy, zy ` xx,yyxx, zy ď 0.

Projectivizing the negative cone V ´ one obtains the Klein model of the hyperbolic space Hn, which is an
open ball B in the projective space RPn “ PV : The ball B is the projection πpV ´q of V ´ to the projective
space PV . The boundary sphere Sn´1 of this ball is the projectivization of the null-cone tv P V : xv,vy “ 0u of
light-like vectors, also known as null-vectors. The hyperboloid H Ă V ´ projects diffeomorphically to B, making
B a model of the hyperbolic n-space.

Let ξ “ πpvq, be a point of the boundary sphere Sn´1 of the ball B. Without loss of generality we can
assume that v is a nonzero vector which belongs to the closure of the cone V ´. We next define horospheres
Σ Ă H based at ξ. Given v, consider the affine hyperplane

tx P V : xx,vy “ 1u.

Replacing v by its positive multiple results in another hyperplane, parallel to the one defined before. Intersecting
such hyperplanes with H yields a foliation of H by hypersurfaces, called horospheres Σ Ă H based at ξ.
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3. Hyperbolic bisectors

Given two distinct points p,q P Hn, the bisector Bispp,qq of the geodesic segment pq in Hn is the collection
of all points which are equidistant from p and q:

Bispp,qq “ tx P Hn : dpp,xq “ dpq,xqu.

In terms of Lorentzian geometry, when p,q are in the hyperboloid H,

Bispp,qq “ HX tx P V : xp,xy “ xq,xyu,

with
tx P V : xp,xy “ xq,xyu “ pp´ qqK,

the latter is the Lorentzian orthogonal complement to the time-like vector p ´ q. Let us determine when two
bisectors Bispp,q1q, Bispp,q2q have empty intersection in H. The empty intersection condition is equivalent
to the property that all nonzero elements of the (typically) codimension 2 linear subspace

pp´ q1q
K X pp´ q2q

K

are null or space-like vectors. Suppose, for a moment, that one of the vectors x of this intersection is time-like.
Then the Gram matrix of the Lorentzian bilinear form restricted to spanpp ´ q1,p ´ q2,xq, in terms of the
basis tv1 “ p´ q1,v2 “ p´ q2,xu, equals

»

–

xv1,v1y xv1,v2y 0
xv1,v2y xv2,v2y 0

0 0 xx,xy

fi

fl ,

where xx,xy ă 0, xvi,viy ą 0, i “ 1, 2. Since the signature of the restriction cannot be p1, 2q, the submatrix
„

xv1,v1y xv1,v2y

xv1,v2y xv2,v2y



has to be positive semidefinite, which translates to the inequality

xv1,v1yxv2,v2y ´ xv1,v2y
2 ě 0.

The inequality is strict unless v1 “ v2, i.e. q1 “ q2, which we assume not to be the case. We thus arrive to:

Lemma 3.1. The intersection Bispp,q1q XBispp,q2q is empty if and only if

xv1,v1yxv2,v2y ´ xv1,v2y
2 ď 0.

Furthermore, the intersection pp´ q1q
K X pp´ q2q

K consists entirely of space-like vectors (and the vector 0) if
and only if

xv1,v1yxv2,v2y ´ xv1,v2y
2 ă 0.

4. Isometries of the hyperbolic space

Isometries of the hyperbolic space H are elements of the group O`pn, 1q: They are the linear transformations
preserving H. As many things in this world, isometries of the hyperbolic space fall into three groups:

‚ Hyperbolic (also called loxodromic). Every hyperbolic matrix A has two2 distinct positive real
eigenvalues λ ą 1, λ´1 P p0, 1q, of multiplicity one, and corresponding eigenvectors v˘ which are null-
vectors in V . These vectors span a 2-dimensional subspace HA in V , whose intersection with H is a
complete hyperbolic geodesic hA (a hyperbola in HA), called the axis of A: This geodesic is preserved
by A. These isometries will be most important for us.

‚ Parabolic. These isometries A have exactly one (up to scaling) null eigenvector in V and it is fixed
by A. (In other words, each parabolic isometry has exactly one fixed point in the boundary sphere
Sn´1 of the Klein model of Hn.) All eigenvalues of A have absolute value 1.

‚ Elliptic. This is everything else, but one can also define these isometries A by the condition that they
have fixed vectors in V ´ (equivalently, in H). All eigenvalues of A again have absolute value 1.

Taking powers does not change the type of an isometry, but taking products, in general, does. Each
parabolic isometry fixes a unique point ξ P Sn´1 and can be shown to preserve each horosphere in Hn based
at ξ. In contrast, hyperbolic isometries of Hn do not preserve any horospheres. An elliptic isometry has an
invariant horosphere if and only if it fixes a point in Sn´1. It then preserves all horospheres based at that point.

Displacement. Each hyperbolic matrix A acts on its axis hA as a translation3 by some number τA, i.e.

dpAx,xq “ τA

2Besides these two real eigenvalues there will be other (complex) eigenvalues, but they all have absolute value 1.
3After we identify hA with the real line by the hyperbolic arc-length parameterization.
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for all x P hA. The number τA is computable in terms of the eigenvalues of A:

coshpτAq “
λ` λ´1

2
.

Checking hyperbolicity is easy: One computes the eigenvalues and checks if one of them is ą 1. This
works especially nicely for elements in arithmetic subgroups since there is a uniform lower bound on τpAq for
hyperbolic elements A of such groups, defined in terms of the arithmetic data of Γ. Conjecturally, for arithmetic
subgroups there is a uniform positive lower bound on the displacements, depending only on the dimension:4

Conjecture 4.1. For every n ě 2 there exists tpnq ą 0 such that for every arithmetic lattice Γ ă O`pn, 1q,
every hyperbolic element γ P Γ satisfies τγ ą tpnq.

Note that this conjecture fails if we do not restrict to arithmetic lattices.

5. Connecting hyperbolic geodesics

In this section I discuss how to connect two hyperbolic geodesics h1, h2 in Hn by a geodesic segment smeeting
both orthogonally at its end-points. Such a segment is the shortest segment connecting the two geodesics (unless
the geodesics intersect in Hn, which we will assume not to be the case in what follows). The segment s is known
to be unique. 5 The segment s exists, unless two geodesics h1, h2 are asymptotic to a common point in the
boundary sphere of Hn. We will be assuming that geodesics hi are given as the intersections of H with the linear
2-dimensional subspaces Wi “ spanpui,viq, where ui,vi are (linearly independent) null-vectors in the future
null-cone. Then, testing for the existence of a common asymptotic point in Sn´1 is easy: One simply verifies
if two of the four null-vectors tu1,v1,u2,v2u are multiples of each other. Checking if h1 X h2 is nonempty is
also easy: One computes the intersection W1 XW2 (which, generically, if n ě 3, will be zero) and checks if this
intersection contains a (nonzero) time-like vector.

Remark 5.1. Of prime importance for us is the case when Wi “ HAi
“ spanpui,viq, where Ai are hyperbolic

elements of Opn, 1q and ui,vi are their light-like future-directed eigenvectors.

We first work out a condition for orthogonality of two geodesics in Hn meeting at a common point, as is
the case for, say, h1 and the unique hyperbolic geodesic containing s. Fix y1 “ t1u1 ` p1´ t1qv1, t1 P p0, 1q, a
time-like vector in W1. (Its normalization ȳ1 is a point in h1and all points in h1 appear this way.) Then in W1

we find a (space-like) vector y˚1 orthogonal to y1, given by

y˚1 “ t1u1 ` pt1 ´ 1qv1.

Suppose now that W is the plane spanned by a time-like vector y1 “ t1u1 ` p1´ t1qv1 (as above) and another
time-like vector y2. Then the hyperbolic geodesics h1, h in H defined as h1 “W1XH, h “WXH, are orthogonal
if and only if the vector y˚1 PW1 (Lorentzian-orthogonal to y1) is also Lorentzian-orthogonal to the entire plane
W , equivalently, is Lorentzian-orthogonal to y2. The latter orthogonality condition is

xt1u1 ` p1´ t1qv1,y2y “ 0.

This gives us a way to compute the hyperbolic segment s connecting h1, h2 orthogonally. Namely, we search for
vectors yi “ tiui ` p1´ tiqvi, ti P p0, 1q, i “ 1, 2, satisfying the two equations:

xy˚1 ,y2y “ xy
˚
2 ,y1y “ 0,

equivalently,

xt1u1 ` pt1 ´ 1qv1, t2u2 ` p1´ t2qv2y “ xt2u2 ` pt2 ´ 1qv2, t1u1 ` p1´ t1qv1y “ 0.

Then the common perpendicular segment to h1, h2 equals s “ ȳ1ȳ2 Ă H. Searching for vectors y1,y2 amounts
to solving the above system of two quadratic equations with the unknowns t1, t2.

Lastly, we consider the special case n “ 2, i.e. the vector space V is 3-dimensional, when the search problem
simplifies. Then W1,W2 are defined as

Wi “ pKi , i “ 1, 2,

the Lorentzian orthogonal complements to some space-like vectors p1,p2 in V . (In order to determine these
vectors, one solves the linear systems xpi,uiy “ xpi,viy “ 0, i “ 1, 2.) The segment s “ ȳ1ȳ2 Ă H is contained
in a hyperbolic geodesic h defined as HXW ,

W “ pK,

where p P V is a nonzero vector satisfying xp,p1y “ 0, xp,p2y “ 0. Then the (future-directed) vectors yi are
basis vectors of the lines pK XWi, i “ 1, 2.

4This is a special case of the Lehmer Problem and Margulis Conjecture.
5This uniqueness comes from the non-existence of rectangles in spaces of negative curvature.
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6. Quasigeodesics

While the general definition is more complicated, for the computational purposes, one can think of quasi-
geodesics in Hn as certain special piecewise-geodesic paths c in Hn; their advantage over geodesics is that they
are more combinatorial objects. Each quasigeodesic comes with a certain constant λpcq ě 1, the quasiisometry
constant of c, defined by the condition that for any two points p, q on c, we have

dpp, qq ě λ´1|cp,q| ´ λ,

where |cp,q| is the length of the subpath of c between p and q.

Remark 6.1. The above definition of quasigeodesics is not the most general, but it is the most appropriate
for computational purposes and suffices when dealing with group-homomorphisms. For the general treatment of
quasigeodesics we refer the reader to [DK].

The constant λ measures ‘how far c is from being a geodesic.’ The magic of hyperbolic geometry is that
every quasigeodesic, even an infinite one, is within uniformly bounded distance6 from some geodesic. (This
property is known as the Morse Lemma.)

The first paragraph is, in fact totally irrelevant for the computational purposes, it is mostly meant to intro-
duce the terminology ‘quasigeodesic.’ The following is a practical criterion for something being a quasigeodesic,
a proof could be found in [KLi]:

Theorem 6.2. Suppose that c is a piecewise-geodesic path whose angles at the vertices are ě α ą 0 and
whose sides are longer than L, where α and L satisfy

coshpL{2q sinpα{2q ě ν

where ν ą 1 is some fixed constant, say,
?

2. Then c is a quasigeodesic. The constant λpcq depends only on L
and ν.

Remark 6.3. The inequality in this theorem takes a particularly simple form if α ě π{2 (i.e. is obtuse):

coshpL{2q ě 2,

if we take ν “
?

2 in this theorem.

The actual geometric requirement in this theorem (stated without invoking angles and lengths) is that for ev-
ery two consecutive segments p1p2,p2p3 in the piecewise-geodesic path c, the bisectors Bispp1,p2q, Bispp2,p3q

are disjoint and, moreover, are at least some fixed positive distance apart from each other. In view of Lemma
3.1, this condition translates to the language of Lorentzian geometry as:

(6.1) xp2 ´ p1,p2 ´ p3y
2 ´ xp2 ´ p1,p2 ´ p1yxp2 ´ p3,p2 ´ p3y ě ε,

where ε ą 0 is a fixed positive number.

Note that the inequalities that one needs to check are purely local, we just need to examine consecutive
pairs of segments to verify them. This, of course, is still not feasible if there are many (or infinitely many)
segments, but for quasigeodesics coming from group theory, there are only finitely many (one can even estimate
how large is ‘many’) options for side-lengths and angles, so the verification becomes a finite problem. This is
the ‘local-to-global’ principle in hyperbolic geometry. This principle has an analogue for higher rank Lie groups
such as SLpn,Rq (and symmetric spaces they act on) but is much harder to state (and to prove). We will
discuss this in section 12.

Example 6.2 (A non-example). In the upper half-plane model tz P C : Impzq ą 0u of the hyperbolic plane
take the sequence of points

zk “ k `
?
´1, k P Z.

Connect each consecutive pair zk, zk`1 by a hyperbolic geodesic segment. The resulting path c has geodesic pieces
of the constant length L and constant angle α between the consecutive pieces. These two numbers satisfy the
equality

coshpL{2q sinpα{2q “ 1,

but c is within infinite (hyperbolic) distance from any hyperbolic geodesic (it is uniformly close to the Euclidean
horizontal line Impzq “ 1, a horosphere, but that does not count).

6this distance is ď aλ2, where a is some universal constant
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The KLP algorithm described later on, uses the following important property of quasigeodesic paths:
Suppose that c “ x0x1 ‹ x1x2 ‹ x3x4 ‹ ... is a (finite or infinite) piecewise-geodesic path in Hn, which is a

concatenation of the geodesic segments xixi`1. For a natural number N define the piecewise-geodesic path cN
as the concatenation

x0xN ‹ x2Nx2Nx3N ‹ ...

Then c is λ-quasigeodesic if and only if cN is λ1pλ,Nq-quasigeodesic, for some universal function λ1 :
R` ˆ NÑ R`.

7. Group homomorphisms

Suppose that Γ is a finitely generated group with a finite generating set S “ ts1, ..., sku. For concreteness,
one can (and, at first, we will) assume that Γ is a free group on S. (But the discussion below will apply to other
groups, things just become more complicated.)

A homomorphism
ρ : Γ Ñ Opn, 1q “ OpV, x¨, ¨yq

is simply a map sending the generators si to some matrices Ai P O
`pn, 1q which satisfy the relators of Γ. One

can also think of relators of Γ as ‘hidden’ and all what we have is a set of matrices A1, ..., Ak P O
`pn, 1q. Our

task is to ‘discover’ the hidden relators (or to prove that there is none). The ‘freeness problem’ is to find a
semi-algorithm ensuring that ρpΓq (the subgroup of O`pn, 1q generated by A1, ..., Ak) is free of rank k on the
generators A1, ..., Ak.

Before doing this, we need some terminology. Given a homomorphism ρ (a choice of matrices Ai) and a
vector x P H (which is to be chosen wisely to make computations more efficient), one defines the ‘orbit map’

ox : Γ Ñ H,
sending γ P Γ to the vector γx. (Here and in what follows, I will frequently abbreviate ρpγqx as γx.) However,
what we have is more than just a map of Γ, we also get a map f “ fx of the Cayley graph T of Γ into H (in
the case of a free group of rank k, this graph is the 2k-valent tree): Send each edge e “ rw1, w2s of T to the
segment

pw1xqpw2xq Ă H.
Most importantly, each geodesic path in the tree T (an edge-path without backtracking) is sent to a piecewise-
geodesic path in H. (For the computational purposes, one does not need to ‘compute’ the map f , it is used
only to give a geometric explanation of what is happening.)

From the computational viewpoint, such paths in H are given by their vertex-sequences

x “ x0,x1, ...,xN ,

defined for each reduced word w “ wpA˘1
1 , ..., A˘1

k q (of the length N) and applying inductively (in order of their
appearance in w) the matrices

A˘1
1 , ..., A˘1

k

to the point x.

Definition 7.1 (Undistorted homomorphisms and subgroups). A homomorphism ρ is called a quasiiso-
metric embedding or, simply, undistorted, if the map fx sends geodesic paths p in T to λ-quasigeodesic paths
in H for some fixed λ independent of p. The image of an undistorted homomorphism is called an undistorted
subgroup of O`pn, 1q.

One of the many (not so) magic properties of undistorted homomorphisms is that they are faithful, i.e. the
subgroup generated by A1, .., Ak is free on this generating set. Moreover, this subgroup is necessarily discrete
and contains only hyperbolic matrices (besides the identity). For instance, to see faithfulness, note that if ρ is
not faithful then its kernel contains elements γ arbitrarily far from the neutral element of Γ. (Here is one of
the few places where we use the assumption that Γ is free. General hyperbolic groups can contain nontrivial
finite normal subgroups. But there is always the largest such subgroup.) But, since ρ is undistorted, we have
the inequality

0 “ dpx, ρpγqxq ě λ´1|γ| ´ λ,

where |γ| is the distance from γ to the neutral element of Γ. This shows that |γ| ď λ2, which is a contradiction.
A similar argument establishes discreteness of ρpΓq.

Note that the maps ox and fx depend on x, but the undistortion property does not. However, an unwise
choice of x will make the quasiisometry constant λ larger and computations longer.

There are distorted injective homomorphisms (with discrete images) ρ : Γ Ñ O`pn, 1q, even when one
restricts to homomorphisms whose targets are arithmetic subgroups of O`pn, 1q such as the subgroup of integer
matrices Opn, 1;Zq. One of the most famous examples of such homeomorphisms comes from the embedding



GEOMETRIC ALGORITHMS FOR DISCRETENESS AND FAITHFULNESS 7

ρ of the figure 8 knot group into O`p3, 1q. Algebraically, this group is a semidirect product of the free group
F2 and the infinite cyclic group. Then ρ : F2 Ñ O`p3, 1q is exponentially distorted. It is now known (due to
work of Ian Agol) that every lattice in O`p3, 1q contains a finitely generated subgroup which is either free or
isomorphic to the fundamental group of a hyperbolic surface, and which is exponentially distorted in O`p3, 1q.

The notion of undistorted subgroups is closely related to geometric finiteness of subgroups, see [Bo1, Bo2].
In particular, every undistorted subgroup of O`pn, 1q has finitely-sided Dirichlet fundamental polyhedra in
Hn. (We will discuss Dirichlet domains in more detail in Section 11.) The notion of geometric finiteness is
a bit more general. For instance, an infinite cyclic subgroup of O`pn, 1q generated by a parabolic element is
geometrically finite but exponentially distorted. Geometric finiteness, in turn, is closely related to the property
that Dirichlet fundamental polyhedra in Hn are finitely-sided: The two notions are equivalent if n ď 3, but not
for n ě 4. (See Examples 5 and 6 in Section 12.4 of Ratcliffe’s book [Ra].) However, for subgroups of lattices in
O`pn, 1q, geometric finiteness is equivalent to the property that one (equivalently, every) Dirichlet fundamental
polyhedron is finitely-sided.

For some reason, not quite clear in general, if one considers finitely generated discrete subgroups of O`pn, 1q,
geometric finiteness appears to be a generic property. If n “ 2, then every finitely generated discrete subgroup
is geometrically finite. However for n ě 3, there are finitely generated discrete geometrically infinite subgroups.

8. Testing for undistortion. Part I

If one looks closely at the maps f constructed in the previous section, one observes that f produces
piecewise-geodesic paths in H (images of geodesics in T ) that satisfy two ‘finiteness’ properties:

‚ The number of possible edge-lengths in these paths is at most k (one for each generator); they are
given by the distances

L1 “ dpx, A1xq, ..., Lk “ dpx, Akxq.

Recall that (see Section 2),
cosh dpx, Aixq “ ´xx, Aixy.

‚ The number of angles between the consecutive segments in such paths is at most kp2k´1q: One angle
αi,˘j for each pair of generators Ai, A

˘1
j , where, of course, we do not allow pairs of the form pAi, Aiq

(which would correspond to backtracking in the tree T or, equivalently, nonreduced words w). Here

αi,˘j “ =pAixqxpA
˘1
j xq,

that is (see Section 2),

cospαi,˘jq “
xAix, Ajxy ` xx, Aixyxx, A

˘1
j xy

pxx, Aixy2 ´ 1q1{2pxx, A˘1
j xy2 ´ 1q1{2

.

Now comes our first (and rather dumb) algorithm for testing the undistortion property. Even though it is
dumb, it works quite well ‘generically’ and this is what’s behind, say, the Fuchs–Rivin’s proof of genericity of
free subgroups in arithmetic groups, see [FR, Lemma 2.5].

The Dirty Harry Algorithm.7 Check the inequality

coshpL{2q sinpα{2q ą 1.

where L “ minpL1, ..., Lkq, and

α “ mintαi,˘j : 1 ď i, j ď k, pi,˘jq ‰ pi,´iqu.

If this inequality holds, then indeed, f sends geodesic paths in the tree T to quasigeodesic paths in H and,
hence, f is undistorted and, hence, injective with discrete image.

The geometric (rather than coarse-geometric) meaning of the inequality in the algorithm is that it ensures
that the geodesic bisectors of the segments pxqpA˘1

i xq are pairwise disjoint in Hn (or even in the compactified
hyperbolic space). If this happens then these bisectors will bound the Dirichlet fundamental domain of ρpΓq
in Hn centered at x. We discuss Dirichlet fundamental domains and the corresponding Poincaré algorithm in
detail in Section 11. For now, we simply record the fact that if the Dirty Harry Algorithm succeeds, then so does
the KLP-algorithm, in its Opn, 1q-version, and the Poincaré algorithm. Moreover, both of the latter algorithms
terminate on their first step, dealing with group elements of word-length 1.

As we discussed in Section 6, instead of computing hyperbolic distances and angles, it is easier to test
disjointness of bisectors. In this, more computationally-friendly, form, the Dirty Harry Algorithm works as
follows. For each generator A˘1

i , compute the vector

u˘i “ x´A˘1
i x.

7“Do you feel lucky today?”
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Then for each pair of different vectors v,w P tu˘i : i “ 1, ..., ku compute the difference

Dv,w :“ xv,wy2 ´ xv,vyxw,wy.

If all differences satisfy Dv,w ą 0, the algorithm succeeds and the representation ρ is discrete, faithful and even
undistorted. If all the differences satisfy Dv,w ě 0, the algorithm succeeds and the representation ρ is discrete
and faithful. Otherwise, i.e. if some difference Dv,w is negative, the algorithm fails.

Even if ρ is undistorted, the Dirty Harry Algorithm might not work. It has a better chance of success
provided one makes a ‘wise’ choice of the point x.

Choosing x wisely (the 2-generator case). I first consider the case of 2-generator groups. Recall that
for nondistortion to occur, all nontrivial elements of ρpΓq have to be hyperbolic. Therefore, one should first
check for hyperbolicity of the generators A1, A2. If one of them is nonhyperbolic (compute the eigenvalues),
one stops and proceeds to try some other matrices. Suppose that A1, A2 are hyperbolic.

Let h1 “ HA1
X H, h2 “ HA2

X H be the axes of A1, A2 (see section 4). Compute the geodesic segment
sh1,h2 “ x1x2 connecting h1 and h2 (see section 5). Then the ‘wise’ choice of x is the midpoint mpx1x2q of the
segment x1x2 (see (2.1)).

Remark 8.1. While there are some heuristic reasons why one should be choosing the midpoint as x, there
is no solid mathematical justification for this.

The idea of taking a midpoint extends to the case of a larger number of generators, but is computationally
a bit more demanding:

Choosing x wisely (the general case). First, as above, for each pair of distinct indices i, j, compute
the midpoint mij of the segment

sij “ shi,hj

connecting the axes hi, hj of Ai, Aj . Then compute

b “
ÿ

i,j

mij

where the sum is taken over all pairs distinct elements of the set of midpoints of segments sij ,

M “ tmij , 1 ď i ă j ď ku.

Lastly, take as the point x P H the normalization of b:

x “ b̄ “
b

|b|
.

9. Testing for undistortion. Part II

I will now describe a simplified form of the KLP (Kapovich–Leeb–Porti) algorithm, written originally for
subgroups of general semisimple real Lie groups, testing for the Anosov property of representations of hyperbolic
groups; this is an adaptation and simplification in the case of O`pn, 1q). I will first do it for free groups and
then in general.

This algorithm does not require luck: It terminates if and only if the homomorphism ρ is undistorted,
therefore establishing semidecidability of the ‘testing for undistortion’ problem.

Instead of analyzing just the generators Ai (and their inverses), for N ě 1 the O`pn, 1q-version of the KLP
algorithm explores radius N balls in the Cayley graph T centered at the neautral element 1. If the algorithm
provides the desired output for some N , it terminates, otherwise, it runs forever. Suppose that Γ is a free group
with free generating set s1, ..., sk. Then the Cayley graph of Γ with respect to this generating set is a simplicial
tree T . As before, we are given a homomorphism ρ : Γ Ñ O`pn, 1q, ρpsiq “ Ai, i “ 1, ..., k.

First, some terminology. The radius R (where R is a natural number) ball BpRq centered at 1 in the
vertex-set of the tree T is just the set of reduced words in s˘1

i of length at most R. We will be working with
(geodesic) N -triples in such balls: These are triples of reduced words w1, 1, w2 which lie on a common geodesic
segment (connecting w1 to w2) in the ball BpNq and satisfy

|w1| “ |w2| “ N.

Here |w| is the word-length of a reduced word w.
Concretely, being a geodesic N -triple means two things:

(1) |w1| “ N, |w2| “ N .
(2) The prefix of the word w1 is different from the prefix of a word w2, where the prefix of a word is the

first letter (in the alphabet s˘1
i , i “ 1, ..., k) of the word.
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Fix a point x P H. (As before, it is best if this point is chosen wisely, but, unlike in the Dirty Harry case,
the outcome of the KLP algorithm does not depend on the choice.)

Given a (geodesic) triple τ “ pw1, 1, w2q, compute the difference

Dτ “ xx´ w1x,x´ w2xy
2 ´ xx´ w1x,x´ w1xyxx´ w2x,x´ w2xy.

Definition 9.1. We say that a triple τ “ pw1, 1, w2q satisfies the qi condition if Dτ ą 0.

Note that the triple pw1, 1, w2q satisfies the qi condition if and only if the triple pw2, 1, w1q does.
Now, we are ready for the actual algorithm (adapted from [KLP1]).

The rank one KLP algorithm. For each natural number N , consider all8 (geodesic) N -triples pw1, 1, w2q

where w1, w2 are reduced words in the generators Ai, A
´1
j ,

|w1| “ N, |w2| “ N,

and the prefix of w1 is different from the prefix of w2.
For every such N -triple, check if it satisfies the qi condition as defined above. If all such N -triples pass the

qi test, the algorithm stops: This means that the subgroup ρpΓq ă O`pn, 1q generated by A1 “ ρps1q, ..., Ak “
ρpskq is undistorted and is free of rank k.

If one of the N -triples pw1, 1, w2q fails the test, then stop the analysis of N -triples, increase N by 1 and
repeat. As a bonus, once the algorithm stops (if it does!) we can also estimate from above the quasiisometry
constant of the orbit map ox : Γ Ñ γx Ă X.

Remark 9.1. Step 1 of the rank one KLP algorithm (i.e. N “ 1) is nothing but the Dirty Harry Algorithm.

Theorem 9.2. The KLP algorithm terminates if and only if the subgroup ρpΓq ă O`pn, 1q generated by
A1, ..., Ak is undistorted and is free of rank k.

Proof. The proof of this theorem is a special case of the one given in [KLP1, section 7]. Namely, suppose
that the algorithm terminates. Then the orbit map ox : Γ Ñ Hn satisfies the following property: For each
geodesic path p in T starting at 1, the restriction of ox to pN is λ-quasigeodesic for some λ independent of p,
hence, the restriction to p is a λ1-quasigeodesic for some uniform constant λ, see the last paragraph of section
6. In order to conclude that ox is a quasiisometry, we have to consider general paths p in T , not necessarily
starting at the neutral element 1. However, the map ox is ρ-equivariant:

oxpγzq “ ρpγqoxpzq, z P T.

Since Γ acts transitively on the vertex-set of T and the post-composition with isometries in ρpΓq does not change
the quasiisometry properties of a path, it follows that ox is a quasiisometry.

For the opposite implication, we refer the reader to [KLP1]. The key is the following property: Since ρ is
undistorted, for each geodesic path p in T starting at the neutral element, the vertices in Hn of the image cN of
pN are uniformly close to the hyperbolic geodesic connecting x to the terminal point of cN . At the same time,
the distance between the consecutive points of cN diverges to 8 (this again uses nondistortion). Therefore, for
each triple of consecutive points of cN , say,

x,x1 “ cpNq,x2 “ cp2Nq,

the distances dpx,x1q, dpx1,x2q grow arbitrarily large (asN Ñ8), while the angle =xx1x2 is uniformly bounded
away from zero. From this, one sees that the triple

x,x1 “ cpNq,x2 “ cp2Nq

satisfies the qi condition if N is sufficiently large. �

One can use the ‘wise choice’ of x as described in section 8. I will describe alternatives in the next section.

One of important modifications in Hn of the KLP test is that it suffices to work with triples rather than with
quadruples as it is done in [KLP1]. In a sense, the quadruple test from [KLP1] is more efficient, the drawback,
however, is that one has to explore significantly larger balls in the Cayley graph. Here is the description of the
quadruple test from [KLP1], again adapted to the case of the hyperbolic space.

Instead of triples, one works with quadruples of reduced words w0 “ 1, w1, w2, w3 which lie on a common
geodesic segment, satisfying dpwi, wi`1q “ N , i “ 0, 1, 2.

Given a (geodesic) quadruple p1, w1, w2, w3q, compute the quadruple of vectors

x0 “ x,x1 “ w1pxq,x2 “ w2pxq,x3 “ w3pxq

in H. For each segment x0x1,x1x2,x2x3 compute its midpoint

m1 “ mpx0,x1q,m2 “ mpx1,x2q,m3 “ mpx2,x3q.

8Actually, from two triples pw1, 1, w2q, pw2, 1, w1q it suffices to check just one.
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Definition 9.2. Fix ε ą 0. We say that a quadruple p1, w1, w2, w3q satisfies the ε-midpoint condition if
the triple of midpoints pp1,p2,p3q “ pm1,m2,m3q satisfies the inequality (6.1) from Section 6.

m2 m3

x2
x1

x0

x3

m1

Figure 1. Midpoints

Then the KLP algorithm amounts to checking the midpoint condition for all (geodesic) N -quadruples
p1, w1, w2, w3q. Because one uses midpoints, in the undistorted case, the angles α are not just bounded away
from zero as N Ñ8, but actually converge to π. (This convergence to π is critical in the higher rank case.) In
particular, the products coshpL{2q sinpα{2q diverge to infinity faster than in the qi test for triples.

10. Testing for nondistortion. Part III

Below is a version of the KLP algorithm for non-free subgroups. The algorithm is testing for the following:
Let Γ “ xa1, ..., ak|r1, ..., rsy be a word-hyperbolic group given by its finite presentation. Let ρ : Γ Ñ O`pn, 1q

be a homomorphism. The KLP algorithm determines if ρ is undistorted. If ρ is undistorted, it might fail to
be injective, but, in the worst case, its kernel is finite. ‘Most’ examples of infinite hyperbolic groups have no
nontrivial finite normal subgroups, thus, the nondistortion property effectively implies injectivity.

The only difference with section 9 is that the Cayley graph of Γ is no longer a tree and it is harder to test
if a triple pw1, 1, w2q lies on a geodesic. The right condition is

|w1|Γ “ |w2|Γ “ N, |w´1
1 w2|Γ “ 2N

where |w|Γ is the length of the shortest word representing the same element of Γ as w. However, for hyperbolic
groups (with a fixed presentation) there are practical algorithms for computing |w|Γ which can be used, see e.g.
[EH]. Other than that, the KLP algorithm is the same as before.

Note that general word-hyperbolic groups, such as the triangle group ∆pp, q, rq, could have generators ai
of finite order. Hence, one cannot use the procedure from section 8 in order to make a ‘wise’ choice of the
vector x. Here are the best alternatives I know:

Given matrices A1, ..., Ak in O`pn, 1q, define the function

Dpyq :“ maxpdpA˘1
1 y,yq, ..., dpA˘1

k y,yqq

on H. This function is convex (actually, strictly convex in most examples). Then choose x to be the point of
minimum of Dpyq. In fact, it suffices just to be ‘not too far’ from the minimum, in any reasonable sense. From
the linear algebra viewpoint, this is an unpleasant min-max problem since Dpyq is very nonlinear. Here is a
practical replacement of the above min-max problem:

The min-max problem. Define the function

Mpyq :“ maxp´xA˘1
1 y,yy, ...,´xA˘1

k y,yyq

on the open convex cone V ´. This function is piecewise-quadratic. Now, minimize this function over the
hyperboloid H Ă V ´. Choose x to be its minimum (even approximate one in any reasonable sense).

More alternatives. Instead of Mpyq, you can take your favorite norm || ¨ || of the k-tuple

p´xA˘1
1 y,yy, ...,´xA˘1

k y,yyq,

or even take the ‘energy’ (which is a quadratic function in y)

Epyq :“ ´
k
ÿ

i“1

xAiy,yy ´
k
ÿ

i“1

xA´1
i y,yy.

Now, minimize the norm, or Epyq, over the hyperboloid H.

Other rank one Lie groups. What is described above works just as well when instead of the group
O`pn, 1q of isometries of the hyperbolic n-space one considers isometry groups of other negatively curved
symmetric spaces X, e.g. the group PUpn, 1q of biholomorphic isometries of the complex-hyperbolic n-space.
The inequality in Theorem 6.2 still implies the quasigeodesic condition provided one normalizes the Riemannian
metric of X to have the upper curvature bound ´1.
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11. Selberg’s higher rank generalization of Dirichlet domain and the Poincaré Algorithm

We begin by defining Dirichlet domains for discrete group actions on general metric spaces. Let pX, dq be
a metric space and Γ a discrete isometry group of X, where discreteness is understood in the sense that for one
(equivalently, every) x P X and every sequence of distinct elements γi P Γ, we have

lim
iÑ8

dpx, γixq “ 8.

Suppose that o P X is a point which is fixed only by the neutral element of Γ. (Without this assumption, we
will not obtain a fundamental domain by applying the Dirichlet construction.) Then define

DpΓ, oq “ Dpoq :“ tx P X : dpo, xq ď dpγo, xq, @γ P Γu.

In order to understand where this definition comes from, consider the orbit, Γo Ă X. The discreteness condition
on Γ implies that this orbit is a discrete closed subset of X (moreover, each metric ball in X contains only
finitely many orbit points). Thus, one defines the Voronoi tiling of X corresponding to this orbit:

Dpγoq “ tx P X : dpγo, xq ď dpo1, xq @o1 P Γou,

is the tile labeled by the point γo. It is clear that every point of X belongs to one of the tiles and that Γ
permutes the tiles simply-transitively. The open tile D̊pγoq is defined by

D̊pγoq “ tx P X : dpγo, xq ă dpo1, xq @o1 P Γoztγouu.

In view of continuity of the distance function d : X2 Ñ R, each D̊pγoq is an open subset of X. In general,
however, the closure of an open tile need not be the corresponding closed tile Dpγoq. For instance, if the metric
d is discrete, this will not be the case as the open tile is the singleton tγou. Moreover, the triangle inequalities

imply that D̊pγoq X D̊pγ1oq ‰ H if and only if γo “ γ1o. Suppose now that, additionally, pX, dq is a geodesic
space, i.e. for any two points x, y P X, dpx, yq is the length of the shortest (geodesic) path in X connecting x

and y. Then it is not hard to see that D̊pγoq is dense in Dpγoq, see [K2]. Thus, under this extra assumption,
if γo ‰ γ1o, then

Dpγoq XDpγ1oq Ă BDpγoq X BDpγ1oq.

Discreteness of Γ implies that every bounded subset of X has nonempty intersection only with finitely many
tiles. Thus, DpΓ, oq serves as a fundamental domain for the action of Γ on X. We refer to [K2] for details.

For general metric spaces and even general Riemannian manifolds, very little can be said about geometry
of Dirichlet domains and even of the bisectors

Bispo, γoq “ tx : dpo, xq “ dpγo, xqu

bounding these domains. There is one case, however, when bisectors and, accordingly, Dirichlet domains, have
particularly nice structure, namely, when pX, dq is the hyperbolic n-space H. Then each bisector

Bispp,qq “ tx P H : xp,xy “ xq,xyu,p ‰ q,

is the intersections of the hyperboloid H with the linear hyperplane

tx P V : xp´ q,xy “ 0u.

Accordingly, DpΓ,pq is the intersection of a (possibly infinitely-sided) convex polyhedral cone with H. This
polyhedral structure of DpΓ,pq makes it amenable to algorithmic computations. The corresponding Poincaré
Algorithm was described first, to my knowledge, by Riley in [R1] in the case n “ 3 (who even wrote a code,
in Fortran), and, in greater detail (but without actual computer implementation), by Epstein and Petronio in
[EP].

We now specialize to the case of discrete subgroups of G “ SLpn,Rq, focusing on computational aspects.
The group G acts naturally on the vector space V of symmetric nˆ n matrices, M ÞÑ gTMg, for M P V . This
action corresponds to the change of variables in the quadratic form defined by M . The group G also preserves
the open cone P Ă V of (strictly) positive-definite matrices and the hypersurface X Ă P consisting of matrices
of unit determinant. Moreover, G acts transitively on X with the stabilizer of the identity matrix equal to
SOpnq. The hypersurface X does have a G-invariant Riemannian metric which, on the tangent space at the
identity matrix I, equals

xA,By “ trpABq.

Given this metric, one defines the associated Riemannian distance function d. For instance,

dpI, Aq “

˜

ÿ

i

log2
pλiq

¸1{2

,

where λi’s are the eigenvalues of A P X.
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Then, given a discrete subgroup Γ ă G which has trivial intersection with SOpnq, one defines the Dirichlet
domain as above by

DpΓ, Iq “ tC P X : dpI, Cq ď dpγT γ,Cq,@γ P Γu.

The trouble is that such domains are bounded by pieces of geodesic bisectors for the metric d, which are hard
to compute (unlike in the case of the Lorentzian model of the hyperbolic space, where bisectors are linear).

Below, we describe a 2-point invariant spA,Bq due to Selberg, [Se], which, while not a metric, can be used
in lieu of one to define Dirichlet domains in P (and in X). This use is also due to Selberg but appears to be
relatively unknown. The advantage of spA,Bq is that it is easy to compute and the corresponding bisectors are
linear.

Assuming that A P V is an invertible matrix and B P V is an arbitrary matrix, we define spA,Bq :“
trpA´1Bq. Assuming further that A,B P P (at this point, we do not yet impose the condition A,B P X), we
set

σpA,Bq :“ log

ˆ

1

n
spA,Bq

˙

“ log

ˆ

1

n
trpA´1Bq

˙

.

Then s, and, hence, σ, is G-invariant because trace is conjugacy-invariant:

spgTAg, gTBgq “ trpg´1A´1pgT q´1gTBgq “ trpg´1A´1Bgq “ trpA´1Bq “ spA,Bq.

The normalization (in the definition of σ) is chosen so that for A,B P X (i.e. detpAq “ detpBq “ 1), σpA,Bq ě 0
with equality if and only if A “ B, making σ a premetric: Indeed, without loss of generality, we may assume
that both matrices A,B are diagonal,

A “ Diagpa1, ..., anq, B “ Diagpb1, ..., bnq.

Then, by the AM–GM inequality,

1

n
spA,Bq “

1

n

n
ÿ

i“1

bi
ai
ě

˜

n
ź

i“1

bi
ai

¸1{n

“ 1,

with equality if and only if bi “ ai for all i.
However, in general, σpA,Bq ‰ σpB,Aq and σ fails the triangle inequality. Nevertheless, we will pretend

that σ is a metric. For A1, A2 P X, the σ-bisectors,

BispA1, A2q “ tB P V : σpA1, Bq “ σpA2, Bqu “ tB P V : trpA´1
1 Bq “ trpA´1

2 Bqu

are defined by an equation which is linear in the variable B. Hence, σ-bisectors are linear. Clearly,

(11.1) tB P V : σpA1, Bq ă σpA2, Bqu X tB P V : σpA1, Bq ą σpA2, Bqu “ H.

Another useful property of the 2-point invariant σ is that the function B ÞÑ σpI,Bq is proper when restricted
to X. This is so because of the comparison to the invariant Finsler metric dmax on X:

(11.2) σpI,Aq ď dmaxpI, Aq ď σpI, Aq ` logpnq.

Here dmaxpI, Aq is the logarithm of the largest eigenvalue of the matrix A P P . From this, it follows that

lim
||A||Ñ8,APX

dmaxpI,BispI, Aq XXq “ 8.

It is also instructive to consider the invariant spA,Bq in the special case n “ 2, i.e. G “ SLp2,Rq, when
the vector space V is 3-dimensional. Up to the harmless multiplicative factor ´1{detpAq, the 2-point invariant
spA,Bq equals pA,Bq “ ´trpadjpAqBq, where

adj

ˆ

a b
b c

˙

“

ˆ

c ´b
´b a

˙

.

Thus, pA,Bq is a bilinear form on V , still invariant under the action of G. A direct computation shows that
this form is symmetric and has signature p2, 1q. Thus, the vector space V equipped with the form p¨, ¨q is a
3-dimensional Lorentzian vector space. The group G acts on V with the kernel t˘Iu, hence, through a group
isomorphic to SO`p2, 1q, making it the identity component of the group of all linear automorphisms of p¨, ¨q.
Let us compute the quadratic form corresponding to our bilinear form:

pA,Aq “ ´tr

"ˆ

c ´b
´b a

˙ˆ

a b
b c

˙*

“ b2 ´ ac.

The matrix A is positive-definite if and only if a ą 0 and pA,Aq ă 0. Hence the convex cone P Ă V is
a component (given by the inequality a ą 0) of the set of time-like vectors in this Lorentzian space. The
σ-bisectors in V are nothing but the Lorentzian bisectors discussed in Section 3.



GEOMETRIC ALGORITHMS FOR DISCRETENESS AND FAITHFULNESS 13

With all these geometric preliminaries out of the way, we now return to the discussion of fundamental
domains of discrete subgroups of G. Given a discrete subgroup Γ ă G as above, one defines the Dirichlet–
Selberg fundamental domain of Γ in P centered at the identity matrix I:

DSpΓ, Iq “ tC P P : spI, Cq ď spγT γ,Cq,@γ P Γu.

Remark 11.1. With a minor modification, this definition generalizes to fundamental domains centered at
non-identity matrices p P X,

DSpΓ, pq “ tC P P : spp, Cq ď spγT pγ,Cq,@γ P Γu.

The fact that for γ, γ1 P Γ, the interiors of γDSpΓ, pq, γ1DSpΓ, pq intersect if and only if γp “ γ1p follows
from (11.1).

Lemma 11.2. The collection of domains DSpΓ, γpq, γ P Γ, is locally-finite in P , i.e. every compact in P
intersects only finitely many cones DSpΓ, γpq.

Proof. It suffices to prove the claim for the intersections of Dirichlet–Selberg domains with X. Suppose
R ă 8 is such that for the R-ball Bpp,Rq Ă X (with respect to the Finsler metric dmax on X) the σ-bisector
Bispγ1p, γpq bounding DpΓ, γpq intersects Bpp,Rq. Thus, there exists x P X such that

σpγp, xq ď σpp, xq ď dmaxpp, xq ď R,

which (cf. (11.2)) implies that

dmaxpγp, xq ´ logpnq ď σpγp, xq ď R.

In view of the proper discontinuity of the action of Γ on X, the number of such elements γ P Γ is finite. Thus,
only finitely many Selberg-bisectors Bispγ1p, γpq can intersect Bpp,Rq. �

In particular, each compact subset of P intersects only finitely many bisectors bounding DS and, hence,
linearity of bisectors implies that DSpΓ, Iq is a convex polyhedral cone in P . (This cone might have infinitely
many faces.) It also follows that DSpΓ, pq satisfies all the properties of a fundamental domain of a discrete
group action (cf. [Ra]), which justifies the name Dirichlet–Selberg fundamental domain.

The definition of DSpΓ, pq suggests a slew of open questions. For instance:

Question 11.3. 1. Which discrete subgroups have finitely-sided Dirichlet–Selberg domains?
2. Uniform lattices do have finitely-sided Dirichlet–Selberg domains, but what about non-uniform lattices?
3. Do Anosov subgroups9 of G have finitely-sided Dirichlet–Selberg domains (at least for some choice of

base-points p)?

In contrast to discrete subgroups of O`pn, 1q, it is quite unclear how generic are subgroups with finitely-sided
Dirichlet–Selberg domains among discrete finitely generated subgroups of SLpn,Rq.

By analogy with the Poincaré Fundamental Polyhedron Theorem in hyperbolic geometry (see [EP], and
[Ra, Section 13.5]), one obtains a similar theorem in P , working with (relatively) closed convex polyhedral
cones C Ă P bounded by σ-bisectors. The paper [EP] is especially useful here, since it focuses on algorithmic
aspects of the Poincaré Fundamental Polyhedron Theorem in the BSS computability model. Below is a review
of the formulation of this theorem, adopted to the setting of domains bounded by σ-bisectors.

Suppose that C is a finitely-sided convex polyhedral cone in P , bounded by σ-bisectors of the form
Bispp, γipq, where p is a chosen point in X and γ1, ..., γq are certain elements of G. We further assume that the

facets in C are matched in pairs Fi, F
1
i by the elements γi P G, i “ 1, ..., q, so that γi : Fi Ñ F 1i , γ

´1
i : F 1i Ñ Fi,

and

F 1i Ă Bispp, γipq, Fi Ă Bispp, γ´1
i pq, i “ 1, ...., q.

Then, similarly to the case of the hyperbolic space, one defines ridge-cycles in BC corresponding to the
ridges, which are codimension 2 faces E of C. Every such ridge-cycle is a finite sequence of elements γ˘1

i ,

pγ˘1
i1
, ..., γ˘1

i`
q.

Specifically, assuming that the ridge E is the intersection of, say, facets Fi1 , Fi` , one starts the cycle with the
generator γi1 pairing Fi1 and F 1i1 . The image γi1pEq is a ridge of the facet F 1i1 , hence, is the intersection of F 1i1
and Fi2 . Then the second element in the cycle is the generator γi2 pairing Fi2 and F 1i2 , etc. Since the cone C
has only finitely many faces, eventually, we come back to the original ridge E, completing the cycle. This yields
the product

βE,` “ γ˘1
i`
˝ ... ˝ γ˘1

i1
.

9See section 12.
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Ridge-cycles are defined so that ` is the least natural number such that βE,`pEq “ E. The conditions of the
Poincaré Fundamental Polyhedron Theorem require that each β` has finite order NE and fixes E pointwise.
Moreover, let Us denote a small neighborhood of the ridge βE,spEq in the cone C. Set

FE :“
`´1
ď

s“1

βE,spUsq.

Then the ridge-cycle condition also requires FE together with its images

βE,`pFEq, β
2
E,kpFEq, ..., β

NE´1
E,k pFEq

to form a perfect tiling of a neighborhood of E in P . This tiling condition can be reformulated in terms of
Riemannian angles. Pick a point x “ x0 P E. For each s “ 0, 1, ..., `´ 1, we set xs “ βE,spxq. Let αspxq denote
the Riemannian (with respect to the G-invariant Riemannian metric on X) dihedral angle between the facets
of C XX at xs P βE,spEq XX. Then one requires

(11.3) αE :“
ÿ̀

s“1

αs “
2π

NE
.

(If this holds for one choice of x, then it holds for all choices.)

Remark 11.4. Yukun Du, [D], recently defined (for generic generators γi) non-Riemannian analogues of
angles between the above bisectors, which are G-invariant, satisfy the natural additivity property and also the
property that the neighborhood tiling above is equivalent to the angle-sum condition (11.3). These “angles” do
not depend on choices of points x P E and are defined in terms of linear algebra. Hence, they are more amenable
to computations than the Riemannian angles.

A polyhedral cone C as above is a pre-Dirichlet–Selberg domain for the subgroup Γ ă G generated by
γ1, ..., γq: If Γ is discrete (which is, a priori, unclear), its actual Dirichlet–Selberg domain DSpΓ, pq is contained
in the cone C.

The last condition of the Poincaré Fundamental Polyhedron Theorem is the least pleasant one (it is void if
D “ C XX is compact). The face-pairing transformations γi of D :“ C XX define an equivalence relation „
on D generated by

x „ γipxq, x P Fi XX.

The ridge-cycle conditions above imply that the quotient-space D{ „ has natural structure of a Riemannian
orbifold modeled on the symmetric space X. Then the last condition requires this orbifold to be metrically
complete. In the setting of the hyperbolic space, this metric completeness requirement can be replaced by a
more computable “ideal vertex cycle” condition that can be found in [EP], [Ra] (see Theorems 13.4.5 and
Theorems 13.4.7 in Ratcliffe’s book). I currently do not know how to formulate a similar condition in the
setting of convex cones in P as above. Below, is a review of the “ideal vertex cycle” condition in the context
of hyperbolic spaces. Following [Ra], a cusp point of a finitely-sided convex polyhedron Q Ă Hn is a point v of
the closure of Q in Hn “ Hn Y Sn´1 (here we use the Klein model of the hyperbolic space) which equals to the
intersection of closures in Hn of all faces of Q whose closures contain v. Then, similarly, to the ridge-cycles, one
defines ideal vertex cycles of such cusp points v. Let ` be the least integer such that the product βv,` sends v
to itself. The ideal vertex cycle condition then is that every such βv,` is either elliptic or parabolic.

Lastly, returning to the pre-Dirichlet–Selberg domains C, one has:

Theorem 11.4. The above ridge-cycles and completeness conditions are necessary and sufficient for C to be
a fundamental domain for the action on P of the subgroup Γ ă G generated by the elements γ1, γ2, .... Moreover,
Γ has the presentation in the above generating set, where the relators are the products βE,` of the ridge-cycles,
and E runs through the set of equivalence classes of the ridges in C.

The proof of this theorem is exactly the same as in the hyperbolic case, see [EP, Ra]. The hardest part in a
computational implementation of this theorem is the completeness condition and presently, we do not know how
to deal with the issue (see, however, Conjecture 11.5 below). However, in the case of a compact fundamental
domain the completeness is automatic and one obtains an algorithm for computing a fundamental domain and,
hence, a finite presentation of a uniform lattice in G. Let Γ ă SLpn,Rq be a uniform arithmetic lattice, given
by its arithmetic data.

(1) For each N P N, compute the subset ΓN matrices A P Γ such that spI, Aq ď N , which is a finite search.
(2) Compute the intersection CN of closed half-spaces tspI, xq ď spATA, xqu (in the vector space V of

symmetric matrices) for A P ΓN . The intersection CN X P will be called a partial Dirichlet–Selberg
domain of Γ.

(3) Check if this intersection is contained in the cone P of positive-definite matrices.
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(4) If it is not, then increase N to N ` 1 and repeat.
(5) Suppose, yes, then compute the Selberg-radius δ “ maxtσpI, xq : x P DNu of

DN :“ CN XX (imposing the extra condition det “ 1).
(6) Next, find all A P Γ such that N ď σpI, ATAq ď 2δ ` 2 logpnq.
(7) D2δ`2 logpnq will be the Dirichlet–Selberg domain of Γ.

The reader can find examples (my list is far from exhaustive) of similar algorithms in [R1, R2] (in the
case of subgroups of PSLp2,Cq and PSLp2,Rq respectively), in [M] (in the case of subgroups of PSLp2,Rq), in
[Li, P, Si] (in the case of subgroups of PSLp2,Cq), in [C] (in the case of groups acting on the bidisk), [CS] (in
the case of groups acting on the complex 2-ball) and [EP] for subgroups of Opn, 1q. See also [J] for a discussion
of Siegel fundamental domains for the subgroup Spp2n,Zq ă Spp2n,Rq.

Lastly, for general discrete subgroups Γ ă G, we have:

Conjecture 11.5. Each pre-Dirichlet–Selberg domain of Γ (regardless of its compactness!) satisfies the
completeness condition and, hence, is a fundamental domain of Γ.

One reason to be optimistic is that the analogous statement does hold for subgroups of Opn, 1q and pre-
Dirichlet domains of such subgroups. The key reason is that if Q is a pre-Dirichlet domain in Hn centered at a
point p P Hn, then for each point v P Sn´1 in the closure of Bispp, γ˘1

i pq, the points p, γ˘1
i ppq lie on the same

horosphere in Hn based at v. For each cusp-point v of Q we take the horosphere Σv based at v and passing
through p. Suppose that

pγ˘1
i1
, ..., γ˘1

i`
q

is an ideal vertex cycle of a cusp point v of Q and

γ˘1
i1
pvq “ v1, γ

˘1
i2
pv1q “ v2, ...., γ

˘1
i`
pv`´1q “ v.

The above observation about boundary points of bisectors then implies that

γ˘1
i1

: Σv Ñ Σv1 , γ˘1
i2

: Σv1 Ñ Σv2 , ...., γ˘1
i`

: Σv`´1
Ñ Σv.

Applying this to the product

βv,` “ γ˘1
i`
... ˝ γ˘1

i1
,

we conclude that it sends the horosphere Σv back to itself. Hence, βv,` is elliptic or parabolic, verifying the
ideal vertex cycle condition.

12. Computational aspects of Anosov subgroups

We will again limit the discussion to the case of discrete subgroups of G “ SLpn,Rq. While general
undistorted finitely generated subgroups of G are rather poorly-behaved (for instance, they need not be finitely
presentable), the Anosov condition below eliminates various pathologies and results in a class of subgroups which
share many desirable properties with undistorted subgroups of O`pn, 1q. The Anosov property was originally
formulated for discrete subgroups Γ (of semisimple Lie groups) by Labourie, Guichard and Wienhard, see [La],
[GW]. While it is defined relative to a certain parabolic subgroup P of G, for the sake of simplicity, I limit
myself to the discussion when P is a minimal parabolic subgroup (i.e. Borel subgroup) of G “ SLpn,Rq, i.e.
the subgroup of upper triangular matrices. To simplify the terminology, we will refer to such subgroups simply
as Anosov. The following is a treatment of Anosov subgroups following our work with Leeb and Porti, [KLP2]
and [KL].

First, let us revisit the notion of discreteness for subgroups of G “ SLpn,Rq: A subgroup Γ ă G is discrete
if every sequence of distinct matrices γi in Γ diverges to infinity, ||γi|| Ñ 8. Equivalently, the sequence of
highest singular values of γi’s diverges to infinity.

Looking at the singular values of these matrices arranged in the decreasing order,

σ1pγiq ě σ2pγiq ě ... ě σnpγiq,

and their asymptotics as i Ñ 8, one realizes that this divergence to infinity can happen in quantitatively
different ways. For instance, a sequence of matrices is called regular if each sequence of successive quotients
σkpγiq
σk`1pγiq

diverges to infinity. Accordingly, regularity of a discrete subgroup Γ means that every unbounded

sequence in it is regular. (The regularity condition can be weakened to partial regularity by looking at the
ratios of some of the successive singular values, leading to an interesting theory as well: This corresponds to the
notion of P -Anosov subgroups for general parabolic subgroups P ă G.) Regularity is equivalent to discreteness
if n “ 2 but not for n ě 3. For instance, the subgroup of matrices with integer coefficients, SLpn,Zq, is discrete
but is not even partially regular if n ě 3. (One way to see this lack of regularity is to observe that SLpn,Zq
contains diagonalizable subgroups isomorphic to Zn´1 and such subgroups are easily seen to be non-regular
with respect to any parabolic subgroup P ă G.)
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So far, our discussion was in terms of linear algebra; in order to get the actual Anosov condition, one
connects linear algebra with the geometry of Γ itself, assuming that Γ is finitely generated, equipped with a
word-metric dΓ. It is not hard to see that the ratios of singular values as above cannot diverge to infinity at
rate faster than exponential with respect to dΓp1, γiq, but they can diverge to infinity subexponentially, even
linearly. (This happens, for instance, in the case of SLp2,Zq when we consider the sequence of powers of a
unipotent matrix.) This observation leads to a definition, which (in a more geometric form) first appeared in
our work with Leeb and Porti:

Definition 12.1. A (discrete) finitely generated subgroup Γ ă G “ SLpn,Rq is called URU if there exists
A ą 0 such that for every γ P Γ,

σkpγq

σk`1pγq
ě A´1 exppA ¨ dΓp1, γqq, k “ 1, ..., n´ 1.

In particular, this definition includes the property that Γ is undistorted in G and is a regular subgroup.
However, the regularity condition appearing in this definition is a bit stronger than the one formulated above,
it is called uniform regularity in [KLP1, KLP2]. We will not define it here (as it will not be needed), but only
note that URU stands for uniformly regular undistorted. It is proven in [KLP2] that every URU subgroup is
word-hyperbolic.

Given a hyperbolic group Γ and a homomorphism ρ : Γ Ñ G, one says that ρ is Anosov if ρ has finite kernel
and Anosov image.

It was proven in [KLP1] that the Anosov property for group homomorphisms is semidecidable. The KLP
algorithm for testing the Anosov property is very similar to the one described in Section 9 for representations
to O`pn, 1q using the midpoint test. The main differences with the hyperbolic case are:

(1) One adds a regularity test for the geodesic segments mjmj`1 connecting the midpoints of the geodesic
segments ρpwjqpxqρpwj`1qpxq in the space X of positive definite matrices with unit determinant. (Here
wj , wj`1 are the words appearing in geodesic quadruples in the midpoint test described in Section 9.)
For the geodesic segment connecting the identity matrix to a matrix m P X, the regularity condition
amounts to checking that m satisfies the eigenvalue inequalities

λkpmq

λk`1pmq
ě r ą 1, k “ 1, 2, ..., n´ 1.

(2) The Riemannian angles α appearing in Section 9 are replaced with certain ζ-angles, which I will discuss
below.

(3) In the analogue of the inequality in Theorem 6.2, the distances L and ζ-angles α are decoupled: One
requires that L ě Lnprq and α ě π ´ εnprq, where Lnprq and εnprq are certain functions.

In [KLP1] the existence of the functions Ln “ Lnprq and εn “ εnprq (for which the algorithm works) was
established by certain continuity arguments. Max Riestenberg in his PhD thesis, [Ri], computed these functions
explicitly, making it, in theory, possible, to test if the given representation is Anosov, in particular, has finite
kernel and discrete image. The KLP algorithm then runs essentially as in Section 9, except, in addition to
increasing N , one also decreases r ą 1, taking it equal, say, to 1` 1

N . The algorithm terminates if and only if
ρ is Anosov.

Below is a definition of ζ-angles adapted to the setting of the symmetric space X of the group SLpn,Rq.
We first define ζ-angles between tangent directions u,v, i.e. nonzero vectors in the tangent space TIX at the
identity matrix I P X. This tangent space is nothing but the space of traceless symmetric matrices. The ζ-angle
is defined only between regular matrices u,v P TIX, meaning that the eigenvalues of u and of v are pairwise
distinct.

The ζ-angle is defined with respect to a fixed diagonal matrix

ζ “ Diagpζ1, ..., ζnq

satisfying the following conditions:

(1) ζi “ ´ζn´i, i “ 1, 2....
(2)

řn
i“1 ζi “ 0.

(3) ζi ą ζi`1 for all i ď n´ 1.

There is no canonical choice of such vectors, one can take, for instance, ζ coming from the sum of positive
coroots of the root system of type A, namely,

ζ1 “ pn´ 1q, ζi`1 “ ζi ´ 2, i “ 1, 2, ...., n´ 1.
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In particular (with this choice), if n is odd, then (for n´ 1 “ 2k),

||ζ||2 “ 2
k
ÿ

i“1

p2iq2,

while if n “ 2k is even, then

||ζ||2 “ 2
k
ÿ

i“1

p2i´ 1q2.

The most important property that ζ has, is that it belongs to the open Weyl chamber defined by the inequalities

ζ1 ą ζ2 ą ... ą ζn.

Next, given a matrix u P TIX with the eigenvalues λ1 ą λ2 ą ... ą λn, let Q P Opnq be the matrix which
diagonalizes u, i.e.

u “ QTDiagpλ1, ..., λnqQ.

Then define the ζ-direction of u as
uζ :“ QT ζQ.

Recall that TIX is equipped with the Riemannian metric xx,yy “ trpxyq. The ζ-angle between u,v is defined
as the Riemannian angle between the directions uζ and vζ . In other words,

cosp=ζ
Ipu,vqq “

trpuζvζq

||ζ||2
.

By the construction, such angles are invariant under the action of Opnq on the tangent space TIX.
We next define ζ-angles for triangles ∆IM1M2 in X, by measuring the angle at the corner I of the triangle.

Define matrices mi P TIX by
mi “ logpMiq, i “ 1, 2.

Then set
=
ζ
IpM1,M2q :“ =

ζ
Ipm1,m2q “ =

ζ
IplogM1, logM2q.

Lastly, in order to define ζ-angles of general triangles ∆MM1M2 in X, we impose the G-invariance of such
angles. Suppose that M “ gT g, g P G. Then set

=
ζ
M pM1,M2q :“ =

ζ
Ippg

´1qTM1g
´1, pg´1qTM2g

´1q.

We will not define the the functions Ln “ Lnprq and εn “ εnprq and refer instead to the work of Max
Riestenberg, [Ri]. Note that the computational feasibility of the KLP algorithm is currently unclear even in the
case of subgroups of Opn, 1q, which should be addressed first (before the case of discrete subgroups of SLpn,Rq
is discussed). To the best of our knowledge, this was never done.
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