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1. INTRODUCTION

1.1. Begin with the following elementary question: how one can estimate
the algebraic intersection number < a, 3 > between two closed curves a,
on an orientable Riemannian surface M 7

Suppose that the metric on M is hyperbolic (has curvature (—1)). Then
the answer can be given in the terms of lengths of o, 3. For example:

| <0, 8> | < K((a),l(8)) =2(n/2+ U(a)) - (¢ +1)
In particular, if | < @, 3 > | > 1 then
1 < sinh(I(B)/2) sinh(l(a)/2)

The defect of this answer is that the right side depends on the metric on
M while the left side is purely topological.

1.2. Now let M be an arbitrary complete oriented hyperbolic 4-manifold
(which isn’t necessarily closed), o; : ©; — M (j = 1,2) be two cycles in
Z5(M,Z), where ¥; are closed oriented connected surfaces. The main aim of
this paper is to estimate from above the absolute value of the intersection
pairing | < [o1],[02] > | so that the estimate depends just on the Euler
characteristics of ¥;. This will be done under certain condition on o;.

This research was partially supported by NSF grant DMS-8902619 at the University of
Maryland and by NSF grant DMS-8505550 at Mathematical Sciences Research Institute.

Typeset by ApS-TEX



2 M. KAPOVICH

DEFINITION 1. The maps 0; are incompressible if the induced ho-
momorphisms of the fundamental groups o« are injective.

THEOREM 1. There exists a function C(.,.) such that for any com-
plete hyperbolic A-manifold M and for any classes [01], [oo] in Ho(M,Z)
which have incompressible representatives, the following inequality holds:

| < [o1], [o2] > | € CED)]: X(E)D) -

So, Theorem 1 shows how the intersection pairing together with the
simplicial norm on the second homology group provides an obstruction for
existence of complete hyperbolic structure on 4-manifolds. The intersection
pairing itself isn’t too interesting invariant for hyperbolic 4-manifolds. If
M is closed then just two symmetric bilinear forms of the given rank can
occur as intersection forms. On another hand, any symmetric bilinear form
can be realized as the intersection form of a compact convex hyperbolic
4-manifold (cf. [GLT], [Ka 1]). There are no homological obstructions for
hyperbolicity in the dimensions 2 and 3 because the length of a curve (unlike
the area of a surface) isn’t a topological invariant.

1.3. Consider the particular case: suppose M = M (e, g) is homeomor-
phic to an R?*- bundle over a closed orientable surface F' of genus g > 1.
Such bundles are characterized by their ”Euler numbers”. In this case it is
just the intersection number e =< [F],[F ] >, where we identified F* with
the zero section of the bundle.

COROLLARY 1. The condition |e| < C(2g — 2,29 — 2) is necessary
for existence of complete hyperbolic structures on M.

REMARK 1. As it follows from the calculations in Section 3, instead
of C(2g — 2,2g — 2) one can actually take

oxp{ Lot &p expl8000/1)

where p is the Margulis constant for the 4-dimensional hyperbolic space.
Denote by S(e, g) an orientable 3-manifold which is a circle bundle over

the closed oriented surface of genus g such that the Euler number of the
fibration 1s e.

COROLLARY 2. If S(e, g) has a flat conformal structure with non-
surjective development map, then |e| < C(2g —2,2¢ - 2).

1.4. The examples of hyperbolic manifolds M = M (e, g) with e = 0 are
easy to construct and they exist for arbitrary genus g > 0. If the surface F
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of genus g is uniformized by the group I' C PSL(2,C) then the extension
of T in H* is the holonomy group for a complete hyperbolic structure on
M(0,g). The Bieberbach theorem implies that for e > 0 the manifolds
M (e, 1) can’t have complete hyperbolic structures. Thecaseg>1,e>0
is less frivial, first examples of complete hyperbolic structures were obtained
independently in [GLT] & [Ku] and [Ka 1]:

THEOREM 2. The manifold M = M(e,g) admits a complete hyper-
bolic structure under the conditions:

[Ku 1]:

) 0<e<(2g-2)/3

[Ka 1]: -
0<e<(29—2)/22 .

After [GLT] M.Anderson [A] proved

THEOREM 3. Let E — B be an arbitrary vector bundle with the com-
pact base B of negative sectional curvature. Then E admits a Riemannian
metric with negatively pinched sectional curvature :

0>ag>Kg > -1

for some constant ag depending on the bundle.
CONJECTURE 1 [GLT]. The (Milnor-Wood) inequality

0<|e]<29—2

is the necessary condition for existence of complete hyperbolic structures
on the manifold M = M(e, g).

REMARK 2. It is important here that M is fibered. N.Kuiper [Ku
2] constructed a sequence of complete hyperbolic manifolds ./\/I;1 which are
homotopy equivalent to closed surfaces F; of genus g such that:

limg—co < [Fgl,[Fg] > /(29 —2) =2/V3 > 1
REMARK 3 (N.Kuiper [Ku 3], V.Marenich [Mar]). Suppose that 3/

is hyperbolic and ¥ C M is an i¢mbedded minimal surface of genus g. Then
the Milnor-Wood inequality

| <[ELEI>]1<(29-2)
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holds.

1.5. Probably it’s possible to prove Corollary 1 for convex compact
hyperbolic 4-manifolds by comparing two 7-invariants for flat conformal
structures [Ka 2, 3]. More realistic idea was suggested to the author by
M.Gromov who proposed to compactify the moduli space of all hyperbolic
structures on the given fiber bundle. Formally speaking this idea doesn’t
work, since arbitrary large number of points of selfintersections of a zero
section can be pinched to a point in the limit. However, what we are us-
ing in this paper are some »pre-limit” considerations based on Mamford’s
compactness theorem and the existence of the Margulis constant.

The idea of the proof is quite simple. Suppose that we realized the classes
[01], [o2] by p-1 surfaces ¥y, Lo in M such that :

the number and diameters of simplices in £y U Xy are bounded from
above. Then the existence of the universal Margulis constant and the fact

that 2 geodesic planes intersect transversally by not more than one point

immediately imply the assertion of Theorem 1. Certainly it’s impossible
in general to estimate from above the diameters of simplices since the diam-
eters of the surfaces 1, X2 can be unbounded. However the "long” pieces
of ©;, 5, are contained in the "thin” part of the manifold M which have
very simple topological structure. Then the detailed analysis of geometry
in the "thin” part of M (section 2) and a correct choice of the surfaces
representing [0;] (sections 3, 4) give the desired result.

1.6. So Theorem 1 is a ”0-th order approximation” to Conjecture 1. The
simplest examples of negatively pinched closed manifolds of dimension 4
which do not admit hyperbolic structures are given by complex-hyperbolic
manifolds. More sophisticated examples were constructed by Mostow and
Siu [MS]; there are no (real) hyperbolic structures on any compact Kahler
manifold of (real) dimension > 2 due to theorem of J.Carlson and D.Toledo
[CT]. Another series of examples was constructed by Gromov and Thurston
in [GT]. Theorem 1 combined with the theorem of Anderson presents the
first examples of negatively curved open manifolds of dimension 4 that
do not have complete hyperbolic structure, but homptopy-equivalent to
hyperbolic manifolds. It’s interesting to remark that these manifolds have
finite-sheeted branched coverings which are hyperbolic (as well as some
examples of Gromov and Thurston).

Certainly there is a gap between Theorems 1 and 3 and Conjecture 1.

CONJECTURE 2. There exists a function D(.,.,.) such that for any
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Riemannian 4-manifold M whose curvature is pinched as 0 > a 2> Ky > -1
and for any classes [Q], [P] in Ho(M,Z) we have:

| < [@],[P]>1 < DIl TPl a)

where |W]|| = min{|x(W)|;w : W — M is a surface representing the
class [W1}.

REMARK 4 (W.Goldman). Conjecture 2 isn't true for orbifolds. The
example is given by complex-hyperbolic orbifolds covered by a nontrivial
R2-bundle over surface. Namely, let I' ¢ SU(1,1) C SU(2,1) be a co-
compact torsion-free lattice in SU(1,1). Then the manifold M(T') = HZ/T
is complex- hyperbolic and it admits an isometric U(1)-action. On other
hand, M(T) is diffeomorphic to the total space of a nontrivial R2-bundle
over S = H /T" (2-sheeted ramified covering over the tangent bundle of 5).
The group U(1) has cyclic subgroups Z, of arbitrarily large order n. Then
the sequence of orbifolds M(I')/Z, has the desired properties.

In particular we have:

CONJECTURE 2’. In Theorem 1 one can drop the condition for the
cycles to be incompressible.

1.7. Being true Conjecture 2" would have several applications for flat
conformal structures on 3-manifolds.

Suppose that we are given compact oriented geometric 3-manifolds NV,
and Ny such that:

(1) the interiors of N; have no Euclidean structures;

(2) ON; = T; are incompressible tori (i = 1, 2).

Denote by Ny Uy N2 the manifold obtained by gluing of Ny, N5 via the
homeomorphism f : T} — T5.

Fix N; and consider various manifolds of the type N; Uy Ns.

COROLLARY 3. (i) If V; are both hyperbolic then not more than
finitely many manifolds N; Uf Vo can be realized as incompressible ideal
boundary components of a complete hyperbolic 4-manifolds. (This follows
from Morgan’s compactness theorem [Mor]).

If Conjecture 2’ holds, then we have the conclusions (ii) and (iii):

(ii) If both manifolds are Seifert then not more than finitely many man-

ifolds N7 Uf Ny can be realized as ideal boundary components of complete
hyperbolic 4-manifolds.
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(iii) If (say) N1 1is hyperbolic, N is Seifert then infinitely many mani-
folds Ny Uy No can be realized as ideal boundary components of complete
hyperbolic 4-manifolds (cf. [Ka 1, 41).

However, if we fix the image of the regular fiber of Ny then again there
are only finitely many manifolds N, Uy Ny which can be ideal boundary
components of complete hyperbolic 4-manifolds.

On other hand it follows from [Ka 1, 4] that, unless the canonical decom-
position of a Haken manifold IV includes gluings of the type (i), the manifold
N always has a finite-sheeted covering Ny which is an ideal boundary com-
ponent of a complete hyperbolic 4-manifold.

1.8. We split the proof of Theorem 1 in two cases. .

Case 1 (Section 3). We shall suppose that the cycles o; satisfy certain
condition of maximality.

CONDITION "MAX?”. If for some h € (M) we have 1 # g €
h=1o1,(71(21))RN02. (71 (E2)) then the maximal almost abelian subgroups
of

Wl(M), h—lO'l*(Tﬁ(El))h ,0'2*(71'1 (Eg))

containing g are equal. For example, in Theorem 2 the condition "MAX”
is fulfilled. (Cf. the definition of ”doubly incompressible map” in [T 2]).

Case 2 (Section 4). This is the general case.

In the Case 1 the analysis of behavior of the surfaces o;(¥;) in the ”thin
part” of the manifold M is more simple, that is why we decided to single
out this case.

In the section 2 we discuss the geometry of components of the ”thin”
parts of hyperbolic 4-manifolds (”Margulis’ tubes and cusps”). The follow-
ing is the reason of difference between the dimensions 3 and 4. Let < g >
be an infinite cyclic discrete group of (orientation preserving) isometries of
H". Consider the set of points K(< g >,p) = {z € H" : d(z,¢"(z)) < p
for some k # 0} ; define g(z) = minimal k > 0 such that d(z,g%(z)) < p.
Then, for n < 3 the function g is constant on K(< g >, u). However it's
not longer true for n > 4. In particular, if the element g is parabolic, then
g¢(z) can have infinitely many different values. If g is loxodromic, then the
image of q is still finite, but it depends on the element g. Something similar
occurs even for n < 3 if g doesn’t preserve the orientation; however, in this
case g can have not more than 2 different values.

1.9. There are several other results and conjectures that seems to be
similar to Theorem 1 and Conjecture 1.



INTERSECTION PAIRING 7

1.9.1. If C is a smooth curve of genus g in a complex surface X and K
is a canonical class of X then (see [F]):

2g—2=<C,C>+K-C

R.Kirby conjectured [Ki] that if a smooth embedded 2-manifold X is in
the same homology class as C then the genus of ¥ isn’t less than g.

Conjecture of J.Morgan is that for any smooth oriented 4-manifold for
which Donaldson’s polynomials are defined and non-zero, and any smoothly
embedded oriented surface ¥ C M with positive self-intersection one have
the inequality

20-2> <L, L>

I learned this information from the paper of P.Kronheimer [Kr] where
the reader can find further information on this subject.

1.9.2. Suppose that M is a complex hyperbolic surface and f : Sy — M
is a homotopy-equivalence. Let wys denote the Kahler form on M. Then
Domingo Toledo has proved [To 1} that the number

is an integer independent of f which satisfies
2—-29<c<2g9-2

Furthermore Toledo [To 2] proved that M is a quotient by a cocompact
lattice in U(1,1) if and only if |c] = 2g — 2.

In [GK] we proved that, subject to Toledo’s necessary conditions, every
value of c is realized by a complex hyperbolic surface N(c, g) homeomerphic
to M(e = e(g,c),g) (see 1.3). In all these examples the selfintersection num-
ber e = e(g, ¢) of the generator of Hy(N(c, g),Z) varies in the closed interval
[1 —g,2(1 = g)]. So, in particular, some of these manfolds are homeomor-
phic, but the actions of their fundamental groups on HZ can’t be deformed
one to another inside the group Isom(H%). On other hand, W.Goldman
showed that in the examples [Ka 1] (see Theorem 1) all representations of
71(S,) in SO(4,1) are in the component of the trivial representation in

Hom(m1(S,), SO(4, 1)).
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19.3. The condition 2g — 2 > |x(E)| is necessary and sufficient for
existence of a smooth foliation transversal to fibers of a smooth S! bundle
E over a surface of genus g (J.Wood [W]).

1.9.4. See also the paper of N.Mok [Mo].

1.10. Acknowledgements. I am deeply grateful to Misha Gromov
and Nicolaas Kuiper for reviving my interest to the subject of the current
paper (Conjecture 1), helpful advises and discussions. This work was sup-
ported by NSF grants numbers 8505550 and 8902619 administered through
the University of Maryland at College Park and MSRI which the author
gratefully acknowledges.

2. GEOMETRY OF MARGULIS TUBES

Many results of this section are well known in some form.

2.1. NOTATIONS. By d(z,Y) =inf {d(z,y) : y € Y} we shall denote
the (low) hyperbolic distance between the 1-point set {z} and the set Y C
H%. The ball with the center at r and the radius r will be denoted by
B(z,r). If h €lsom(H*) then I(h) = inf{d(h(z),z) : = € H*} is the
”length” of h. For each pair of points a,b € H* we shall denote by [a, b]
the geodesic segment connecting them. We denote by [a, b, c] the totally
geodesic triangle with the vertices a, b,c € H*. If G CIsom(H*), z € H* then
Irg(z) = d(z,Gz)/2 is the injectivity radius InjRad([z]) at the projection
[2] of z in H*/G. We shall assume that all groups below are torsion-free.

If h is a loxodromic or parabolic transformation in H* then we denote by
II the canonical fibration of H* by totally geodesic hyperplanes orthogonal
to either axis of h (if h is loxodromic) or its 1-dimensional invariant horo-
cycle (if h is parabolic). The projection of II to H*/ < h > will be called
canonical foliation associated with < h >.

For the almost abelian group H Clsom(H*) define

C(H, ) = {= € B : Irg(2) < 1) (1)
to be the Margulis cone. The projection
T(H,p)=K(H, p)/H (2)

is the Margulis’ tube in H* /H (we assume that Margulis tubes can be non-
compact; in particular cusps are also considered as Margulis’ tubes).
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Suppose that the hyperbolic 4-space is realized as the "upper half-space”,
and the loxodromic element h is a Euclidean similarity. The main problem
concerned with Margulis tubes in the dimension 4 (and higher) is that even
for the cyclic loxodromic group < h >= H CIsom(H*) the boundary of
the Margulis cone K(H, p) is very far from been a "round” cone (like in
dimensions 2 and 3), but rather looks as a cone over an ellipsoid, where the
ratio of the largest and smallest axes can be arbitrary large.

99. LEMMA 1. Let z € H* be a point such that: for some subgroup
H Clsom(H*) we have: Irg(z) > v for some positive v. Then the ball
B(z,r) contains not more than

(ezp®(r +v)) /v’ (3)
points from the orbit Hz.

LEMMA 2. Under the conditions of Lemma 1 the number of elements
h € H Clsom(H*) such that the intersection h(B(z,r)) N B(z,r) is not
empty is not more than

(exp®(2r + 1))V’ (4)

LEMMA 3. Let H be a discrete subgroup of Isom(H*) and v/2 =
Irg(z). Suppose that d(z,y) < r. Then Irg(y) > C1(r,v)/2. Here

exp(18r + 2v)
13

Ci(r,v) =2r/n(r,v), n(r,v) =] 1 +1 (5)

PROOF.

Let h be an arbitrary nontrivial element of the group H. Let ng be such
that d(z, h™(z)) > 3r. Then d(y, h™(y)) > r and d(y, h(y)) > r/no. So,
our aim is to estimate ng from above. Notice that for n = n(r,v) among
the elements

{1, h, ... ,A"}

there is h¥ such that d(z, h*(z)) > 3r (by Lemma 1). Then we can take
no < n and d(y, h(y)) > r/n for every h € H — {1}.

Lemma 3 is proved.

9.3. In Lemmas 4 and 5 below we shall prove the KEY PROPERTY of
INDEX (Corollary 5) which will be crucial in our paper.
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KEY PROPERTY of INDEX. Let h be a parabolic or loxodromic
isometry of H*, z € H*. The index indp(z) of z is just d(z, hx). Suppose
that z is such that: Ir<ps(x) > p and there is a geodesic segment L = [a, b]
such that d(z, L) < R for some R and maz{inds(z), indn(a), indp(b)} <
R. Then we shall prove that either

min{d(z,a),d(z,b)} < C4+(R, p)
(parabolic alternative) or
I(h) > C_(R,p) >0

(hyperbolic alternative). See Figure 1, where A = Ay is the axis of the
loxodromic transformation h.

REMARK 5. The Key Property is valid also if instead of H* we con-
sider arbitrary simply connected complete space X of the sectional curva-
ture Ky < —a? < 0.

We shall prove the KEY PROPERTY just for the loxodromic h, the
parabolic case easily follows.

Below we assume that the hyperbolic 4-space H* is realized as the upper
half space R} ; | X — Y| denotes the Euclidean distance between points X, Y’;
0ot = R3 = R® U co.

2.4. Suppose that g = 6o is a similarity in E* preserving H*, g(0) = 0, A
is the axis of g, d(z, A) > 2. Here A is the homothety A :  — Az and 4
is the rotation on the angle §. Let L be the geodesic containing the points
oo, z; let w € L be a point such that z lies between w and co. (See Figure
2).
LEMMA 4. Suppose that the under conditions above:

v <d(g(z),2z) £ R; d(g(w),w) <R

Then d(z,w) < R+ .

PROOF. Step 1. Put g(z) = 2z’ ,g(w) = w'. Denote by a(u) the
angle between the horosphere P with center at oo containing the point
z and the Euclidean line passing through the points z,u ; a(u) < 7/2.

Then the condition d(z,A) > 2 guarantees that a(Az) < 7/3. However
|z = 6Az| > |z — Az, then

B=o0(gz) < a(Az) < 7/3
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Step 2. Due to the Step 1 it’s sufficient for us to consider the case:
2, 2 =Xz, w, w = w € H CC,arg(z) =8 < /3 dz,w) =
d(z',w"), Re(z) = Re(w). (Figure 3). Without loss of generality we can
suppose that Im(z) = 1,y = Im(2).

Now we have: p = |z — 2/|,y = psin(3) + 1,

q—2s1nhd(zz) £ =—-———-—-—”' )

VU T /1+psin(8)
So ¢2 + pg* sin(8) — p* =0,

~ p=(¢*sin(B +\/q sin” )+4q)/2>q>281nh§ | (6)

On other hand we have: sin 8 < v/3/2, so p < 2¢> 42 < 8sinh®*(R/2)+2
sinhv/2 < sinhd(z,2”)/2 = |z — 27|/2 = p(cos B)/2

< (8sinh?(R/2) 4 2) cos B < 8sinh*(R/2) + 2

and d(w,w") > d(w,w”) — d(w',w”) > d(w',w”) — R.
Let s = Im(w), then d(z,w) = log(1/s) and

sinh(d(w,w”)/2) = |z — 2”|/(2s) > p/(4s) > sinh(v/2)/(2s) (7)

1 _1 d(w, w”) 1
§ sinh(v/2) sinh -——§—— 3 sinh(v/2) sinh ™" (R) (8)
since d(w,w”) < R+ d(w,w’) and d(w, w’) < R. Now
d(z,w) = log(1/s) < log(2sinh™*(v/2)sinh R) 9)

However logsinha = (a® —1)/2a and 2sinh b < e°. Therefore: d(z, w) <
R+ 1.
Lemma 4 is proved.

Now suppose that a, b, z € H* be points such that: d(z,[a,b]) < R
Denote by Lg, L, the geodesic rays connecting the points a, b and oc.

PROPOSITION 4. Under the conditions above we have:

min{d(z,L,) ,d(z,Ly)} <2+ R (10)
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PROOF. Denote by ¢ the point of [a,b] such that d(c, z) < R. Let L
be the geodesic containing L. Then:

coshd(c,L’) =sin™"a, coshd(c, L) = sin™' 3 (11)
(see Figure 4) and o+ 3 2 m/2 s0
sin®a +sin? 8> 1 (12)
Now there are two opportunities (up to change 3 — a):
(i) by > w4 for every w € [a, b]
(i1) else.

Consider (ii). Then ¢ < 7/2 ,% < /2 where ¢, ¢ are nonzero angles of
the triangle formed by L4, Ls, [a,b]. Therefore:

d(c,L') =d(c,La) , dlc,Ly,) = d(c, Lp) (13)

Now if sin? & < 1/4 then sin™ 3 < 2.
This means that

min{cosh d(c, L), coshd(c, Ly)} < 2 (14)

so min{d(z, L,),d(z, Ls)} < 2+ R in the case (ii).

Case (i). Then ¢ < 7/2 ,% > 7/2 however o > 7/4 (since the arc of the
geodesic passing through a, b is greater then the quarter of circle).

Then 1/sina < /2 and €*/2 < coshz = cosh(d(c,L},)) < V2 z <
log(3) < 2.

However ¢ < 7/2 , then d(c, L) = d(c, L,) that means d(c, L,) < 2.

Therefore

min{d(z,L,),d(z,Ls)} <24+d(c,2) <2+ R (15)

QED.

2.5. LEMMA 5. Suppose that g is a loxodromic element with the
axis A as in Lemma 4; a,b,z € H* be points such that: d(z,[a,b]) < R,
d(z,A) > 2+ R, v < d(g(2),z) < R, d(a,g(a)) < R, d(b,g(b)) < R, so
the points z,a,b have bounded index with respect to < g >.
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Then: min{d(z,a),d(z,b)} <4R+ 6+ 1/k,

where k(R,v) = k = 2(2 + R)v°/ exp(18(2 + R) + 2v).

PROOF. According to Proposition 4 we can assume that: d(z,L,) <
24+ R. Let u € L, be a point such that d(z,u) < 2+ R. Then we have:
d(u, 4) > 2, k < d(g(u),u) < 3R + 4 (the last is by Lemma 3). Now we
can apply Lemma 4 to the a,u to obtain: d(a,u) < 3R+4 = 1/k and
d(z,a) < 4R+ 6+ 1/k.

QED.

COROLLARY 5 (KEY PROPERTY OF INDEX). Let h be a parabolic
or loxodromic isometry of H*, z € H* is such that: Ir<x>(z) > p and there
is a geodesic segment L = [a, b] such that d(z,L) < R for some R and

maz{ind(z), ind(a), ind(b)} < R
Then either
min{d(z,a),d(z,b)} < C4(R,pu) =4R+6+1/k

where k£ = 2(2 + R)u*/ exp(18(2 + R) + 2p) (parabolic alternative)

or I(h) > C_(R, u) = C1(R+ 2, 1) > 0 where the function C is defined
by Lemma 3 (hyperbolic alternative).

PROOF. Combine Lemma 5 and Lemma 3. QED.

Denote by C(t,4) = {w € H* : d(w,A) = t} the "hypercycle” whose
axis is the geodesic A.

PROPOSITION 6. Let z;,z belong to a connected component of
C(t,A). Then

dC(t,A)<Zlvz) S 28111}1( (Zl, /2) (16)

where d¢ is the metric on C = C(t, A) induced from the hyperbolic plane.

PROOF. We can suppose that |z1| = 1, |z| = r, logr is just the distance
between projections of z;, z on the geodesic A. Then

r—1 -
sin(0)+/r (17)

for cosh(t)sinfd = 1. Here m — 26 is the Euclidean angle at the vertex of
C(t,4). Moreover, a = dc(z1,2) = log(r)/sinf, asinf = logr. Our aim is
to show that:

2sinh(d(2,2)/2) =

r—1
VT

log(r) < =/r — (18)

%l
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if r > 1. Let = /r, then 2logz < 2 — 1/z since for z = 1 we have the
equality and derivative of the left side is < of derivative of the right side.

QED.
REMARK 6. In the situation above we have also:
d(z
cosht < 2 L sinh —(——1—71)—
logr 2

9.6. Now until 2.13 let ¢ € I'som(H*) be a nonelliptic isometry. If ¢ is
loxodromic then we shall suppose that g fixes {0, 00} and 0 is the repulsive
point. If q is parabolic then we shall assume that g fixes the point oo (i.e.
q is an isometry of the Euclidean space).

Remind that p: H* — H*/ < ¢ > is the covering map;

K(<qg>,v)={z € H* : inf{d(z,g(z)): g €< g > -{1}} < v},

T(< g >,v)=pK(< g>v))

For the element T' €< ¢ > we denote by Ty its rotational component and
T\ = Te_lT. Also put 0 < 67 < 7 be the angle of rotation of Tp; denote
by Ar either the Euclidean distance |X — T)(X)]| (in the case of parabolic
T) or the coefficient of similarity (in the loxodromic case). If the rotational
component of g isn’t trivial, put R, to be the Euclidean distance from the
point = € H* to the Euclidean plane of rotation L,. For loxodromic g define
A, to be the geodesic axis of g. If , = 0 then we put Ly = 0,R, = 0.
Direct calculations show that:

IT(z) — z|> = 2R2(1 — cosf7) + A7 (19)
(in the parabolic case)
IT(z) — z|> = (2R2(1 — cosOr) + %) |z|* (20)
(in the loxodromic case). Therefore
2 sinh?(d(x, T(z)/2) = (2R3(1 - cosfr) + \})/x} (21)
(in the parabolic case)

2 sinh?®(d(z, T(x)/2) = (2R%(1 — cosf7) + (A\r — D2/ Ar)|z)? /25 (22)
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(in the loxodromic case).
We shall denote v2sinh(d(T'(x),z)/2) by z7; put

2% = |z|R./2(1 — cosf7) /x4

and z3 = (/2% — (2%)2.

The formulas (21), (22) imply that the domain K(< ¢ >,v) is convex
near its smooth boundary points, where the boundary from the Euclidean
point of view is a piece of a cone (in the loxodromic case) or a cylinder (in
the parabolic case) over an ellipsoid of revolution or 2-sheeted hyperboloid
of revolution. In smooth points the boundary 9K(< g >, v) is given by the
equation

Zgni) = V2sinh(v/2) (23)

However in nonsmooth boundary points the domain K(< ¢ >,v) is not
locally convex. Nevertheless the following remark will be important for us.

REMARK 7. Take an arbitrary fiber II; of the canonical fibration and
let H? C II; be any hyperbolic plane which contains the axis of rotation
L,NIIL. Then the curve

IK(< g >,v)NH: NII, (24)

is given by the equation x4 = z4(R,) which is an increasing function on R,.
In the both parabolic and loxodromic cases this equation is the equation of
hyperbola (in smooth points); the difference between parabolic and loxo-
dromic cases is that in the last case the domain of the function is bounded
by (say) R, < 1. (See Figure 5.)

Suppose H C Isom(H?) is an almost abelian discrete subgroup; H(oo) =
oo. If H contains a loxodromic element g then denote by H? the complement
in H* to the axis A = A4, of ¢ and we put H* = H* in the parabolic case.

Let ¢ = g, : a € H — OK(H,v) be the projection ©(a) = the
point of intersection of K (H,v) with the geodesic containing a ,oc (in
the parabolic case), ¢(a) = the point of intersection of K(H,v) with the
semigeodesic containing a and orthogonal to A, (in the loxodromic case).

2.7. LEMMA 6. (See also [B], [ SY |, [HI]). The map ¢ is defined
correctly.

PROOF. Firstly the formulas (21-22) imply that the set K(H,v) is
star-like with respect to the point co. If H contains loxodromic element g
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and z € OK(H,v) then we can use the fact that the whole Euclidean ray
K,={c-z:c€Ri}isalso contained in OK(H,v). Therefore the domain
.0 the Euclidean plane between the rays A4 and A’ is contained in K(H,v).
Hence the point of intersection defining ¢ in the loxodromic case 1s unique.
Now it follows from (3-4) that the intersection of K(H,v) with any geodesic
ending at the point oo isn’t empty. QED.

PROPOSITION 7. Suppose that Ind,(a) < R;v <R (i) Then
either d(a,p(a) € K(< g >,v)) < C+(R,v) or {(g) > C-(R,v) and
coshd(a, Ag4) < g—cii_i——(hRi/—)%. (ii) If g is parabolic then d(a,p(a) € K(< g >
71/)) < 1+R/2—V/2

PROOF. (i) Follows from Lemma 5 and Corollary 5. (ii) Suppose that

.12
d(b, g(b)) > v. Then %1}?_((_%/72))_ > b2 /a2 where b = ¢(a). Now the statement

(ii) follows from direct calculations. QED.

2.8. Let z,z € H* be a pair of distinct points, T €< ¢ > —{1}. Define
the film S = S7.. in H* connecting points z, z, T(z),T(z) as follows.

Let T = Ty 0Tx;To = exp(€),Th = exp((); £ =¢&r,( =(1 € so(4,1),
where exp : t € [0,1]- & — SO(4,1) is injective.

Then we put
s*= | exp(t¢)(lz,2]) (25)
t€l0,1]
$°= | exp(td)(g:ls, ) (26)
t€f0,1]
S=S5"us’
0.5 = U exp(t()(z) U U exp(té)(Thz) (27)
tel0,1] t€{0,1]
0.8 = |J exp(t¢)(x)V | ezp(t6)(Thz) (28)
t€[0,1] t€[0,1]
68 =0,5U0.5 (29)

The films S = S7., constructed above will be called "ruled films”. It’s
easy to see that number of points of transversal intersection of ruled film
with another ruled film (or geodesic plane in H* ) isn’t greater than 8.
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REMARK 8. The film St is contained in X(< g >, v).

The ruled film S7,. is said to be in the general position if:

(i) [z,2] C B — Lq;

(i) In the loxodromic case let H‘Fx ] be the geodesic hyperplane of H*
which contains [z, 2] U A;. Then H? , isn’t orthogonal to L.

[z,2]
2.9. Suppose that we are given a ruled film Sy, then 8,54, consists of

two arcs:
8= ] exp(t¢)(z)

t&[0,1]

88 = U exp(té)(Thz). .

1€[0,1]

Then take totally geodesic regions D(z, gx(z)) and D(ga(z), g(z)) bounded
by 62 U [z, gxz] and 62 U [grz , gz] respectively.

Define the totally geodesic regions D(z,gx(z)) and D(gx(z), g(z)) in the
same way.

DEFINITION 2. The film
an)z = Sg:cz U D(AZ?,Q,\(.CU)) U D(g,\(.li),g@f))u

D(Zag/\(z>) U D(g/\(z),g(Z)) U [l',g)\ilﬁ ,g:C] U [279,\2 792]

is called the extended ruled film . If g€ G C I som(H*) then the projection
Qgrz of Qgz. to H* /G is called the extended ruled annulus. Define

ang:vza anga:z
to be the projections of [z, gz],[2,9z] in H*/G. Then

a:L'ngav:: U aZCQg:cz = anxz

(see Figure 6).

2.10. LEMMA 7. Suppose that the film S, is in the general position.
Then p(0;S4z:), p(0:S4z-) are homologous in

0T (< g >,v)—p(L,NOK(< g >,v)) .



18 M. KAPOVICH

Moreover, the intersection p(Sgzz) N p(Lg 0 0K (< g >,v)) is empty.
PROOF. Due to the property (i) of a film in the general position we
have: [z,z]U Ly = 0. However Sge- Tesults via moving the segment [z, 2]
by elements contained in Z<4> which leave Lg invariant. QED.
9.11. Suppose that z,y,2,w € 9K(< ¢ >,v)) NI, - one and the same
fber of the canonical fibration associated with ¢; g, he<qg>—{1},

maz{d(g(z), 2),d(g(y), v), d(g(2), 2), dlg(w), w)} < C' (30)

Sgzzs Shyw ar€ in general position, p(0Sgzz) N p(OShyw) = 0 and the inter-
section p(0Sgzz) N P(OShyw) is transversal. Our purpose is to estimate the
algebraic intersection number between the annuli

p(Sgzz, 0Sgzz)s P(Shyws OShyw) C (T(< g >, v),0T (< q >,v))

or, equivalently, the algebraic intersection number between Sg,, and < g >
(Shyw)- Notice that this number depends only on

p(asg:cz)ap(ashyw) C aT(< q >, Z/)

and doesn’t depend on the relative cycles in T(< q >,v) with the bound-
aries p(0Sgzz) p(OShyw)-

THEOREM 4. Under the conditions above we have the following esti-
mate for the algebraic intersection number:

| < p(Sgzz), P(Shyw) > | < N(C,) (31)

where

N(C,v) = (exp’(4C + 4)) /v’ (32)

PROOF. First consider the most interesting case 8, # 0. Lemma 7

implies that if p(Z<q>(z)) doesn’t divide say p(Z<q>(y)) from p(Z<g>(w))
then the annulus

A = p(Shyw) can be deformed rel(0A) to the new annulus A’ so that
A O p(Ba Sy = 0 and #(A' N p(0:S50r)) < #(AN p(D:Sge))

Therefore (up to change of notations) our problem is reduced to the case:

R, < R,<R. <R, - (33)
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(if g is parabolic) and
min{R,,R.} < R, , min{Ry, Ry} < R: (34)

(if ¢ is loxodromic). The monotonicity of the boundary 0K(< g >,v) (see
Remark 7) implies that:

min{zs, 24} < ¥s , min{ys, wal < 2z (35)
[f either -
diam((Shyw) N (< g > 8:S422)) < Const(C,v) =2/C+1  (36a)
or
diam(p(Sgzz) N (< g > 8yShyw)) < Const(C,v) = 2V/C +1 (36b)
then we can apply Lemma 3 to obtain
| < p(Sgez), P(Shyw) > | < exp®(2Const(C,v))/v® = exp®(4C + 4)/v°

So, our goal is to obtain one of such estimates. The inequalities (35) imply
that

yo < max{z, 20} < v2sinh(C/2); 2z, < max{y,,w,} < V2sinh(C/2)
Therefore, consider
zo/2h = yg/yp = (sinfy/2)/(sin b, /2) = @

Now if & > 1 then zg > zg; if & <1 then yg < yfl . So either

Indy(z) =d(z,h(z)) < \/arcsz’nh(fi sinh®>C/2) =C'<VC+1 (37

or

Indy(y) =d(y,g9(y)) < \/arcsz'nh(4 sinh® C/2)=C' <VC+1  (38)
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We shall assume that (37) holds.
Notice that the intersection

99(Shyw) N (< q > a:c'Sga:z>

is contained in ¢(Shuw) N Z<g>(z). Moreover, because our films are in
general position (condition (ii)) we have w{u, w] NZ<q>(2z) = {51, 52} where
s1, $o can coincide.

Therefpre
99(Shuw) N Z<q>(2) =
U U ean(t¢)sHu exp(t€s)(has:). (39)
1=1,2 t€[0,1] t€[0,1]

However Indy(s) = Indp(z) < C” due to (37); hence the diameter of the
set in (39) is bounded from above by 2C’ and we are done.

92.12. Now suppose that the rotational component of g is trivial. Then
the condition (30) implies that m,n < [C/v]. Take z,y,z,w € II,. So the
films Shyw, Sge- lie in the union of [C/v] images of a convex fundamental
domain of the group < g >. Hence the intersection number isn’t greater
than 8[C/v] < N(C,v). QED.

92.13. Consider the case when g, h are parabolic elements which belong
to an almost abelian group I' C I'som(H*) such that T isn’t a cyclic group.
Again suppose that z,y, z,w € OK(I',v) are points such that the condition
(30) is fulfilled. Denote by p : H* — H*/T" the universal covering. Our aim
is to estimate the intersection number between pSy,. and pSpy. In terms
of C,v.

THEOREM 5. The intersection number between pSg.. and pSpyw is
bounded from above by the constant

N'(C,v) = (exp(9v + 6))/v° + 96C /v + 120000 exp(72C) /v? (40)

PROOF.
2.14. Let Ty C T be a maximal abelian subgroup in I'; |I' : Ty| < 12,
Denote by go = g™, hg = h"™* generators of the groups < g > NIy,

< h > NIy respectively. Then n, and n, are not greater than 12. Notice
also that

9K(To, v) C K(I',v) — K(T, v12)
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and OK (Lo, v) is a horosphere. For every u € 9K(T',v) by (21) we have
d(u, 0K(T,v/12)) < log(sinh(v/2)/sinh(v/24)) <v/2+ 1. (41)
Therefore for u as above
d(u,0K(Ty,v)) <v/2. (42)

Denote by po : H* — H*/T'y the universal covering.
2.15. First we reduce the problem to the abelian subgroup I'.

(1) | < psgmzapshyw > l S 12| < p0(< g > ngz),POQ< h > Shyw) > |a
where HB denotes the orbit of the set B under the group H;

po(< g > Sgzz) = pO(ngz>§ (53“) = Sgzz U gSgz: U 92ngz~- U goSge-

(ii) diam({u,Tu,T?u,...,Tou}) < 12C for u € {z,2},T = g and u €
{y,w}, T = h.

Now we enlarge the films ng,Sgyw in the following way. Let u €
{z,y,z,w}, T € {g,h} be the corresponding transformation. Then take
the union

AZ = [u, Tu, T?] U [u, T?u, T?u] U ... U [u, T, T u]

Ay = D(u,Tx(uv)) U D(Ty(u), T(u)) UD(T(u), Tr(Tu)) U ...
UD(T""‘lu), gA(T”"_lu)) U D(g,\(T""'lu), To(u)) UD(u, T u) U Ay

(see 2.9). Then put
St =80 UA U A;

grz
Sy = Shyw U Ay U Ay
(Figure 7).

All extra pieces that are attached to Sgyw, S(g):cz have diameter < 12C

and number of them is bounded by 100. Therefore
| < P(Sgzz)s P(Shyw) > | < 12| < po(SF,.), po(SiE,,) > 1+12:10% exp®(24C) /v

l < p0<53_z:z)7p0(52-yw> > l = I < pO(Sgosz)va(Shoyw) > I
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SiIlCG apO(S;xz) = apO(Sgoxz)’ apo(‘slfyw) = 0p0(5h0yw)-

Denote by I'; the maximal subgroup in I'q which has the rank 2 and
contains gg, ho. We have two possibilities:

(a) T has rank 3. (b) T'p has rank 2.

In the case (a) denote by ko € I'g an element such that Ty =< kg > GI';.

Choose a fundamental domain ® for action of < kg > in the horosphere
dK(Tgv) such that @ is bounded by a pair of Euclidean hyperplanes in
dK(To,v). In the case (b) let kg =1 and & = 9K(To,v).

Let o : H* — AK(To,v) be the projection defined in 2.6. Then d(u,v’ =
ou) < 14+ v/2 for every u € OK(T',v).

For u € {z,z,y,w} we choose T, €< ko > such as T,u' € ®. De-
note Ty(u') by u”. Then above we substitute the films Sgyzz; Shoyw bY

S T2 (z)T. (") ShoTy (') Tu(w'):
The intersection number between the projections of the ruled films S; in
H* /T, depends only on projections of their boundaries 6.S;. Therefore:

| < Po(Sgowz)s Po(Sheyw) > | < (exp(6 + W) /v +

| < Po(Sgozrz), Po(Shoyrw) > | -

Next notice that I'y (¢Sg 2772 ), ['1(¢Sheyw) C @ are Euclidean paral-
lelograms. Hence we can estimate the intersection number

| < pO(Sgor"’Z”)>p0(5hoy”w") > |

in the same way as in 2.11 looking at the intersections of orbit of ©6.S,, 5.~
with ©Sp,ymw under the action of the group I';. However

IT1:<go>@ < ho>|<12C/v (43)
which implies that

I < pO(Sgoz”z"),‘PO(Shoy”w”) > l < 960/” (44)

So, the final estimate is

< PSgzzs PShyw >< (exp(6+9))/v° + 96C /v + 120000 exp(72C) /v (45)
QED.
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3. PROOF of THEOREM 1
UNDER CONDITION OF MAXIMALITY.

3.1. NOTATIONS.

Fix some Margulis constant p for the 4-dimensional hyperbolic space. So
if hy , ko € Isom(H*) generate a discrete group H and d(z, hi(z)) < p (1 =
1,2) for some z € H* then H is an almost abelian group. Recall that the
hyperbolic 4-space is realized as the upper half-space R:. Byp: H - M
we shall denote the universal covering of M; its deck- transformatlon group
is G. Let S be a triangulated Riemannian surface so that the edges of
triangulation are geodesic arcs. Then a continuous map.

F:S—M

is called piecewise-geodesic (p-g) if the restriction of f on every simplex is a
totally geodesic map. By M, and M|, o) we denote y-thin and p-thick
parts of M respectively. The components of Mg ) are Margulis tubes (see
definitions in Section 2). If A is a triangle then we shall denote by A the
set of vertices of A. By In(vy) we denote the length of the curve v in the
metric space N. If a transformation h € I'som(H*) is parabolic then we put
Ap = 0; if h is loxodromic then Ay, is the axis of h (invariant geodesic).

DEFINITION 3. Suppose H C I'som(H*) is an almost abelian discrete
group, h € H — {1}; a,b € T(H,v) belong to one and the same fiber II; of
the canonical foliation associated with h. Then we define the p-g annulus
Fhqp as follows. First connect a,b by the geodesic segments I,.J so that
I c T, the closed loop I U J is homotopic to h. Denote by 74,7 the
shortest loops in H*/H which contain z,y and homotopic to h. Then take
the pair of geodesic triangles in M whose edges are I, J,v, and I, J, 7
respectively. The union of these triangles is the desired p-g annulus Fjs.
(See Figure 8 for lift of Frqp in H*).

REMARK 9. In general Fj,p isn’t entirely contained in 7 (H,v).

3.2. Step 1. Let [01], [02] € H2(M,Z) be homology classes, ¥; has genus
g; (7 = 1,2); we can assume that both ¥;, ¥ are hyperbolic (otherwise the
intersection pairing vanishes). Let ¢ : 71(X;) — G be the representation
induced by ;.

Now fix j and put ¥ = X; until the step 7 .
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3.3. Step 2. The group ¥(m1(¥)) contains at least one loxodromic
element; hence we can construct a pleated map o : £ — M inducing
US Wl(E) — G (see [T 1], [T 2]).

The pleated locus £ of f is a geodesic lamination on ¥ .

Pick a maximal union Lo of simple closed disjoint geodesics v on X such
that

0<lis(y)<p.

3.4. Step 3. For every component Pj C ¥ — Lg and p > 0 introduce the
set

W, (P;) = {z € P; : InjRad(z) < u/2}

Each ideal boundary component o C OP; has orientation induced from
P; so we shall distinguish curves o C Lo with different orientations but
equal underlying sets. Put:

W,(a, Pj) = {z € P; : there exists a loop 3. on P; which is homotopic
to o and passes through z, so that Ig(8;) < u}.

Then

Wu(P) = |J Wula, P
aCOP;

The Margulis constant p is < the Margulis constant for H?; therefore,
for different boundary components we obtain: W,(«a, P;) N W, (5, P;) = 0.
Put

= {z € ¥ : InjRad(z) > p/2}.
Let Ly = Lo — cl(X)) and PP = P; — W,(P) for every j. Define

diamg(X Z diam(P

LEMMA 8. diamo(X,) < (29 — 2)/p+length of 0%,
PROOF. (Cf. [Ab], [Bo], [T 1, 2]). We shall denote by 1(0X,) the
length of 9X,. Cover £, by a maximal set of disjoint discs D(zx,2u). Then

the number of these discs is n < Area(T)/(4p?) and every point z € T,
has the property:

(T, —UD ,21)) < 2u
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Hence, for every z,w € P we have: d(z,w) < 4np +1(9%,) < (29 -
2)/p +1(8S,). QED.

REMARK 10. If o* C 9%, then [(a*) < 2sinhp by Proposition 6.
Therefore we obtain:

COROLLARY 8. In Lemma 8 we have:

diameX, < (29 — 2)/p+6(g — 1) sinh pp = Co(p, g)

3.5. Step 4.

Let T, (p) C Mo, be the Margulis tube whose fundamental group con-
tains the G-conjugacy class of ¥(7y), v C L;. -

REMARK 11. In general 7T (u) #< ¥(y) >.

For every such geodesic v we have two (probably equal) components
P;,P; C © — L, adjacent to v. Then f*(W,(v,P;)) C T, (k) (k=1,7).

Choose points =y = =~ € OW, (v, Px) (k =1, j) such that:

£O(zs), f°(z;) € I, for some fiber of the canonical foliation of T ()
associated with 7.

Let v = min{InjRad(fo(zx)), over all points z., , and all v C L;}.

PROPOSITION 7. v = Cs(y, g) for some function C3 which doesn’t
depend on the manifold M.

PROOF. For every ¢ we have a point o; € P, — f~1(Mo,)) since
Y(m(P;)) isn't almost abelian. Then dpr(0;,2;) < Cou,g). Therefore
(by Lemma 3)

InjRadpy (f zi) 2 C1(Ca(u,9), 1) = Cs(u, g)

QED.

REMARK 12. We used the fact that ¢ is a monomorphism.

Let o}, 3%, ...,w; be the boundary components of P). Then we can "tri-
angulate” P so that: vertices of this ”triangulation” Q are z4, g, ..., T,
lengths of edges of the triangulation are bounded from above by (6g —

6)2Ca(u, g) (see Figure 8 for triangulation of the pair of pants). The trian-
gles from this triangulation will be called ”short”.

3.6. Step 5. Now, for each k we map the triangulated surface P to a
p-g surface in M by the new map f: P} — M so that:
for every edge e of the triangulation we have: f(e) ~ f%(e)(rel de).
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Hence [y(f(e)) < Is(e) < (16g — 16)*Ca(p, 9).
Now consider the thin part of .

3.7. Step 6. Fix z,; , =, lying on the components P; , P; adjacent
to v C L;. Then connect their images f(z,:) , f(z+,;) by the p-g annulus
Fy(x) f(av,) (2,5 (see Definition 3). The boundary of ' = Fy(4) f(zy ) (=5,5)
is equal to fyf U fy;. The annulus F consists of two geodesic triangles.
These triangles will be called "long” triangles "sitting in” T. - (1). The an-
nulus F itself will be called ”long p-g annulus sitting in T, (1)”, see Remark
9. "

So we extended our map from ¥, to the p-g map f : ¥ — M which is
homotopic to o.

LEMMA 9. Suppose that d(p(A4y),z) < R+ 2 for some z € f(Z,).
Then

diam(fA) < 4sinh(p/2)/C1(3R+ 2, 1)

for every f(A) sitting in T, (u).

PROOF. We have d(z, f 0;) < R, f(0i) € M(,,.00) N f(P?),
d(f(0:),p(Ayy)) < 3R+ 2 and so I(y) > C1(3R + 2, p) by Lemma 3. This
implies that

d(p(Ay~ ), z) < 2sinh(p/2)/C1(3R + 2, 1)

for every z € T,(u). Therefore for the triangle f(A) sitting in T, (u) we
have:

diam(A) < 4sinh(p/2)/C1(3R+ 2, i)
QED.

Our construction of the map f is sufficiently flexible and given any two
classes 01,09 € Ho(M,Z) we can find transversal maps f; : ¥2; — M repre-
senting these classes.

3.8. Step 7. The maps f; above will be called "nice”. Summarize the
properties of "nice” maps f;.

(1) f; are p-g with respect to some triangulations 2y, of the surfaces X;.
The number of triangles in Qy, is < 16(g; — 1).

(2) In the triangulation Qy, there are "short” and "long” triangles (with
respect to p-l1 metric induced by f;). Namely, the internal diameter of a
"short” triangle is

< 202(/*‘391) =R
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and their union is ¥,; so that ¥; — £,; = W,; is the union of pairwise
disjoint nonhomotopic tubes. All vertices of Q1f, are contained in 9%;.

(3) f(0-skeleton of Q) C M, o) for some v = v(g;).

(4) Every short triangle A C P, C ,, has bounded index with respect
to any v* C 9P).. More precisely,

for every z € A and y* C O%,; passing through z we have: [(y*) < R
(this is just the corollary of (2)).

(5) Denote by Q}i the 1-skeleton of Qf,. Every component Q;; C W,
consists of two "long” triangles such that: if for some h € (M) we have
1 # h_lwl(ﬂ‘l(le))h M ZL‘Q(?H(QJ'Q)) =< 7v; >C 71’1(]\/.[) then < Vi > 1S a
maximal almost abelian subgroup of 71 (M) and the maps

fi : sz' — (Q}ﬁ) — M

can be lifted to the fundamental domain ®; C H* of the group m; (T, (1))
The fundamental domain ®; is bounded by a pair of fibers of the canonical
fibration of H* corresponding to < ; >.

This property follows from the condition "MAX” and Step 6.

(6) For every "long” triangle” A we have: diam(f(A) N M|, ) < Cy ;
where

Cs=4R+ 6+ 1/k(R,v) + 4sinh(p/2)/C1 (3R + 2, 1)}

this follows from Lemma 5 and Lemma 9 .
(7) Suppose that d(p(Ayy),2) < R+ 2 for some z € f;(X;,). Then

diam(f;A) < 4sinh(p/2)/C1(3R + 2, )
for every long triangle f;(A) sitting in T.,(p), j = 1, 2; see Lemma 9.

3.9. Step 8. Now we can count the number of intersections #(f;(X1) N
f2(E2)).

(1) Consider intersections of "short” triangles. Pick a pair of such tri-
angles f1(A1) C fi(Z1), f2(A2) C f2(E2) , let A% C H* be the geodesic
triangles covering them (5 = 1,2). Then we are to estimate the number
of h € G such that hA] N A} isn’t empty. Remind that diamA’} < R/2
and both A’ contain points o; such that Irg(o;) > /2. Therefore we can
apply Lemma 2 to obtain:
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H(f1(A1) N f2(As)) < 8exp®(2R+ p/2))/1°.

(ii) First consider the case when A is short while A is long.

Suppose that h(z) € hA; N A5, Then we can apply Lemma 5 and the
property 7 of nice maps to obtain

d(z, A}) < max{4R+6 + 1/(C1(R +2,v)), Cs} =Cs .

Let {wl,wz,wg} = AL.
Hence we obtain estimate in the same manner as in the case (i):

#(f1(A1) N f2(A2)) < #{h € G : h(B(w;,2C5)) N AL # 0,i=1.2,3}

< 3exp®(2Cs +v/2))/v°

since diam A} < 2R < Cs.

(iii) Assume now that both A;, A, are long. Denote by T, (1) C Mg,y
those Margulis tubes where A; are sitting.

(a) First count the number of intersections that occur in T, (u) if A1, Ag
are sitting in the same T (u) C Mo ). The influence of the fundamental
group is trivial (property 5) and here we have not more than 1 intersections
between the "long” triangles fi(A1), f2(Aq).

(b) If T, (i) are different then

0

fi(A) NI, (p)N f2(Ag2) N T, (1)

So consider intersections (fi(A;) — T, (k) N f2(Ag) outside T, () .
However A; — f7 (T, () is the union of 2 subsets each having diameter
< C4 < C5 and therefore the number of intersections is not more than

6 exp®(2Cs + v/2)/v°

analogously to the case (ii).
Hence the total estimate in the case (iii) is

6(12(g — 1))% exp®(2Cs + v/2)/v°

where g = max{g1, g2}

Direct calculations now show that the number | < [01],[o2] > | can be
estimated as:
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300(g — 1)* exp(4000(g — 1)/ )/ 1>
This finishes the proof of Theorem 1 under condition MAX. QED.

4. PROOF OF THEOREM 1 IN GENERAL CASE

4.1. The proof proceeds in the same way as in the section 3 until the
step 6.

Step 6’. Fix z,; , z,; lying on the components P, , P; adjacent to
v C L. Lift z,; , = ; to points f:c,m- , f:c,y,j in K(H,u) where H is the
maximal almost abelian subgroup of G which contains < ¥(7y) >. Denote
by u’ the projection g, (u) of the point u € H* to the OK(H,v). For
k € {i,j} we have: :

() d(f, 4 ¥(3) f ) <

(ii) Irg(fz, ) > v/2.

Therefore, according to Proposition 7, either

(a) d(pf:r—y,ka fx'y,k) < C+(/l, V,) or

(b) coshd(pfe, 4, Au) < A

On another hand, f(z,x) € M, ). Therefore, if the possibility (b)
holds then (by Lemma 3) we obtain the lower estimates

2sinh p/2

Cl (CLT’CCOSh( m

), v) SU(¥y) <ls(v)

and moreover:
2sinh p/2

Cl(arccosh(C i)
~(p,v

), v) < Irg(u)

for every u € Ay ().
Then we can consider the triangles which constitute the p-g annulus

F'= Fy(y) f(2,0) f(25.5)

as "short triangles” and exclude T, (v) from the consideration of the thin
part of M. So let’s suppose that the alternative (b) doesn’t hold. Denote
by z7 ;. the projections p(¢fz- ;)
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Then construct the extended ruled film Q = Q~7 (ofe.

nect the loop f°(v}) with 8w;$pr and f°(y}) with 899];%’],]9@ by the p-g
annuli

Jefe, ) and con-

F;pf:c%i,fo Ty i’ F‘Pfr'y,j afox'y,j
(see Figure 9). Now instead of the long p-g annulus F sitting in T (u) (as
in 3.7) take the union:

p(Q’YSinUa,,,“PJ;x%J‘)) U Fx,y/,i’fo‘c%i U Fx,.,’,jafoxv,j )

In this way we extended the p-g map from &, to the new map ¢ defined
on X.

4.2. Step 7. The maps ¢; above will be called "improved nice” maps.
Restrictions of ¢; to 3; , have all properties of nice maps. However instead
of ”long p-g annuli sitting in T, (¢)” we are using extended ruled annuli (see
Step 6’).

4.3. Now we can count the intersection number < ¢1(X1), d2(Z2) > in
the same way as it was done in 3.9.

(1) Number of intersections between short triangles is estimated exactly
as in 3.9(i).

(ii) Every extended ruled film Q, is contained in 2R-neighborhood of the
geodesic segment

[Bk(T,0) » Ok(24,5)]

(k = 1,2). Number of points of transversal intersection between any ex-
tended ruled film with geodesic plane is not more than 8. Therefore again
we can use Lemma 5 to obtain

#(pQ1 N foA) < 24exp®(2Cs +v/2))/v°

for every short geodesic triangle f;A(see 3.9(ii)).
_REMARK 13. If the loxodromic alternative holds for the segment
[61(24,i) , @1(z+,;)], then it holds for [¢a2(zy,i) , @2z~ ;)] too.
(iii) The algebraic intersection number between two extended ruled an-
nuli that belong to one and the same Margulis tube was estimated in The-
orems 4, 5. It is not more than

max{N(R,v), N(R,v),R/v}
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This finishes the proof of Theorem 1 in the general case. QED.

APPENDIX

LEMMA 11. Let p;, p» be closed geodesics on the hyperbolic surface
F. Then:

#(p1 N ps) <exp(ly+1p +1)

where #(. N.) is the number of points of intersection, /; is the length of p;.

PROOF. Denote by G C Isom(H?) the fundamental group of F. De-
note by g; representative of p; in the deck-transformation group G; and let
g; be the axis of g; . Let f; be a segment of the length /; on ¢; . Without loss
of generality we can assume that there is z € f; N fo such that Irg(z) > 1
(since 2 can stand for the Margulis constant in H*). Then

< P1s P2 >§ #{h € G: h(B<x7l1 + l2)) A B(.CU,Z]_ + l‘z) 7é (D}
Now we can apply 2-dimensional version of Lemma 2 to obtain that

#{h € G:h(B(z,l1 +12)) N B(z,l1 +l2) # 0} < exp(ly + 2+ 1)

Lemma is proved.
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