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A Morse Lemma for quasigeodesics in symmetric spaces and euclidean
buildings
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We prove a Morse Lemma for regular quasigeodesics in nonpositively curved symmetric spaces and euclidean
buildings. We apply it to give a new coarse geometric characterization of Anosov subgroups of the isometry
groups of such spaces simply as undistorted subgroups which are uniformly regular.

53C35; 20F65, 51E24

1 Introduction

One of the important features of J-hyperbolic geodesic metric spaces is the Morse Lemma, also known as the
Stability of Quasigeodesics: Every (uniform) quasigeodesic is (uniformly) close to a geodesic. This property of
hyperbolic spaces is used, among other things, to show that hyperbolicity is a quasiisometry invariant and that
quasiisometries between hyperbolic spaces extend to the ideal boundaries. Stability of quasigeodesics is known
to fail in CAT(0) metric spaces: Already euclidean plane contains quasigeodesics which are not Hausdorff-close
to any geodesic. Some versions of the Morse lemma are known for CAT(0) spaces: In the case of maximal
quasiflats [LS] and in the case of Morse quasigeodesics (also known as hyperbolic or rank one quasigeodesics),
see [Su]. Nevertheless, the real understanding of what should constitute a true analogue of the Morse lemma in
the CAT(0) setting, remains elusive.

The main goal of this paper is to prove an analogue of the Morse Lemma for regular quasigeodesics in
nonpositively curved symmetric spaces and euclidean buildings. In order to unify the terminology, we refer to
nonpositively curved symmetric spaces and euclidean buildings as model spaces throughout the paper.

Instead of concluding that regular quasigeodesics are uniformly close to geodesics (which is far from true, see
section 5.4), we will prove that they are contained in uniform neighborhoods of certain convex subsets of the
model space: Diamonds in the case of finite quasigeodesics, Weyl cones in the case of quasigeodesic rays and
parallel sets (more precisely, unions of opposite Weyl cones therein) in the case of complete quasigeodesics.

Note that the question about regular quasigeodesics reduces to the case of model spaces without flat factors.
For, if a model space has a nontrivial flat de Rham factor, then all diamonds and Weyl cones split off this flat
factor, and the canonical projection to the complementary (model space) factor preserves 7,,,4-regularity of
segments and paths. We therefore restrict our discussion to model spaces without flat factors.

Our main motivation for these results comes from the theory of discrete isometric group actions on model spaces
X, more specifically, the desire to give a clean coarse-geometric characterization of Morse actions, which have
been introduced in [KLP2].

The notion of regularity used in our paper is defined relative to a certain face 7,,,4 of the model chamber 0,,4
of the Tits boundary of X. The definition is the easiest in the case when 7,4 = 0,04 and we first present our
results in this setting.
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A quasigeodesic g in X (which might be finite or infinite) is (coarsely) uniformly regular if any two points x,y
in ¢ which are sufficiently far apart (d(x,y) = D), define a uniformly regular segment xy in X, i.e., a geodesic
segment whose direction belongs to a fixed compact subset © of the interior of 0,,,4. A diamond <{)(x,y) in
X is a generalization of a geodesic segment. In the case when the segment xy is regular, {(x,y) is a (convex)
subset of a flat F < X containing xy, namely the intersection of two Weyl chambers V(x,0) n V(y, §) with
the tips at x and y respectively, over opposite chambers o, & in the Tits boundary 07X of X.

Theorem 1.1 (Morse Lemma, regular case) (i) Every finite uniformly regular quasigeodesic path g in X with
endpoints x and y of distance d(x,y) = D is contained in a neighborhood of the diamond {(x,y).

(ii) Every uniformly regular quasigeodesic ray q in X with initial point x is contained in a neighborhood of a
unique euclidean Weyl chamber V = V(x, o).

(iii) Every uniformly regular complete quasigeodesic g in X is contained in a neighborhood of a unique
maximal flat F and, moreover, is contained in a neighborhood of the union V(z,0) u V(z,6) < F of two
opposite euclidean Weyl chambers with common tip z € F.

Furthermore, the distance from g to <{)(x,y), V respectively V(z,0) u V(z, &) is bounded above in terms of the
quasiisometry constants of g, the coarseness scale D and the regularity set ©. In case (iii), the common tip 7
can be chosen uniformly close to any point on q.

In other words, each uniformly regular quasigeodesic in X is a Morse quasigeodesic in the sense of [KLP2].

We deduce from this result that (coarsely) uniformly regularly quasiisometrically embedded subspaces in model
spaces X must be Gromov-hyperbolic. A quasiisometric embedding f from a geodesic metric space Y into X
is (coarsely) uniformly regular if the images of geodesic segments in Y are (coarsely) uniformly regular in X.
(Uniformity here refers to the constant D and the subset ©.)

Theorem 1.2 (Hyperbolicity of domain and boundary map, regular case) If f : Y — X is a (coarsely)
uniformly regular quasiisometric embedding, then the space Y is Gromov-hyperbolic and, if it is also locally
compact, the map f extends to a topological embedding from the Gromov boundary of Y into the Furstenberg
boundary of X.

Our work is primarily motivated by the study of discrete subgroups of isometry groups of nonpositively curved
symmetric spaces; before discussing these, we explain how the theorems above generalize to T,,,4-regular
quasigeodesics and 7,4 -regular quasiisometric embeddings.

Tmod -regularity. The role of the compact © < int(o,,,,) Which appeared above, is now played by a “Weyl-
convex” compact subset © < o,,,¢ Which intersects the boundary of o,,,; only in the open faces containing
the open simplex int(7,,,s). For instance, if 7,4 is a vertex, then © is required to be disjoint from the
top-dimensional face of o,,,4 not containing 7,,,4. With this modification, the definition of uniformly regular
quasigeodesics generalizes to the one of uniformly 7,,,4-regular quasigeodesics.

Let 7 be a simplex of the Tits boundary of X which has type 7,,,4. We next describe the replacement for the
euclidean Weyl chambers V(x,o) in X with 7 playing the role of o. They are replaced by the Weyl cones
V(x,st(7)): These convex subsets of X are unions of geodesic rays x£ in X connecting x to ideal boundary
points £ € 0, X, which belong to a certain subcomplex st(7) < 0,,X. This subcomplex is the union of chambers
o containing 7. The cones V(x,st(7)) are no longer contained in maximal flats in X (unless o0 = Omod);
instead, each V/(x,st(7)) is a subset of the parallel set in X of a geodesic / through x, asymptotic to a generic
point in 7. Such parallel sets are said to have the type Tjoq. The diamonds <, ,(x,y) are again defined as
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intersections
V(x,st(7)) N V(y,st(F))

for opposite simplices 7,7 in the Tits boundary of X.

Now, we are ready to state our results. The main result is a Morse Lemma for 7,,,4-regular quasigeodesics in
model spaces (see Theorem 5.16 and Corollary 5.23):

Theorem 1.3 (Morse Lemma) (i) Every finite uniformly T,,,4-regular quasigeodesic path g in X with
endpoints x and y is contained in a neighborhood of the diamond $ -, ,(x,y).

(ii) Every uniformly T,,,4-regular quasigeodesic ray q in X with initial point x is contained in a neighborhood
of a unique Weyl cone V = V(x, st(7)) of type Timod .

(iii) Every uniformly 7,,,4 -regular complete quasigeodesic ¢ in X is contained in a neighborhood of a unique
parallel set P of type Tioq and, moreover, is contained in a neighborhood of the union V(z, st(7)) U V(z, st(7)) <
P of opposite Weyl cones of type T,,q With common tip z € P.

Furthermore, the distance from g to <>, ,(x,y), V respectively V(z,st(7)) u V(z,st(7)) is bounded above in
terms of the quasiisometry constants of g, the scale D and the subset ©. In case (iii), the common tip P can be
chosen uniformly close to any point on q.

In order to help the reader to appreciate the relation of this theorem to Theorem 1.1, we note that the regularity
assumptions in Theorem 1.3 are weaker (directions of segments xy are allowed to belong to larger subsets of
Omod ), While the conclusions are weaker as well, since we can only conclude that quasigeodesics lie close to
certain sets which are larger than the ones in Theorem 1.1.

Applying these results about regular quasigeodesics to quasi-isometric embeddings we obtain (see Theo-
rems 6.13 and 6.14):

Theorem 1.4 (Hyperbolicity of domain and boundary map) Suppose that q : Z — X is a uniformly Typq-
regular quasiisometric embedding from a quasigeodesic metric space into a model space. Then:

(i) Z is Gromov hyperbolic.

(ii) If Z is locally compact, the map q extends to a map
ZI : Z N XTmod

from the (visual) Gromov compactification Z = Z U 0, Z, which is continuous at 0Z and sends distinct ideal

boundary points to antipodal elements of the flag space 0, X = Flangd(aooX ).

Tmod

An application of this theorem is a new and very simple coarse-geometric characterization of Morse subgroups
of the isometry groups G = Isom(X) of model spaces X. This class of discrete subgroups of semisimple Lie
groups was defined in [KLP2] (in the context of symmetric spaces), where various equivalent characterizations
of word hyperbolic Morse subgroups were established (including the characterization as Anosov subgroups).
We obtain (see Corollary 5.32 and Theorem 6.15):

Theorem 1.5 The following are equivalent for a finitely generated group I' and a homomorphism I' — G:
(i) The group I' is hyperbolic and the homomorphism I' — G is Tyeq-Morse.

(ii) The orbit maps I' — X are uniformly 7,4 -regular quasiisometric embeddings.
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The following reformulation is a higher rank analogue of one of the standard characterizations of convex-
cocompact subgroups of rank 1 Lie groups as finitely-generated undistorted subgroups. The regularity condition
in this corollary is necessary already for subgroups of SL(2,R) x SL(2,R), see Example 6.34 in [KLP2].

Corollary 1.6 A finitely generated subgroup I' < G is word hyperbolic and T7,,,;-Morse if and only if I" is
undistorted in G and uniformly T,,,4-regular.

Note that uniform o,,,4-regularity of a discrete subgroup I' < G means that the geometric limit set A(T") < 0,,X
(the accumulation set of a I'-orbit in the ideal boundary of X) contains no singular points.

Strategy of the proof. The main idea behind the proof of Theorems 1.1 and 1.3 is inspired by trying to follow the
proof of the Morse Lemma for §-hyperbolic metric spaces (which goes back to Morse himself): If a uniformly
Tmod -Tegular quasigeodesic path g connecting points x, y € X strays too far from the diamond { = $,, ,(x,y),
we use the nearest-point projection to <> to show that it is a uniformly inefficient connection of its endpoints.
This leads to a conflict, because sufficiently long quasigeodesics have long, arbitrarily efficient (i.e. almost
distance minimizing) subpaths. In the setting of a §-hyperbolic space X, one is helped by the fact that the
nearest-point projection 7 to a geodesic interval <) < X contracts distances in metric balls B(z,R) < X by
an exponentially large factor, in terms of the minimal distance between B(z, R) and <>. This fails in the setting
of higher-rank symmetric spaces and euclidean buildings X. Instead, we define a certain length metric (of
Carnot-Finsler type) d,, on diamonds > < X by restricting to a certain class of piecewise-geodesic paths in
<, which we call non-longitudinal. The definition of such paths is, again, quite technical, but (if Tj,00 = Tmoa)
the reader can think of piecewise-geodesic paths where each subsegment is a singular geodesic.

We then prove (Theorem 4.7):

Theorem 1.7 For each euclidean building X (equipped with its standard CAT(0) metric d), the projection
(X.d) = (0.do)

is locally 1-Lipschitz outside <.

In order to appreciate the strength of this statement, we note that the pseudometric dy, is strictly larger than the
metric d when restricted to longitudinal segments in <». Therefore the above theorem establishes constraints on
the behavior of rectifiable regular paths in X and, in particular, of regular bilipschitz paths. As an application,
we prove (see section 5.1):

Theorem 1.8 Suppose that ¢ is an “almost length-minimizing” uniformly T,q-regular path in a euclidean
building X, connecting points x and y. Then c has to meet the diamond <>, ,(x,y) in one more point, besides
x and y.

The condition that ¢ is “almost length-minimizing” is, actually, not very restrictive, since each rectifiable path
in X contains such subpaths. As an application of this result we then show (see Theorem 5.6):

Theorem 1.9 Every rectifiable uniformly T,,,4-regular path ¢ in X is entirely contained in the diamond
Oroa (X, ¥) determined by the endpoints x,y of c.

This theorem is reminiscent of the fact that each topological path in a real tree T is contained in a geodesic
segment in 7. This fact is used for proving the Morse Lemma in the case of J-hyperbolic geodesic spaces
via ultralimits (cf. [DK]). Our argument then proceeds roughly along the same lines as that proof. Namely,
assuming that Theorem 1.3 fails, we construct a sequence of uniformly 7,,,,-regular (L, A)-quasigeodesic paths
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gn in a model space X; after passing to suitable ultralimits, we obtain a uniformly 7,,,4-regular bilipschitz path
q., in an asymptotic cone X,, of X, which violates Theorem 1.9. (The ultralimit X,, is a euclidean building.)
Along the way, we have to overcome yet another difficulty. One of the steps in proving the Morse Lemma in
the hyperbolic setting via asymptotic cones, is to show that each asymptotic cone is a uniquely geodesic space
(i.e., every geodesic in the cone is the ultralimit of a sequence of geodesics). Similarly, in our proof, we have
to show that the ultralimit of a sequence of parallel sets in X is a parallel set in the cone X, (a priori, it is just a
proper subset of such a parallel set), and analogous statements for Weyl cones and diamonds.

Organization of the paper. In section 2 we review basic notions in the theory of model spaces (nonpositively
curved symmetric spaces and buildings), as well as ultralimits and asymptotic cones. Section 3 is long and
technical, it contains the bulk of technical results of the paper. In this section we define and analyze properties
of Weyl cones and diamonds. We then define two key notions in the paper: Regularity and longitudinality
of broken segments and paths in model spaces, as well as their coarse analogues. We establish a preliminary
analogue of Theorem 1.3 for a certain class of broken paths in euclidean buildings, called straight paths.
Furthermore, we prove results about ultralimits of parallel sets, Weyl cones and diamonds. In section 4 we
define the modified metric d¢, on diamonds and prove a contraction theorem for the nearest-point projections
to diamonds in euclidean buildings (Theorem 4.7). In section 5 we prove the main result of our paper, Theorem
1.3 and its corollaries, including continuous behavior of ends of Morse quasigeodesic rays. Lastly, in section 6
we establish structural results for regular and (coarsely) regular subsets of model spaces, and prove Theorems
1.4 and 1.5.

Remark 1 This paper was written in November of 2014. We refer the reader to [KL2, KLL3, KLLP3, KL.P4] for
surveys of our work, further developments and for the Finsler geometry viewpoint on the results of the present

paper.

Remark 2 The results of this paper in conjunction with [KLP2] imply most of the main results of the later
paper [GGKW].

Acknowledgements. The first author was supported by the NSF grants DMS-12-05312 and DMS-16-04241 as
well as the KIAS scholar program and Simons Foundation grant 391602. The last author was supported by the
grant Mineco MTM2012-34834.

2 Preliminaries

This section contains some background material on metric geometry, geometry of buildings and ultralimits. We
refer the reader to [BBI] and [Ba] for further reading on metric and CAT(0) geometry, and to [KL1, ch. 3], [KIL,
ch. 2.4] or [DK, ch. 7] for a discussion of the notion of ultralimits, asymptotic cones and their basic properties.

2.1 Maetric spaces

Let (Z,d) be a metric space. We let denote B(z,r) and B(z,r) the open and closed r-balls respectively,
centered at a point z € Z. For a subset A — Z, we denote by rad(A, z) its radius with respect to the center
z, i.e. the minimal r € [0, +00] such that A — B(z,r). For a subset Z'  Z, we let Np(Z') denote the open
D-neighborhood of Z" in Z. We will use the notation L(c) for the length of a (rectifiable) path ¢ in Z.
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Definition 2.1 (Almost distance minimizing path) We say that a path ¢ : [a,b] — Z is e-distance minimizing
if
L(c) < (1 +€) - d(c(a), c(b))

Lemma 2.2 Every rectifiable path contains, for arbitrarily small ¢ > 0, subpaths which are e-distance
minimizing.

Proof Suppose that the path ¢ : [a,b] — Z is rectifiable. We choose a subdivisiona =1 <t <--- <ty =b
which almost yields the length of the path,

>~

k
(1+e)- Y d(ctimr),e(n) = L(e) = Y Llelp, )
i=1

1

Then one of the subpaths c][,F ;] 18 €-distance minimizing. |

We will use the term pseudo-metric for a distance function where different points may have infinite distance
(however not distance zero).

2.2 Spaces with curvature bounded above

If (Z,d) is a CAT(1) space, then a subset C < Z is called convex if for any two points (j,(; € C with
d(¢1, () < m the unique geodesic in Z connecting (j, (; is contained in C.

Suppose now that X is a CAT(0) space.

We will use the notation xy for the unique geodesic segment in X connecting x to y. We will usually regard it as
an oriented segment, equipped with its natural orientation from the initial point x to the endpoint y. Similarly,
given an ideal boundary point £ € 05X and a point x € X, we let x£ denote the unique geodesic ray from x
asymptotic to &, and £x the same ray with the reversed orientation. We will denote by xgx; .. . x; the broken
geodesic path which is the concatenation of the segments x;_1x; for i = 1, ... k. Similarly, we will denote by
X0 Xk€y, E-xo...x, and €_xg ...x&4 semi- and biinfinite paths obtained by attaching one or two rays at
the ends of xpx; ... x¢.

We will use the notation 0,,X for the ideal or visual boundary of X, equipped with the visual topology. Tt
carries in addition another natural topology, called the 7its topology, which is finer than the visual topologys; it
is induced by a metric /7, on 05X, called the Tits metric. For a subset ¥ < X we let 0,Y < 05X denote
the accumulation set of Y in 05X . For an oriented geodesic line / in X, we let /(+00) € 0,,X denote its ideal
endpoints,

I(too) = lim I(z),

t—+00
where / : R — X is a (unit speed) parameterization of [/ consistent with the orientation. Then 0yl =
{I(—00),1(o0)}. Similarly, we denote the ideal endpoint of aray r < X by r(+0).

For an ideal point { € dxX, we denote by b¢ a Busemann function at £, and by Hbg , the horoball centered at
¢ and containing x in its boundary horosphere, i.e. Hb¢ = {be < b¢(x)}.

We will say that two segments xy and x'y’ are oriented r-close if their initial and endpoints are r-close, i.e.
d(x,x") < r and d(y,y’) < r. In view of the convexity of the distance function of CAT(0)-spaces, any two
segments which are oriented r-close, are also within Hausdorff distance < r from each other.

We will denote by A(x,y,z) the geodesic triangle with vertices x,y,z € X, i.e. the one-dimensional object
xyuyzuzx. If n,¢ € 0,X, we denote by A(x,y, () the ideal triangle with vertices x, y, , that is, the union
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xC U xy U y(¢, and by A(x,n,() the ideal hinge xn L x{ with vertices x,7,(. We say that a triangle (ideal
triangle, hinge) is rigid or can be filled in by a flat triangle (half-strip, sector) or spans a flat triangle (half-strip,
sector), if it is contained in a convex subset which is isometric to a convex subset of euclidean plane.

We will denote by >, X the space of directions at a point x € X; this is a replacement of the unit tangent
sphere in a Riemannian manifold (see [BBI] and [KIL] for the precise definition). The space ¥,X is a CAT(1)
space equipped with the angular metric denoted Z(£,n). Each geodesic segment xy determines a direction
Xy € X,X. We will use the notation Z,(y, z) for the angle at x between the segments xy and xz in X, i.e. the
distance in X, X between the directions Xy and xZ. This notation extends to the case of semi-infinite geodesics
in X: For a point £ € 05X, we denote by Z,(y, ) the angle between xy and the geodesic ray x£. Furthermore,
for a subset A containing x, we denote by Z,(y,A) the angular distance between xy and ¥,A in X, X.

The initial velocity p € ¥, X of a geodesic p : Ry — X in X is the direction of p at the point x = p(0).

For a closed convex subset C = X we have the nearest point projection
TC . X —C.
This projection is a 1-Lipschitz map.

Consider the special situation when X is a Riemannian CAT(0) space (a Hadamard manifold) and C < X is a
totally-geodesic subspace. Then the distance function

d(x,C) = mind(x,y)
yeC

is 1-Lipschitz and smooth outside of C; the gradient lines of this function are the geodesics xx, x = m¢(x).
Suppose that r : [0, +00) — X — C is a unit speed geodesic ray with ideal endpoint r(+00) = £ € 0,X. Then
the function f(¢) = d(r(z), C) is smooth with derivative

2-1) f/(t) = _COS(Lr(I) (?(t),f)),

where 7 = ¢ o r denotes the projection of the ray.

2.3 Buildings and symmetric spaces

In the paper we will be using nonpositively curved symmetric spaces, spherical and euclidean buildings. We
regard Riemannian symmetric spaces of noncompact type, respectively, euclidean buildings as the smooth
“archimedean", respectively, the singular “non-archimedean" members of the family of CAT(0) “model spaces"
with rigid geometry. Both symmetric spaces and euclidean buildings will usually be denoted by X, while
spherical buildings will be denoted by B. We will only consider symmetric spaces and euclidean buildings X
of noncompact type, which means that X is CAT(0) and has no flat factor, i.e. is not isometric to the direct
product of metric spaces X’ x R¥ with k > 1.

Definition 2.3 By a model space, we mean a symmetric space of noncompact type or a euclidean building of
noncompact type.

We rule out flat factors for our model spaces, in part, because, as far as the results discussed in this paper
are concerned, the case of spaces with a flat factor immediately reduces to the case without. However, many
arguments in the paper use parallel sets of geodesics or flats in model spaces: These parallel sets do have flat
factors and, hence, are CAT(0) symmetric spaces and euclidean buildings which do not have noncompact type.

The two types of model spaces are connected via asymptotic cones; this connection will be explained in section
2.7.
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For a treatment of buildings from the metric perspective of spaces with curvature bounded above, we refer to
[KIL, ch. 3-4]. Some notions needed in this paper or closely related to it, have been discussed in the case of
symmetric spaces in [KLP2, ch. 2+5.1], and the discussion in the building case is very similar, and often simpler.
It is important to stress here that the euclidean buildings we are considering are allowed to be nondiscrete and in
particular not locally compact; such buildings appear as asymptotic cones of symmetric spaces of noncompact

type.

2.4 Spherical buildings

Instead of giving the precise definitions of spherical buildings (and euclidean buildings in the following section),
we will describe below some of their important features. Part of this section is a review of the material in [KLP2,
2.4.1-2], to which we refer the reader for more details.

From the metric viewpoint, spherical buildings are CAT(1) spaces; we will denote their metrics by Z.

A spherical building B has an associated spherical Coxeter complex (amoq, W), where the spherical model
apartment a,,q is a euclidean unit sphere and W is a finite reflection group acting on a,,,4, called the Coxeter
or Weyl group of B. The quotient 0,04 = dmoq/W is called the model chamber. We identify it with a chamber
in the model apartment, 0,,,q C admoq. We will say that the building B has type 4.

As long as W has no fixed point on a,,s, the model simplex o, is a spherical simplex in a,,; and has
diameter < 7. We will use the notation 7,,,4 for faces of 7,4 and W,

mod

for the stabilizer of 7;,,4 in W. The
longest element of the group W is the unique element w, € W which sends ,,,4 to —o,0q (the latter is also a
chamber in a,,,4). The composition ¢ = —w,, preserves the model chamber ¢,,,;. (For some Weyl groups W,
w, = id, then « = id.)

Each spherical building has a natural structure of a polysimplicial cell complex. Facets (top-dimensional faces)
of this complex are called chambers of B. Each building B comes equipped with a system (“atlas") of isometric
embeddings a,,,q — B, whose images are called (spherical) apartments. Any two points of B belong to an
apartment. It is important to stress that the spherical buildings in this paper are not assumed to be thick, i.e. a
codimension one face may be adjacent to only two chambers.

A splitting of the model chamber as a spherical join 0,,,0q = arln od © o2 ., equivalently, a splitting (@oq, W) =

mod

(al ., Wi)o (a2, ,, Wa) of the spherical Coxeter complex, induces splittings of all buildings B of type ouoq as

spherical joins B = B o B, of spherical buildings B; of types Jf;wd.

Two faces 74,7 C ameq are called antipodal or opposite if —7_ = 7, . Similarly, two points &,& € apoq
are antipodal if £ = —¢. These definitions extend to the entire building B since any two faces (and any two
points) are contained in an apartment in B.

In a general simplicial complex 3, we define the interior int(7) of a simplex 7 as the corresponding open face.
We define the star st(7) < X of 7 as the union of all (closed) faces containing 7. We note that the star is
also known as the residue; this notion of the star should not be confused with the smallest subcomplex of »
consisting of faces which have nonempty intersection with 7. We define the open star of 7,

ost(1) < st(7),
as the union of all open faces whose closure contains 7. Furthermore, we define the boundary of the star,
ost(r) := st(1) — ost(7);

it is the union of all (closed) faces of the star, which do not contain 7. If the simplex 7 is maximal, i.e. not
contained in a simplex of larger dimension, then st(7) = 7, ost(7) = int(7) is the open face, and J'st(1) = 07
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is the topological frontier of 7. We will apply these notions to spherical buildings and their model chambers,
which both carry natural structures as simplicial complexes.

There exists a canonical projection
0:B— o mod

called the type map. The type map restricts to an isometry on each chamber of B and, hence, is 1-Lipschitz. A
type is a point in 0,,,4, and a face type is a face of 0,,,4. The type of a point £ € B is §(), and the type of a
face 7 < B is 6(7). If the simplices 74+ in B are opposite to each other, then §(7_) = 16(7;). We call a type
€ € Opmoa a root type if the ball B(E,5) © doa is a subcomplex, equivalently, if the great sphere S(¢, 5) < @moa
is a wall.

Throughout the paper, we will denote by 7,00 < omoq a face type.

We denote by Flangod(B) the flag space of type 7,04 simplices in B. It is a discrete space. If B carries an
additional structure as a fopological building, as do Tits boundaries of model spaces, compare below, then the
flag spaces inherit a topology.

A point £ € B is called 7,q-regular if 6(&) € ost(Tmoq) and Toq-singular if 6(§) € 0 st(Tmoq). We call the
Omoq-regular points simply regular; these are the points with type in int(o,,04). The 7,04-regular points in B
form an open subset, whose connected components are the open stars ost(7) of the type 7,,,4 faces 7. For a
Tt -regular point £ € B we define 7 () as the type 7. , face such that £ € ost(74 (£)); we set 7(€) = 74 ().

A subset A C 0yppq is called Typq-convex (or Weyl-convex) if its symmetrization W, A < st(0,04) is a convex
subset of @,u0q, cf. [KLP2, Def. 2.15]. By ©,0’,©” we will always denote compact T,,,4-convex subsets of
08t(Tinod) < Omoa- Note that 7,4 is determined by such a subset O, namely, as the smallest face whose interior
intersects ©. When we use several such subsets ©,0’, 0", we will always assume that © < int(0’) and
© < int(0").

Since diam(o,0q) < %, for every type §_ € Tmoa there exists a radius p = p(O, é ) < % such that:

(2-2) O c B, p)

The following constant will frequently occur:

(2-3) €0(0) 1= £(0,05t(Timoa)) = min{ZL(n,¢{) : n € O, € Ist(Tmoa)} > 0

Sometimes we will also use:

2-4) €0(0,0") := Z(0,st(Tioa) — ©’) >0

A point £ € B is called ©-regular, if () € ©. We define the O-star of a type 7,04 simplex 7 < B as the
set of ©-regular points in its star, stg(7) = st(7) n #~1(0). We will often use the fact that the ©-stars are
uniformly separated from each other:

Lemma 2.4 For any two distinct type T,,,q simplices 11,7, < B, the (nearest point) distance between stg(7})
and st(m) is = €y(O).

Proof Since the open stars are disjoint, any path connecting a point in stg(71) to a point in st(72) must exit
st(71) at its boundary. It therefore has a subpath which projects via the type map 6 to a path in 0,4 connecting
a point in © to a point in 0 0st(7,,4). The assertion follows because 6 is 1-Lipschitz. |

We will always use the conventions

+ . - .
Tood -= Tmods  Tpod “= Tmod
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and
O,:=0, 0O0_:=.0.

A singular sphere in a spherical building B is an isometrically embedded (eulicdean unit) sphere s — B which
is, at the same time, a subcomplex of B. Each singular sphere equals the intersection of some (possibly one)
aparatments in B.

For an ordered pair of opposite simplices 7+ < B, we denote by s(7—, 7, ) < B the singular sphere spanned by
T4, i.e. containing them as top-dimensional simplices. Equivalently, s(7_, 7) is the smallest (with respect to
inclusion) isometrically embedded sphere in B containing 7, U 7—. Each singular sphere s — B has the form
s = s(7—, 74 ) for a pair of antipodal simplices 7. .

Given a singular sphere s — B, we let B(s) — B denote the subbuilding which is the union of all apartments
containing s. There is a natural decomposition

(2-5) B(s) ~soX¥;B

as the spherical join of the sphere s and its link 3B in B. In the case when s = s(7—, 7 ), we will use the
notation B(7_, 74 ) for B(s). When we want to specify the ambient building B, we put it as a subscript and
write Bg(s).

The following properties will be often used:

(i) Each apartment a < B(7—, 7 ) contains s = s(7_, 7).

(i) st(7+) < B(t—, 74).

(iii) ost(74) is open in B; in particular, ost(7y) is open in B(7—, 7).

In view of the spherical join decomposition, it is clear that every point in s has inside B(s) a unique antipode,
and this antipode lies in s.

Lemma 2.5 All antipodes £ € B(s) of a point £, € st(4) are contained in st(7—). Moreover, if £, €
ost(7y), then &_ € ost(7_).

Proof Let &, € st(7y), and let £ € B(s) be an antipode of £, . Since B(7_, 74 ) is a subbuilding, the pair
of antipodes &4 is contained in an apartment a < B(s). As for all apartments in B(s), we have that 71 < a.
There exists a chamber o, < a containing £, with face 7;.. The opposite chamber o_ in a contains £_ and
has 7_ as a face. Thus £_ € st(7—). The assertion for open stars follows. d

The last observation extends to almost antipodes in a quantitative manner.
Lemma2.6 Leté, € stg(7y) andn_ € B(s) be points such that Z({4,m—) > m—e€p(©). Thenn_ € ost(7_).

Proof We only need to treat the case when £, and 7— are not opposite. The geodesic arc n_& extends to an
arc n_&,n4 of length 7. It connects 7)_ to an antipode 7. Since Z(&4,n+) < €0(O), the arc {7 is too
short to leave ost(7;) and therefore 7, € ost(7y). The previous lemma then implies that 7_ € ost(7_). O

Corollary 2.7 Let &, € sto(74) and let (_ € B be an antipode of & outside B(s). Then £({_,B(s)) =
€(0).

Proof Suppose that Z((_,B(s)) < €(©) and let (_ € B(s) be the nearest point projection of (_ to B(s).
(Note that, as a subbuilding, B(s) is a closed convex subset of B, and the nearest point projection to B(s) is
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well-defined on the open 7 -neighborhood.) Since ost(7_) < B(s) is open in B, it cannot contain the projection
of a point outside B(s), and hence {_ ¢ ost(7_). On the other hand, we have /(£,,(_) > m — €(©), which
leads to a contradition with the previous lemma. O

It has been proven in [KLP2, 2.5.2], [KLP4, Lemma 2.6] that stars and ©-stars of simplices are convex. This
follows from the fact that they can be represented as intersections of balls with radius 7. More precisely, one
has:

Proposition 2.8 (Convexity of stars, cf. [KLP2, Lemma 2.12], [KLP4, Lemma 2.6]) Let T < B be a simplex.

(i) For every simplex ¥ — B opposite to T, the star st(7) is the intersection of B(#,7) and the simplicial
5 -balls whose interior contains int(7) and whose center lies in B(7,7).

(ii) sto(T) equals the intersection of all 7 -balls containing it.

2.5 CAT(0) model spaces

Similarly to spherical buildings, each model space X has an associated euclidean Coxeter complex (Fpoq, Wasr)
where the model flat (respectively, apartment) F,,q is a euclidean space and W, is a, possibly nondiscrete,
group of isometries of F,,,; generated by reflections. The linear part of this group is a finite reflection group,
called the Weyl group W of X; we pick a base point 0 € F,,,4 and think of W as acting on F,,s fixing 0. The
dimension of F,,y is called the rank of X. The quotient F,,qs/W will be denoted A or A,y Or Vygs it is
called the euclidean model Weyl chamber of X. We identify it with a euclidean Weyl chamber with tip O in the
model flat, A € Fpp4.

Each model space X comes equipped with a system (“atlas") of isometric embeddings
kL Froa — X.

The images of the maps ! are the maximal flats in X. (In the case when X is a euclidean building, they are
also called apartments.) The inverse maps k are called charts for the maximal flats (respectively, apartments).
The charts are compatible in the sense that for any two charts x1, x; the transition function k1 © K, ! is the
restriction of an element in W .

Any two points in X are contained in a maximal flat.

In addition to its usual distance function d, each model space comes equipped with a A -valued distance function
or A-distance, denoted da . The function da is defined on Fj,,; by

da(x,y) = proj(y —x) € A

where proj : Fyoq/W = A is the quotient map. The function da extends to the entire model space X due to
the compatibility of apartment charts and the fact that any two points are contained in a maximal flat.

The A-distance satisfies the following symmetry property:
dA(.yvx) = LdA(X,y)

If X is a symmetric space, then da(x,y) completely determines the Isom,(X)-congruence class of the pair
(x,y),1.e. da(x,y) = da(x',y’) if and only if there exists g € Isom,(X) such that g(x) = x’ and g(y) = y'.

The projection

(2-6) XxX—>A, (x,y)—da(x,y)
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is 1-Lipschitz in each of the two variables, which implies the triangle inequality for A-lengths:

(2-7) lda(x,y) —da(x,y)| < [da(,y)| = d(y,y)
and
lda(x,y) —da (¥, )| < llda(x,x")| = d(x,x'),

where the differences of A-lengths are taken in Fy,, 4, viewed as a vector space with origin 0, see [KLM].

Spherical buildings appear naturally when one looks at the geometry at infinity of a model space and, in the
euclidean building case, at the infinitesimal geometry:

(i) The visual boundary 0, X of a model space X, equipped with the Tits metric /73, has a natural structure of
a spherical building; we will refer to this spherical building as the Tits boundary Ori;sX of X. The Weyl group
of X is canonically isomorphic to the Weyl group of 07X ; the dimension of dr;,X equals rank(X) — 1. The
euclidean Weyl chamber A of X is canonically isometric to the complete euclidean cone over 4. If X is a
symmetric space then the building J7;;X is always thick, while if X is a euclidean building then Oz X is thick
provided that X is thick. We will say that the model space X is of type o,,,4. The chamber o,,,; determines
the Coxeter complex (Foq, Wap) of X if Wyg acts transitively on F,,q (Which is the case of symmetric spaces
and their asymptotic cones); in general, 0,4 determines Fj,,; and the Weyl group W.

(ii) In the same vein, for each euclidean building X and each point x € X, the space of directions 3,X, equipped
with the angle metric Z,, has a natural structure of a spherical building of the same type 0,4, €equivalently,
with the same associated Coxeter complex (amoq, W) as Ori;sX . Note that in general the spherical building ¥, X
is not thick. (For instance, if X is a discrete euclidean building and x is not a vertex.)

We denote by 0 : 073X — 0oq and 0, : 3. X — 0y0q the natural type maps, and by
log, : OrirsX — 2, X

the natural 1-Lipschitz logarithm map, sending an ideal point £ to the direction x_f . This map sends faces
isometrically onto faces and satisfies
6 =0,0log,.

(i) If X is a symmetric space, then the spaces of directions XX are unit spheres and the logarithm maps log,
are bijective and homeomorphisms with respect to the visual topology on 0.X. One can pull back the Tits
metric and the spherical building structure to 3, X and then also speak of simplices, chambers, apartments etc.
in 2. X.

Along with these spherical buildings associated to X, we have the flag spaces at infinity or,,,,X = Flag, (0 X)
and the spaces Flangd(ExX) of infinitesimal flags, cf. section 2.4. The visual topology on 05X induces
visual topologies on the flag spaces at infinity. (This is emphasized by the notation Flag, (d,X) instead of
Flangd ((}TitsX ) )

For a type & € int(7y0q), the natural identification
Flag, (0:X) = 607" ({) < 0xX,

which assigns to a type 7,,,¢ simplex the point of type £ in its interior, is a topological embedding. The
infinitesimal flag spaces are discrete in the euclidean building case, while in the symmetric space case, they
inherit natural (manifold) topologies from the unit tangent spheres. In the symmetric space case, these flag
spaces at infinity are flag manifolds; Flag (JoX ) is naturally homeomorphic to the (generalized partial) flag
manifold G/P, where G = Isom,(X) and P is a parabolic subgroup stabilizing a simplex of type Tjq in 0o X .
The infinitesimal flag manifolds are homeomorphic to the flag manifolds at infinity of the corresponding types.
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A spherical join splitting 0,00 = a}n od © 031 »q ©Of the model chamber induces splittings of all model spaces X of
type Omoq as products
X = X1 X X2

of model spaces X; of types afn oq» COmpare section 2.4,

If xy X is a nondegenerate segment, then we call (Xy) its type. Similarly, an oriented geodesic [ < X is
said to have type 6(I(+0)).

A nondegenerate segment xy, respectively, a pair (x,y) of distinct points is called 7,,,4-regular, respectively
©-regular, if its direction xy is. In this case, we define its T,,,q-direction T(xy) at x as the type 7,04 face
7(X) < %,X; then Xy € ost(7(xy)). Analogously, we denote by 7 (zw) the 7. ,-direction of a 7, ,-regular
segment zw.

We denote by
Isomg(X) < Isom(X)

the subgroup of type preserving isometries, i.e. isometries which preserve the types of segments and ideal
boundary points. Note that Isomg(X) has finite index in Isom(X), because X has no flat factor.

Since there is a unique geodesic segment connecting any two points in X, we can identify the space of oriented
segments in X with the space X x X, equipped with the product topology. We observe that 7,,,,-regularity is
an open condition for oriented segments, because the type of a segment varies continuously with it.

The phenomenon of angle rigidity is specific to euclidean buildings, see [KIL, §4.1]. In the case of symmetric
spaces, one only encounters it at infinity, in the Tits boundary. It is useful to keep in mind the following basic
consequences of angle rigidity.

Two nondegenerate segments xy;, xy» < X with the same initial point initially span a flat triangle, i.e. there exist
points x # y; € xy; such that the geodesic triangle A(x,y},y5) can be filled in by a flat triangle. In particular,
if the initial directions of the segments agree, Z.(y1,y2) = 0, then the segments initially agree, i.e. xy; N xy;
is a nondegenerate segment.

More is true: For any ray xn; and any nondegenerate segment xy, with the same initial point there exists a
point x # y} € xy, such that the ideal triangle A(x, 7;,}) can be filled in by a flat half-strip. Furthermore, xy),
can be extended to a ray xn5 such that the ideal hinge A(x,7;,75) can be filled in by a flat sector.

We return to the discussion of model spaces in general.

The logarithm maps send stars onto stars:

Lemma 2.9 For each point x € X and simplex T € 0, X, it holds:

log, st(7) = st(log, 7), log, ost(r) = ost(log, 7)

Proof Inthe symmetric space case, the assertion is tautological, since the logarithm maps are homeomorphisms.

In the euclidean building case, the assertion is a consequence of angle rigidity. Only the surjectivity requires an
argument.

Let v = Xy; € st(log,7), and let 1, € int(7). According to our discussion of angle rigidity, there exists
1 € O0xX such that x73 = v and the ideal hinge A(x,7;,7,) can be filled in by a flat sector. This means
that Zy(n1,1m2) = Zrits(m,m2) and the restriction of log, to the arc 77 is an isometric embedding. Since
logarithm maps restrict to isometries on simplices, and since x7; and v = X7)5 are contained in one chamber, it
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follows that also 717, must be contained in one chamber, i.e. 7, € st(7). This shows the assertion for closed
stars.

The assertion for open stars follows, because logarithm maps are type preserving. |

Each apartment a — 07X is the ideal boundary of a unique maximal flat F < X. More generally, each
(isometrically embedded) unit sphere s < Or;X is the ideal boundary of a flat f < X. If s is not an apartment,
then the flat f is not maximal and not unique. If the sphere s is singular, then also the flat f is singular, i.e. is
the intersection of some maximal flats in X.

Parallel sets in model spaces and spherical joins at infinity. One defines the parallel set P(s) — X of a unit
singular sphere s — O X as the union of the (parallel) flats with ideal boundary s. Parallel sets are totally
geodesic subspaces, respectively, euclidean subbuildings, depending on whichever X is, and as such they carry
themselves natural structures as symmetric spaces, respectively, euclidean buildings with the same associated
Coxeter complex and of the same type 0,04 as X.

As aconsequence, geodesic segments in parallel sets are extendible to complete geodesics, and tangent directions
to parallel sets are represented by segments in the parallel set.

However, parallel sets are not model spaces in our sense, because they have flat factors. The parallel set P(s)
splits isometrically as

(2-8) P(s) = f x CS(s)

where the slices f x pt are the flats with ideal boundary sphere s, and the cross section CS(s) is a symmetric
space or euclidean building with corank dim(f) = dim(s) + 1,

rank(X) = dim(f) + rank(CS(s)).
The visual boundary of P(s) is (underlying) the subbuilding By, x (s) of d7;:X associated to the sphere s,
OtitsP(s) = Bog,x(s)-
Accordingly, there is the natural spherical join decomposition
OtisP(s) = 5 0 Ogirs CS(s),
where 07;,;CS(s) is canonically identified with the link X;(07;,X) of s in d7,X, compare (2-5).

Let 71 s be a pair of opposite simplices spanning s, i.e. s = s(7—, 7). The subset ost(7}) = P(s) is open
in 0 X with respect to the Tits topology, but in general not with respect to the visual topology. However:

Lemma 2.10 ost(7y) is open in 05 P(s) also with respect to the visual topology.

Proof Let &, € ost(74), and let {_ € ost(7_) be an antipode. Any ideal point 1, € 04 P(s) sufficiently close
to £ is almost opposite to £_ because of the lower semicontinuity of the Tits metric with respect to the visual
topology. Lemma 2.6 then implies that 74 € ost(74). |

As for the visual boundary, we have an analogous description and splitting of the spaces of directions of parallel
sets as subbuildings of the spaces of directions of X. (In the symmetric space case, this refers to the spherical
building structures on the spaces of directions pulled back from the visual boundary by the logarithm maps, and
is tautological.)

Lemma 2.11 For x € P, it holds that
ZXP = BE)CX(]ng S).
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Proof We only need to consider the case when X is a euclidean building.

Every direction in X, P is tangent to a maximal flat F — P through x. Since the apartment dnF  OxpP
contains the sphere s, the apartment ¥, F < Y, P contains the sphere log, s. Therefore

ve X F < By x(log, s)

and, hence
XP < By, x(log, s).

Vice versa, let 7 < s be a pair of opposite simplices spanning s, i.e. s = s(7—, 7). Since
aTitS(P(s)) = BaTimX(S) = St(Ti)>

it follows with Lemma 2.9 that
st(log, 7+) = log, st(1+) < X,P.

Since X,P is a subbuilding of 3,X, it must therefore contain all apartments containing log, s. This shows the
reverse inclusion. O

Note that for spheres s s’ < 0 X, we have that P(s) o P(s"). If s is not singular and s is the unique
smallest singular sphere containing s, then there is equality.

For a flat f < X, we define its parallel set as P(f) := P(0xf); it is the union of all flats parallel to f. For
flats f < f”, it holds that P(f) > P(f’). Again, if f is not singular and f” is the unique smallest singular flat
containing f, then equality holds.

When s = s(7_, 7 ), we will use the notation P = P(7_, 7 ) for P(s). In this notation we emphasize that we
regard P as a parallel set together with a choice of an ordered pair (7_, 7 ) of antipodal simplices in 0y, P. One
can think of this choice as a higher rank analogue of an orientation of a geodesic. We will say that the parallel
set P(7_, 74 ) has type 0(74).

Each parallel set of a flat (or a sphere at infinity) can also be represented as the parallel set of a geodesic line.
Namely, P(7_, ;) = P(l) for every line [ with [(£00) € int(7+).

Two ideal points £+ € 0, X are opposite, i.e. Lris({—,&+) = 7, if and only if there exists a geodesic line [ X
asymptotic to {4, i.e. [(+o0) = £+. (Note that this is not true for general CAT(0) spaces.) Two simplices
T+ C 0 X are opposite if and only if there exists a line / — X such that /(+00) € int(74).

Definition 2.12 (x-opposite) We say that two (opposite) simplices 7+ C 05X are x-opposite if the simplices
log, 7+ < X,X are opposite.

If X is a symmetric space, this condition means that the differential ds, of the point reflection at x (Cartan
involution) s, : X — X swaps 74 and 7_. In this case, for every simplex there exists a unique x-opposite
simplex.

Lemma 2.13 Two opposite simplices T+ < 0,X are x-opposite if and only if x € P(7_, 7).

Proof If the simplices log, 7+ < X,X are opposite, then they contain a pair of opposite directions log, £+ €
int(log, 7+ ). Hence, there exists a pair of antipodes £+ € int(74) such that £_x& is a geodesic line. It follows
that x € P(7—, 71 ). The converse is clear. O

A spherical join splitting 0,00 = Urln od © Urzn »q induces splittings of all model spaces X of type 0,04 as metric
products X = X; x X, of model spaces X; of types afmd.
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Cones. For a subset A © 0,,X and a point x € X we let V(x,A) < X be the complete cone over A with tip
x, i.e. the union of the geodesic rays x¢ for all £ € A. If A is closed with respect to the visual topology on
0xX, then the subset V(x,A) is closed in X. The cones V(x,A), in general, are not isometric to (euclidean)
metric cones. However, if A is contained in an apartment in 0, X, then V(x,A) is canonically isometric to the
complete euclidean cone over the set A, equipped with the Tits metric.

In the special case when 7 < 0, X is a simplex, the cone V(x,7) is called a euclidean Weyl sector in
X, and if 0 © 05X is a chamber, then V(x,o) is called a euclidean Weyl chamber. The open sector
int(V(x,7)) := V(x,int(7)) — {x} is the subset of points where V(x,7) is locally isometric to euclidean space
(of dimension dim 7 + 1). It is the interior of the sector V(x, 7) inside any minimal singular flat containing it.

For a simplex 7 < 05X, the cone V(x,st(7)) is called a Weyl cone in X. It is the union of the euclidean Weyl
chambers V(x, o) over all chambers o © 05X containing 7 as a face. If 7 is a simplex x-opposite to 7, then

V(x,st(1)) < P(7,7).

We call such a parallel set an ambient parallel set for the Weyl cone. We will refer to the subset V/(x, ost(7)) —
{x} < V(x,st()) as the open Weyl cone. It is the subset of points y € V(x,st(7)) whose spaces of directions
Y,V (x,st(7)) are spherical buildings.

Another class of cones which we will use are the ©-cones V(x, stg(7)).

2.6 Trees

We recall the geometric notion of tree:
Definition 2.14 (Metric tree) A metric tree is a 0-hyperbolic geodesic metric space.

Note that euclidean buildings of rank one are metric trees.

We will use the following fact:

Lemma 2.15 Every path metric space bilipschitz homeomorphic to a metric tree is itself a metric tree.

Proof Suppose that (T, d) is a metric tree, and that d’ is another path metric on 7 which is bilipschitz equivalent
to d. Any two points in T are connected by an embedded path, and this path is unique up to reparametrization.
Moreover, it is d-rectifiable and therefore d’-rectifiable. Any non-embedded path with the same endpoints is
at least as d’-long, because its image contains the image of the embedded connecting path. It follows that
d’'-geodesics coincide, up to reparametrization, with d-geodesics. Thus, any two points in 7 can be connected
by a unique d’-geodesic and d’-geodesic triangles are tripods. a

2.7 Ultralimits

We let w denote a nonprincipal ultrafilter on the set N of natural numbers. Foramap #: N — K from N to a
compact Hausdorff space, one defines the ultralimit

w-limh(n) =k € K,
as the unique point k € K such that for every neighborhood U of k in K, the subset #~!(U) belongs to w.

Consider a sequence of pointed metric spaces (X, x,) parameterized by N; we use the notation disty, for the
metric on X,,. The ultralimit
(Xwa *w) = w'rllim(xny *n)
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of the sequence of pointed metric spaces (X,,*,) is a pointed metric space defined as follows. Define a
pseudo-distance dist,, on the product space [ [, X, by the formula

disty, ((x4), (yn)) := w-lim (n — disty, (xXn, yn))

where we take the ultralimit of the function n — disty, (x,, y,) with values in the compact space [0, c0]. The
function dist,, takes values in [0, c0]. In order to convert this function to a metric, we first consider the subset

x5 < [ [

neN

consisting of sequences (x,),en such that
disty, ((xn), (¥n)) < 0.

Then dist,, restricted to X7, x X7, takes only finite values. Lastly, take the quotient of X7, where we identify
points with zero dist,,—distance. The result is the ultralimit X, ; we retain the notation dist,, for the projection of
the pseudo-distance from X?, to X,,. Points x,, € X,, are thus represented by sequences (x,) of points x, € X,,;
abusing notation, we will sometimes write x,, = (x,). The natural base point of X,, is *, = (%,).

The ultralimits that we will be using in the paper are of very special kind. They are defined by starting with a
fixed metric space (X,disty), taking sequences of base points *, € X and of scale factors \, > 0 converging
to 0, and then setting

X, =X, diStXn = \,disty.

Such ultralimits are called asymprtotic cones of (X,disty). By abusing the notation, we will abbreviate
(X, A\pdisty) to A X.
We will need a basic construction, which relates quasi-isometries and asymptotic cones. Suppose that
(Y, %), (Xu, *n) are sequences of pointed metric spaces and that
Jn Yy — Xy
are (L,A)-quasiisometric embeddings such that
w-lim A disty, (f,, (%)), *,) < +00.
Suppose that (A,) is a sequence of positive numbers satisfying w-lim \,, = 0 and consider the ultralimits
(Yo, *.) = w-lim(Y,, A\ disty,, %), (X, *w) = w-lim(X,, A, disty, , *,).

Then the induced map
Jo Y, — X, fw((yn)) = (fn(}’n))

is well-defined. The map f,, is called the ultralimit of the sequence of maps (f;)nen-

Since, with respect to the rescaled metrics, the maps f,, are (L, \,A)-quasiisometric embeddings, their ultralimit
is a (L,0)-quasiisometric embedding:

Lemma 2.16 The map f,, is an L-bilipschitz embedding:
L™ disty, (v, ¥,) < disty,, (o (o) S O01)) < Ldisty,, (e, ¥0,)-

We will use this lemma primarily to conclude that the ultralimit of a sequence of uniform quasigeodesics in a
symmetric space (or a building) is a bilipschitz path in the asymptotic cone, while ultralimits of seqeucnes of
flats are flats.
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The following construction is a special case of the lemma. Suppose that (X, *,) is a sequence of pointed metric
spaces with ultralimit (X,,, *,,) = w-lim(X,, *,) and that Y, X, are subsets such that

w-limdisty, (x,, ¥,) < +00.
Define the ultralimit of the sequence of subsets Y,
Y, = w-limY, c X,

as the subset consisting of all points y,, € X,, represented by sequences (V,)nen, Yn € Yy Alternatively, one can
describe Y,, as follows. For any sequence of base points *,, € ¥, with w-lim distx, (*,,*),) < +00, there is a
natural isometric embedding of ultralimits

w-lim(Y,, ) — w-lim(X,, *,) = (X, *.)

where disty, is the restriction of the distance function from X,, to Y;, and the image of the embedding coincides
with Y.

Since the ultralimit of any sequence of metric spaces is a complete metric space (cf. Lemma 1.5.53 in [BH] or
Proposition 7.44 in [DK]), it follows that the ultralimit of any sequence of subspaces is closed.

3 Geometry of CAT(0) model spaces

Throughout this chapter, X denotes a model space. When parts of the discussion apply only to euclidean
buildings or symmetric spaces, this will be indicated explicitly.

3.1 Regularity and coarse regularity

The regularity of pairs of points, equivalently, of segments has been defined in section 2.5.

We call a sequence (x,) in X ©O-regular if all pairs (x,,,x,) for m < n are ©-regular; a path ¢ : I — X is
O -regular if all pairs of points (c(#1), c(t;)) for #; < t, are ©-regular. When we do not want to specify ©, we
say that a sequence (x,) or a path c is uniformly Ty,q-regular if it is © -regular for some O.

A weaker version of uniform regularity is regularity: A sequence (x,), resp. a path c is 7,04 -regular if all pairs
(Xm,xn) for m < n are 7,,,4-regular, resp. all pairs of points (c(#1),c(ty)) for 1} < 1, are Ty04-regular. Note
that 7,,,,4-regularity does not imply local uniform 7,,,;-regularity.

If Ty0q and © are c-invariant, then the order of the points does not matter: A segment is 7,04~ or ©-regular if
and only if the reversely oriented segment is. Freed of the orientation issues, we then say that a subset R ¢ X
is ©-regular if any pair of distinct points in R is ©-regular, and more generally, that a map Z — X into X is
O-regular if it sends any pair of distinct points in Z to a ©-regular pair of points in X. In the same way, we
define the 7,,,4-regularity of subsets of and maps into X. Note that regular maps are necessarily injective, and
their images are regular subsets. Vice versa, injective maps into regular subsets are regular.

A natural way to coarsify the notion of regularity is as follows.

Let B > 0. We say that a pair (x,y) of (not necessarily distinct) points is (O, B) -regular if it is oriented B-close
to some O -regular pair of points (x',y'),i.e. d(x,x’) < B and d(y,y’) < B. Since we are working in a CAT(0)
setting, this is equivalent to the property that the segment xy is oriented B-Hausdorff close to the ©-regular
segment x'y’, and we say also that the segment xy is (O, B)-regular.
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We say that a sequence (x,) in X is (O, B)-regular if all pairs (x,,, x,) for m < n are (©, B)-regular. Similarly,
we say that a (not necessarily continuous) path p : I — X is (O, B)-regular, if for every subinterval [a’,b'] I,
the segment p(a’)p(d’) is (O, B)-regular. We will primarily use this definition in the case of quasigeodesics
(finite or infinite).

If 7,04 and O are -invariant, then we say that a subser of X is (O, B)-regular if every pair of points in the
subset has this property, and more generally, that a map into X is (O, B)-regular if it sends any pair of points to
a (O, B)-regular pair of points in X. Note that the images of (O, B)-regular maps are (©, B)-regular subsets.
We say that the subset or map is (coarsely) O -regular if it is (©, B)-regular for some constant B. We say that
an isometric group action on X is ©-regular if some (every) orbit map is.

A path, map, subset or action is said to be uniformly Ty.q-regular if it is ©-regular for some O.

Let 7,04 and © again be unrestricted.

Here is a useful weakening of the notion of coarse uniform regularity:

Definition 3.1 (Asymptotically regular sequence, cf. [KLP2, Def. 5.1]) We say that a sequence x, — o0 in X
is asymptotically © -regular, if for some (any) basepoint x € X the set of accumulation points of the sequence of
direction types 6(Xx,) € g4 is contained in O, equivalently, if the set of accumulation points of the sequence
of A-lengths da (x,x,) € Viuea is contained in © € 0y0d = Oop Vinod -

A sequence in X is called asymptotically uniformly 7,,,4-regular if it is asymptotically O -regular for some O.

Lemma 3.2 (i) The set of accumulation points in 0,X of an asymptotically © -regular sequence x, — o0
is contained in the © -regular part =1 (©) < 0,,X of the ideal boundary. If X is locally compact, then the
converse holds as well.

(i) If x, — oo is an asymptotically © -regular sequence, then for every point x € X the segments xx, are
©’ -regular for all sufficiently large n.

(iii) (O, B) -regular sequences in X are asymptotically © -regular.

Proof The first assertion of part (i) is clear. For the second, suppose that X is locally compact and consider
a sequence x, — 00 which accumulates at a subset of §~!(0) = 0,X and such that for a point x € X,
after passing to a subsequence, the direction types (xx;) converge, 0(xx;) — & € omoq. After passing to a
subsequence again, we may assume that also the sequence (x,) converges at infinity, x, — £ € 0. X. It follows
that £ = 6(¢) € ©. Thus (x,) is asymptotically ©-regular.

Parts (ii) and (iii) follow from the triangle inequality for A-lengths (2-7). O

Definition 3.3 (Asymptotically regular subset) We call a subset R = X asymptotically ©-regular if all
diverging sequences in R have this property.

We suppose again that 7,,,4 and © are ¢-invariant and consider the concepts introduced so far in the context of
discrete subgroups.

Definition 3.4 (Asymptotically regular subgroup and action) We say that a discrete subgroup T' < Isom(X) is
asymptotically © -regular if its orbits in X have this property. More generally, we call a properly discontinuous
isometric action I' —~ X of a discrete group I" on X asymptotically ©-regular if its orbits in X have this

property.
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Remark 3 (i) If X is locally compact, then the asymptotic uniform 7,,,;-regularity of I' is equivalent to the
property that the limit set of I" is contained in the 7,,,4-regular part of the visual boundary, 8(A(T")) < ost(Tmoa),
see Lemma 3.2, cf. [KLP2, Def. 5.1]. We recall that the limit set A(I") < d,X of T" is the accumulation set of
a I'-orbit I'x c X.

(ii) Coarsely ©O-regular actions are also asymptotically ©-regular. Asymptotically ©-regular actions are
coarsely ©’-regular.

The next observations relate (coarse) regularity to regularity.

Lemma 3.5 (Long coarsely regular implies regular) There is a constant ¢ = ¢(©,0’) > 0 such that every
(O, B) -regular segment of length > ¢B is ©’ -regular.

Proof Suppose that the segment xy is oriented B-close to the ©-regular segment x’y’; define
D := max(d(x,y),d(x,y")).

The triangle inequality for A-lengths (2-7) yields that |da (x,y) — da(X',y’)| < 2B. It follows that the angular
distance

a = Z(0(xy),0(xy))
between the types of the segments xy and x'y’ satisfies

B B
in(a/2) < - < —— .
sin(a/2) D " d(x,y)—2B

The lemma follows. O

We note that long chords of (coarsely) regular quasigeodesics are uniformly regular:

Lemma 3.6 With the constant ¢ = ¢(©,©’) > 0 from Lemma 3.5 the following holds:

Suppose that g : I — X is a (©, B) -regular (L,A)-quasigeodesic. Then for every subinterval [a',b'] < I with
length > L(A + ¢B), the segment g(a’)q(b’) is ©' -regular.

Proof The segment g(a’)q(b’) has length > ¢B and is therefore ©'-regular by Lemma 3.5. ]

Similarly, one obtains the same conclusion for the projections of (coarsely) regular quasigeodesics to nearby
parallel sets. Let P = P(7_,74) be a type Tmoq parallel set, and let § = 7p o g denote the nearest point
projection of the path g to P.

Lemma 3.7 With the constant ¢ = ¢(©,©’) > 0 from Lemma 3.5 the following holds:

Suppose that g : I — X is a (©, B)-regular (L,A)-quasigeodesic such that q(I) = Np(P). Then for every
subinterval [a',b'] < I with length > L(A + ¢(B + D)) the segment g(a')g(b’) = P is ©'-regular.

Proof The projected quasigeodesic ¢ : I — P is (©,B + D)-regular. (Its quasiisometry constants are

irrelevant.) As in the proof of the previous lemma we note that the segment g(a')g(b’) has length > ¢(B + D)
and is therefore ©'-regular by Lemma 3.5. a
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3.2 Longitudinality and coarse longitudinality

Longitudinality is a property of segments and directions in a parallel set, which is “oriented” by the choice of a
pair of opposite simplices spanning the singular sphere factor of its visual boundary. It means that the segments
or directions point towards the open stars of these simplices. To prepare the precise definition, we first need an
observation which relates the property of pointing to these stars for directions, segments and rays.

Let P = P(7—,74+) X be atype Tyoq parallel set.

Lemma 3.8 Let xy = P be a nondegenerate segment and let x{. < P be a ray.

(i) If Xy € st(log, 74), then y € V(x,st(ry)). If Xy € ost(log, 74), then y € V(x,ost(1y)). Moreover,
Xy € st(log, 7+) if and only if Xy € st(log, 7).

(ii) If)ﬁ € st(log, 74), then &, € st(Ty). If)z: € ost(log, 74), then & € ost(Ty).

Proof (ii) The direction E has an antipode v_ € st(log, 7_). By Lemma 2.9, v_ is the initial direction
v_ = )z of aray x{_ < P with £_ € st(7_). Since & are antipodes, Lemma 2.5 implies that £ € st(7y).
If)E) € ost(log, 74 ), then & € ost(7y) because G(JE:) =0(&4).

(i) The corresponding assertions for xy follow, because segments in P extend to rays in P. Moreover, as
in the proof of (ii), if Xy € st(log, 7+), then xy is contained in a ray {_y with {_ € st(7—) and hence
X € st(log, 7). O

Remark 4 Part (ii) of the last lemma yields a partial converse to Lemma 2.5; it implies:
log; ' (st(log, 7)) M @ooP = st(Ty)

The lemma motivates the following notion:

Definition 3.9 (Longitudinal directions and segments in parallel sets) At a point x € P, the directions in
ost(log, 7+) are called longitudinal and the directions in ost(log, 7_) anti-longitudinal. Moreover, ©-regular
(anti-)longitudinal directions are called ©-(anti-)longitudinal. A nondegenerate segment xy — P is called
(©-)(anti-)longitudinal if Xy has this property.

Remark 5 (i) Longitudinal directions and segments are in particular 7,,4-regular.

(i1) A direction is anti-longitudinal if and only if some, equivalently, all opposite directions tangent to P are
longitudinal.

(iii) A nondegenerate segment is (© -)(anti-)longitudinal, if and only if all nondegenerate subsegments are.

We make analogous definitions for paths:

Definition 3.10 (Longitudinal paths in parallel sets) We say that a path ¢ : I — P is (O-)(anti-)longitudinal
if all segments c(t;)c(2) for #; < t, have this property.

Note that if ¢ : I — P is longitudinal, then c¢(I n (t,4+00)) < V(c(t),o0st(74)) and ¢(I n (—00,1)) <
V(c(t),ost(7-)) forr e 1.

Longitudinal paths are, up to reparametrization, bilipschitz; they become bilipschitz when parametrized by arc
length:
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Lemma 3.11 (Bounded detours) There exists a constant L = L(©) > 1 such that for every © -longitudinal
path ¢ : [a,b] — P it holds that L(c) < L(©) - d(c(a),c(b)).

Proof We choose {_ € 7_. By the radius bound (2-2) for ©, there exists p < 5 such that for every ©-
longitudinal segment xy < P it holds that be_(y) — be_(x) = d(x,y) - cos p. It follows that d(c(b),c(a)) =
be_(c(b)) — be_(c(a)) = L(c) - cos p. O

In order to be able to speak of openness and closedness of the longitudinality condition, we identify, as before
for X, the space of segments in P with the space P x P of pairs of points which is equipped with a natural
topology.

Lemma 3.12 (Open and closed) The subset of longitudinal segments in P is open in the space of all segments
in P, and also closed in the subspace of T,,,q-regular segments.

Proof Let xy — P be ©-longitudinal. Then y lies in the interior of the cone V(x,ste/(74)) and its distance
from the boundary of this cone is > siney(©,0’) - d(x,y), with the constant €y from (2-4). Therefore
xy' is ©'-longitudinal if d(y,y") < siney(©,0’) - d(x,y). Similarly, x'y" is ©”-longitudinal if d(x,x") <
sinep(©’,0") - d(x,y'). Hence, longitudinality is an open condition for segments in P.

The uniform estimates show moreover, that if a 7,,,4-regular segment can be arbitrarily well approximated by
longitudinal segments, then it is longitudinal itself. So, longitudinality is also a closed condition for 7;,,4-regular
segments in P. a

Corollary 3.13 (Longitudinality preserved under regular deformation) A continuous family of T,,,q-regular
segments x;y; < P, 0 < s < 1, which contains one longitudinal segment, consists only of longitudinal
segments.

As we did with regularity, one can also coarsify the notion of longitudinality and call a segment coarsely
longitudinal if it is oriented Hausdorff close to a longitudinal segment in the parallel set. The notion of coarse
longitudinality then applies to segments and paths which are close to the parallel set but not necessarily contained
in it.

The observation that longitudinality is preserved under regular deformation implies that a (coarsely) regular
quasigeodesic close to the parallel set must be coarsely longitudinal as soon as some sufficiently long chord of
the projected quasigeodesic is longitudinal. In the following lemma, we again use the notation g = mp o q.

Lemma 3.14 (Coarsely longitudinal quasigeodesic) With the constant ¢ = ¢(0,0') > 0 from Lemma 3.5
the following holds:

Suppose that g : I — X is a (O, B)-regular (L,A)-quasigeodesic such that q(I) < Np(P). If for some
subinterval [a',b'] < I of length > L(A + ¢(B + D)) the ©’ -regular segment g(a’')g(b") — P is longitudinal,
then the same holds also for all other such subintervals.

Proof We may assume that the quasigeodesic is continuous. The subintervals [a’,b'] < I of length >

L(A + ¢(B + D)) form a connected (possibly empty) family. That the corresponding segments g(a')g(d') < P
are ©'-regular, is due to Lemma 3.7. The assertion therefore follows from Corollary 3.13. |
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3.3 Cones

In this section, we consider a type 7,,,¢ Weyl cone along with the corresponding ©-cones and an ambient type
Tmoa Pparallel set:
Vo = V(x,ste(r4)) €V =V(x,st(ry)) € P = P(1_,74)

If X is a symmetric space, then P is determined by V; if X is a euclidean building, it is not.

Lemma 3.15 (Open Weyl cone) For a point x € P, the open Weyl cone V (x,ost(7)) — {x} is the interior of
V(x,st(74)) in P, and V(x, 0st(74)) is its topological boundary.

Proof Lety € V(x,ost(74)) — {x}. Then Xy € ost(log, 7+). Since ost(log, 7+ ) is open in XX, it follows
that also 957 € ost(log, 7+) for every point y’ € P sufficiently close to y, and Lemma 3.8 implies that
Yy € V(x,ost(1y)).

Vice versa, suppose that y lies in the interior of V(x, st(7)) with respect to P, and let F — P be a maximal flat
through x and y. (Such a flat exists because also P is a euclidean building.) Then y lies in the interior, with
respect to F, of the finite union of euclidean Weyl chambers F n V(x,st(74)) = V(x,st(74) N 0 F), and it
follows that y € V(x, ost(74)) — {x}. O

A basic property of Weyl and ©-cones is their convexity. It is deduced from the convexity of stars at infinity
(Proposition 2.8):

Proposition 3.16 (Convexity of cones) The Weyl cone V (x,st(7y)), the open Weyl cone V (x, ost(7)) — {x}
and the © -cones V(x, ste(74)) are convex subsets of X .

More precisely, in the Weyl cone case, V(x,st(7)) is the intersection of the parallel set P(7_, 7. ) and the
root type horoballs which are centered at 0o, P(7_, T4 ), contain x in their boundary and st(7) in their visual
boundary, and V(x,ost(71)) — {x} is the intersection of the parallel set and the open horoballs.

Proof The assertions for the closed cones have been proven in [KLP2, Props. 2.14 and 2.18], see also [KLP4,
Prop. 2.10], in the case of symmetric spaces; the proofs for euclidean buildings are identical and we will omit
them. The assertion for the open Weyl cone follows from Lemma 3.15, because it is the interior of V inside
P. The open Weyl cone is therefore contained in the interior of every horoball Hb; , for which, at infinity,

St(T+) CB(C?%) O

As a consequence, one obtains, compare [KLP2, Cor 2.19], [KLP4, Prop 2.10]:

Corollary3.17 (Nestedcones) (i) Ifx’ € V(x,st(74)), then V(x',st(14)) < V(x,st(7+)) and V(x', ost(74))—
(X'} < Vix,st(ry)) — {x}.
(ii) If X' € V(x,0st(71)) — {x}, then V(X st(74)) < V(x,0st(74)).

(iii) If X' € V(x,ste(74)), then V(X sto(74)) < V(x,sto(7+)).
Longitudinality in the Weyl cone can be defined independently of the ambient parallel set:

Definition 3.18 (Longitudinal directions in Weyl cones) At a point y € V, the directions in ost(logy T4) are
called longitudinal and the directions opposite to them anti-longitudinal.
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As before in the case of parallel sets, see Definition 3.9, we call ©-regular (anti-)longitudinal directions ©-
(anti-)longitudinal, and we call a nondegenerate segment ( © - )(anti- )longitudinal if its (initial) direction has this
property. Moreover, we define longitudinal paths in Weyl cones as in the parallel set case, cf. Definition 3.10.

Note that tangent directions to the Weyl cone V and segments in it are longitudinal in the Weyl cone if and only
if they are longitudinal in the ambient parallel set P.

We next describe the anti-longitudinal directions.

Lemma3.19 (i) Ifye V(x,dst(r+)), then ost(log, 7—) N &,V = .
(i) If y € V(x,0st(74)) — {x}, then st(log, 7_) = st(t_(yx)) = &, V.

Proof (i) Suppose that ost(log, 7—) N X,V # (F. Since ost(log, 7—) is open, it must contain a direction which
is represented by a segment in V, i.e. there exists y # z € V. n V(y,ost(7—)). Hence y € V(z, ost(74)), and
Corollary 3.17 yields that y € V(x,ost(7})) — {x} = V — V(x, dst()), which shows the first assertion.

(ii) If y € V(x, ost(7)) — {x}, then xy is longitudinal and 7_(yx) = log, 7. According to Lemma 3.15, y lies
in the interior of V with respect to P, so st(log, 7—) < X,P = 5, V. O

Corollary 3.20 (Anti-longitudinal directions in Weyl cones) Anti-longitudinal directions in y € V exist
if and only if y € V(x,ost(74+)) — {x}. In this case, the set of anti-longitudinal directions in y equals

ost(7—(yx)) = ost(log, 7).

Proof The space of anti-longitudinal directions in X,V equals ost(logy 7_) n X,V and is, by its definition,
independent of P. The assertion therefore follows from the lemma. |

3.4 Longitudinal convexity of parallel sets
This section prepares the discussion of diamonds. We consider broken geodesic paths in X.

Definition 3.21 (Straight path) We say that a broken geodesic path xgxj ...x; in X iS Tjoq-straight if it is
piecewise T,,0q-regular and if at any vertex x; for 0 < i < k the Tano 4 -directions of the adjacent segments are
opposite, i.e. if the simplices 74 (x;x;+1) = 3, X are opposite. We call the path ©-straight if in addition it is
piecewise O-regular.

Note that if the directions of the adjacent segments themselves are opposite, £y, (x;—1,Xi+1) = 7, then the
broken geodesic path is geodesic.

The definitions carry over to semi- and biinfinite broken geodesic paths xg . . . xx&4, E-xp ... xp and E_xg . . . X &+
for £ € 0nX. A finite 7,,,,4-straight path xox; .. .x; can always be extended to a biinfinite 7,,,,-straight path
E_xp...x&4 with Trjl—rad-regular ideal endpoints & .

Definition 3.22 (Longitudinal path) We call a broken geodesic path xox; ...x; in a parallel set (©-)(anti-
Jlongitudinal if all subsegments x;_x; have this property.

Longitudinal paths in parallel sets are clearly straight. The next result shows that, conversely, straight paths are
longitudinal paths in parallel sets. This is clear when X is a symmetric space and the parallel set is uniquely
determined, but requires an argument when X is a euclidean building.
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Proposition 3.23 Each semi-infinite © -straight path xox; . . . x£ is contained in the © -cone V (xy, ste (7(£4))).
For each biinfinite © -straight path {_xox . . . x¢ &4, the simplices T+ (€1 ) € 0, X are opposite, the path is con-
tained in the parallel set P(7_({-), 74+ (£+)) and all segments x;x; for i < j are © -longitudinal.

Proof Consider a 7,,,4-straight path xox;£, . By straightness, the direction x7x) has an antipode v, such that
T(v4+) = 7(x1€+). Using Lemma 2.9, we can extend xox; to a ray xox;7+ such that 7(ny) = 7(£4). It follows
that x; € V(xo,sto(7(n+))) = V(xo,ste(7(£+))). The assertion for semi-infinite paths follows by induction
using the nestedness of cones (Corollary 3.17).

Consider now a biinfinite path £_xpx; ...x&+. From the semi-infinite case we know that xgx; ... x &+ <
V(xo,ste(7(€+))). In particular, 7(xo€+) = 7(xox1), and hence the simplices 74 (£4) are xp-opposite. It
follows that xg € P = P(7_(£-),7+(£+)) and furthermore that xox; ...x; < P. The longitudinality follows
from the semi-infinite case. |

Since longitudinal paths are not only piecewise regular, but globally regular, the proposition can be understood
as a local-to-global principle for the regularity of broken geodesic paths:

Corollary 3.24 Suppose that the path xox; . . . x; is O -straight. Then all segments x;x; for i < j are © -regular,
and for i < j < k it holds that T (xxj) = 74 (xixx) < X, X and 7_ (xxxj) = 7 (xex;) < X X.

Proof We extend the path to a biinfinite ©-straight path and then apply the proposition. a

We next observe an extension of the convexity property for parallel sets. That parallel sets are convex means,
by definition, that a geodesic segment is contained in the parallel set if its endpoints are. This remains true for
straight broken geodesic paths whose pair of endpoints in the parallel set is longitudinal:

Corollary 3.25 (Longitudinal convexity of parallel sets) Let xox; ...x; be a ©-straight path with endpoints
in the parallel set P = P(7_, ;) and suppose that the segment xox; < P is longitudinal. Then xoxi ...x; C
V(x(), st (T+)) N V(xk, sto_ (7’,)) c P.

Proof Let £ € int(74). By assumption, the broken path {_xoxx&; is then longitudinal in P. Since
T4 (x0x1) = 74 (x0x%) and 7_ (xgxx—1) = 7— (xxxo) by Corollary 3.24, the biinfinite path £_xox; ... x4 is also
O -straight. Proposition 3.23 yields that the path xox; . .. xx is contained in P and, more precisely, in the cones
V(xo,ste, (74)) and V(x,ste_(7-)). O

We push the longitudinal convexity property slightly further for once broken paths x_yx , replacing the open
assumption of straightness by a closed condition.

Lemma 3.26 Let x_x &, be a T4 -straight broken path. Suppose that y € X — {x_, x;} and there exists a
pair of opposite type 7= . simplices T;—r c X,X such that yx3 € St(TyJ—r). Then

mod
y € Vix—,st(r(£+)))-

Proof Again, the assertion (and the following argument) is trivial if X is a symmetric space.

We first look for simplices 74 © 0, X such that 7;° = log, 7, and yx+ < V(y,st(7})). To find them, we

extend the segments yx+ to rays y& and let 0" > 7,5 be chambers in X,X containing the directions yx .

According to Lemma 2.9, there exist chambers 0/, < 0,X such that in = log, o), and &/ € o/, . Then their

type Tnfo , faces 74 < ¢, have the desired properties. Moreover, the simplices 7/, are y-opposite, because the
+

simplices 73~ are opposite. It follows that x_yx; = P’ = P(7_,7}).
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To see that x_x is longitudinal in P’, we note that y € V(x, st(7%.)). By Corollary 3.17, there are the triples
of nested cones V(xx,st(7})) D V(y,st(7})) D V(x4,st(7h)). So, x4 € V(xg,st(7})). Since the segment
X_X4 1S Tyoq-regular, it follows that even x4+ € V(x7,ost(7))) and x_x, is longitudinal in P’.

Now &4 comes in and we show that 7/, can be replaced by 7(£;). The straightness of x_x &, implies that
the pair of simplices (7", 7(£+)) is x4 -opposite. Hence x_yx,; < V(x4,st(7")) < P(r",7(£+)). Since
x_ € V(y,st(7’)), it follows that y € V(x_, st(7(&4))). O

Corollary 3.27 Let £_x_x.&; be a Ty,yq-straight broken path. Suppose that y € X — {x_, x;.} and there exists

a pair of opposite type T};fo 4 simplices 7';—’ C X,X such that yx1 € St(Tyi). Then

Y€ Vix—,st(m4(§+)) N Vixy,st(r-(§-))) < P(T-(&-), T+ (€+))-

Sometimes the following terminology extending Definition 2.12 will be convenient:

Definition 3.28 ((x_,x.)-opposite) For a 7,,,4-regular segment x_x; < X, we say that a pair (7_, 74 ) of
opposite simplices 74 < 0 X is (x_, x)-opposite if the pairs of simplices (log,, 7+, T (x+x5)) are opposite
(for both choices of signs).

Lemma 3.29 Two opposite simplices 7+ < 0,,X are (x_,x, )-opposite if and only if x_x is a longitudinal
segment in the parallel set P(T_, 7).

Proof This follows from the fact that straight broken paths are contained in parallel sets as longitudinal paths,
cf. Proposition 3.23. a

3.5 Diamonds and Weyl hulls
We define diamonds independently of ambient parallel sets:

Definition 3.30 (Diamond) For a 7,,,4-regular segment x_x, < X, the 7,04 -diamond

<>T/110d ('x*? x+) = X

is the subset consisting of x4 and all points y € X — {x_,x } such that yx7 € st(Tyi) for some pair of opposite

type Tr:l_rod simplices Tyi c XX,

Longitudinal convexity implies that diamonds are contained in parallel sets and yields the following description:

Lemma 3.31 For any pair (7, 7+) of (x_,x)-opposite type T, ,

OrodX—yx4) = V(x_,st(m4)) 0 V(xy,st(r)) < P(1—, 7).

simplices T+ < 0y X, it holds that

Proof That the diamond is contained in the intersection of Weyl cones, follows immediately from Corol-
lary 3.27. The reverse inclusion is clear. |

We will refer to V(xg,st(74+)) as ambient Weyl cones and to P(7_, 74 ) as an ambient parallel set for the
diamond. Again, these are unique if X is a symmetric space, but not if it is a euclidean building.

It follows in particular that diamonds are convex.

Around their tips, diamonds coincide up to a uniform radius with Weyl cones. With the constant ¢y(©) from
(2-3), we have:
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Lemma 3.32 (Conical around tips) (1) Xy, $,,, (X, x4) = st(75(x+x5)).

(ii) If x_x4 is O-regular, then every segment in >, (x_,x;) with initial point x+ uniquely extends to a
segment in <y, ,(x_,x;) with length sineg(©)d(x_,x, ).

Proof Let (7_,7})bean (x_,xy)-opposite pair of simplices. Since <), ,(x_,xy) coincides with V (x4, st(71))
near x, we have that ¥, $r  (x—,x1) = X, V(xg,st(r3)) = st(75 (x+x3)).
By triangle comparison, x4+ has distance > sin ey(0)d(x_, x; ) from 0V (x¢, st(7+)). Itfollows that B(x, sin€g(©)d(x_, x4 ))

P(t_,74) < V(xg,st(7+)). Intersecting with V (x4, st(75)) yields the assertion. O

As a consequence of Lemma 3.15, the interior of the diamond { = <, (x_,x4) with respect to an ambient
parallel set P(7_, 74 ) is given by

(3-1) int(Or,py (=, x4)) = (V(x—, 08t(74)) N V(xp,08t(7—))) — {x—, x4}

Note that the interior is always nonempty. For instance, the interior points of the 7,,,4-regular segment x_x
belong to it.

For a ©-regular segment x_x, , we define the ©-diamond

<>@ (X_ ) X+) - <>‘I',,md ()C_ ’ )C+)

in a similar way as the subset consisting of x4 and all points y € X — {x_, x }, for which the segments yx, are
O -regular with opposite Tnfo ,-directions 74 (yx+) at y. It follows from Lemma 3.31 that

Qo(x_,x;) = V(x_,sto(r4)) N V(xs,sto(7-)).

We will need the following semicontinuity property of diamonds:

Lemma 3.33 (Semicontinuity) Suppose that the diamond <>, ,(x_,x) intersects the open subset O < X.
Then for all pairs of points (x"_,x,) sufficiently close to (x_,x ), the diamond <, ,(x__,x,.) still intersects
0.

Proof Suppose first that X is a euclidean building. By assumption, there exists a point y € Onint($r,,, (X—, x4)).
The segments yx, are T;fo ,-Tegular. Therefore, if the points x/, are sufficiently close to x4, then also the seg-
ments yx', are 7.5 ,

follows that y € &, (X, X, ).

-regular and 74 (yxy) = 74+ (yx+). In particular, the simplices 74 (yx',) are opposite and it

Suppose now that X is a symmetric space. Let P denote the unique ambient parallel set of the diamond
Qg (X—, x4 ). The argument used in the euclidean building case now proves the assertion for pairs of points in
the parallel set, i.e. there exists € > 0 such that the assertion holds for the pair (x’_,x/,) if X, € B(x+,€) n P.
Using the action of the isometry group G = Isom(X), it follows furthermore that there exists a neighborhood
U of the neutral element in G, such that the assertion holds for all pairs g - (x"_,x/,) with ¢ € U and
Xy € B(x4,€) n P. Since G acts transitively on type 7,,,4 parallel sets, this finishes the proof. O

We will prove later the stronger property that diamonds depend continuously on their pair of tips, see Proposi-
tion 3.56 below.

In order to define longitudinal directions in diamonds, we observe that, whether a direction is longitudinal with
respect to an ambient parallel set, does not depend on the ambient parallel set:

Lemma 3.34 Let y € . If the segment yx. is 7. ,-regular, then st(log, 74) = st(t4+(yx1)) < X0
Otherwise, ost(log, 71) N £, = .
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Proof The segment yx, is Tr:lrod

-regular if and only if y € V(x;,0st(7_)) — {x;}.

Thus, if yx is not 7,7 ,-regular, then ost(log, 7 ) is disjoint from ¥,V (x,,st(7-)) > ¥,<> by Lemma 3.19.
On the other hand, if yx; is 7,/ ,-regular, then { = V(x_,st(7})) near y, and Lemma 3.19 yields that X,{
contains st(log, 7). Moreover, log, 74 = 7 (yx4). ]

Corollary 3.35 The intersection <) N ost(log, 7+) does not depend on the ambient parallel set P(7_, 7).
It is nonempty if and only if the segment yx is T,:l—ro o-Tegular, and then equal to ost(log, 71) = ost(7+(yx1)).

This justifies:

Definition 3.36 (Longitudinal directions in diamonds) In a point y € <, we call the directions in 3, N
ost(log, 74 ) longitudinal and the directions in ¥, N ost(log, 7—) anti-longitudinal.

As before in the case of parallel sets and Weyl cones, we call ©-regular (anti-)longitudinal directions © -(anti-
)longitudinal, and we call a nondegenerate segment (O -)(anti-)longitudinal if its (initial) direction has this
property. Note that the segment x_x is longitudinal.

Our discussion shows that directions and segments in the diamond are longitudinal if and only if they are

longitudinal in an ambient parallel set.

Based on the notion of longitudinality, we can now state:

Lemma 3.37 (Nested diamonds) If x’_x/, < < is longitudinal, then $-, ,(x_,x) < <.

If the segment x'_x', < $o(x—,xy) is ©-longitudinal, then $e(x_,x,) < $o(x—,x4).
Proof This is a direct consequence of the nestedness of cones, cf. Corollary 3.17. |

We can also reformulate the longitudinal convexity property of parallel sets, cf. Corollary 3.25, for diamonds:

Corollary 3.38 (Longitudinal convexity of diamonds) Each O -straight broken geodesic path xoxj . ..xy is
contained in the © -diamond ¢ (xg,x), and all segments x;x; for i < j are ©-longitudinal.

We turn to the discussion of Weyl hulls of segments.

Weyl hulls are analogs of diamonds inside singular flats. We also define them intrinsically without reference to
ambient flats:

Definition 3.39 (Weyl hull) The Weyl hull of a nondegenerate segment x_x; < X with type 6(x_x;) €
int(7y04) is the subset

Q('x—7-x+) cX

consisting of x4 and all points y € X — {x_,x} such that yx7 € Tyi for some pair of opposite type T’;_ro y

simplices Tyi < XX,

Clearly, Q(x_,x4) < $rpy (X2, x4 ).

Applying the description of diamonds, it follows that Weyl hulls are cross sections of diamonds by singular

flats. Indeed, let (7—,7) be a pair of (x_,x.)-opposite type 7. , simplices 7+ < 95 X. Then the segment

Xx_x4 is contained in a singular flat f with ideal boundary sphere 0of = s(7—, 7+ ), and we obtain:

Lemma 340 Q(x_,x;)=<q,,0o,x)nf=V(x_, 7)) nV(xy,7-)  f.
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Proof Let y € Q(x_,x;) — {x_,x:}. Then O(xyy) € 7, ,. In view of Q(x_,x;) < & (X, x4),
Lemma 3.31 implies that y € V(x4,7¢) = V(x4,st(75)) nf. Conversely, the intersection of the sectors
V(x4,7¢) belongs to Q(x_,x4). O

We will refer to V(xx, 74 ) as ambient Weyl sectors and to f as an minimal ambient flat for the Weyl hull. These
are unique if X is a symmetric space, but not if it is a euclidean building.

It follows that Weyl hulls are flat parallelepipeds. In particular that Weyl hulls are convex.

Remark 6 Weyl hulls can in fact be characterized by these properties: One can show that Q(x_, x ) is the
smallest closed convex subset of X which contains the segment x_x and has the property that all spaces of
directions are subcomplexes.

We have the following estimate for the size of conical neighborhoods around the tips:

Lemma 3.41 (Conical around tips) (i) ¥, Q(x_,xy) = 75 (x+x5).

(ii) If the segment x_x is O-regular, (x_xy) € © N Tyoq < int(Timoq), then the intersection Q(x_,x;) N
B(x4,d(x_,x;) - siney(O)) is a flat cone of height d(x_,x, ) - siney(O) with tip x+ .

Proof This is a consequence of Lemma 3.32.

Alternatively, one can prove this lemma analogously to Lemma 3.32 also directly using Lemma 3.40: The point
x4 has distance > d(x_,x1)-siney(©) from OV (xg, st(74)). It follows that B(x+,d(x—,x1) -siney(0)) nf <
V(xx, 7+ ). Intersecting with V (x4, 71 ) yields the assertion. O

We define the Weyl hull of a degenerate segment xx as the one point subset Q(x, x) = {x}.

3.6 Rays longitudinally approaching parallel sets

We consider now geodesic rays which are longitudinally asymptotic to parallel sets and show that they must
approach and, in euclidean buildings, enter the parallel set at a uniform rate.

Let P = P(7_,71) X be atype Tyoq parallel set.

Suppose first that the model space X is a symmetric space. In this case, longitudinally asymptotic rays do not
enter parallel sets, but approach them at a uniform exponential rate. We will only prove the weaker statement
sufficient for our purposes, that they do so at some uniform rate.

Lemma 3.42 For d > 0 there exists a constant 6 = §(d,©) > 0 such that the following holds:

If x € X with d(x,P) > d and § € ste(7), then Z (mp(x),§) < 5 — 0.
Proof We denote X = 7p(x). If X’ € xX is the point at distance exactly d from P, then £y (X,£) = Z,(%,&).
We may therefore assume that d(x, P) = d.

Note that /,(x,£) < 7, because the angle sum of the ideal triangle A(x,%,§) is < 7. Suppose that
Zx(x,€) = 5. Then the ray x¢ is parallel to P and extends to a geodesic line / ¢ P parallel to P. This line is
forward asymptotic to /(+o0) = & € ost(74 ), and its backward ideal endpoint /(—o0) is therefore contained in
ost(7_), cf. Lemma 2.5. Since the singular sphere in 07X spanned by the pair of antipodes /(+00) contains the
simplices 74, and hence also the singular sphere s(7_, 7 ), it follows that P(/) — P, which is a contradiction
told P.
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Thus the continuous function
(xv g) = Lx(ﬂ-P(x)v 5)

on ON4(P) x ste(7y) takes values in the open interval (0, 5). It is invariant under the stabilizer in Isom(X)
of the pair of simplices (7_, 7y ), because the stabilizer preserves P and stg(7). It acts transitively on P
and hence cocompactly on dN4(P) x ste(7y). It follows that the range of the function in (0, 5) is compact.
Furthermore, the range does not depend on the parallel set, because all type 7,4 parallel sets are equivalent

modulo the action of the isometry group. a

We obtain:

Proposition 3.43 (Rays approaching parallel sets in symmetric spaces) For d > 0 there exists a constant
C = C(©,d) > 0 such that the following holds:

If x € X and £ € stg(74), then the points on the ray x{ with distance > C - d(x,P) from x are contained in
N4(P).

Proof Let r : [0,+00) — X be a unit speed parametrization of the the ray x{. Then the function f(¢) :=
d(r(t),P) is smooth with derivative f'(t) = —cos Z,)(mp o r(t),§), cf. (2-1). By the previous lemma,
f'(t) < —sind as long as f () = d. This yields a uniform upper bound for the entry time, linear in d(x, P). O
Suppose for the rest of this section that the model space X is a euclidean building.

We obtain the following version of Proposition 3.43, where ¢)(©) is the constant from (2-3). The special case
of maximal flats had been proven in [KIL, Lemma 4.6.3].

Proposition 3.44 (Rays diving into parallel sets in euclidean buildings) Suppose that x € X and & € sto(74).
Then the ray x£ enters P, and its entry point z satisfies

Z.(x,P) = ¢(©) >0

and
d(x,z) < (sinep(©)) " - d(x, P).

Proof We assume that x ¢ P and denote x = mp(x).

Let y € X¢ and suppose that d(x,y) - sineg(©) > d(x, P). Applying comparison to the triangle A(x,x,y), we
can bound the angle £, (X, x) by

(3-2) d(x,y) - sin Z,(X,x) < d(x,P).

It follows that £y (¥, x) < €o. This implies that 7_(yx) = 7—(yX) and hence X € ost(log, 7_) is tangent to P.

Since all tangent directions to P are represented by segments in P, and since segments with angle zero in a
euclidean building initially coincide, cf. the discussion of angle rigidity in section 2.5, it follows that the segment
yx is initially contained in P. Let z denote the interior point on the segment yx where it exits P, in other words,
the point where the segment xy enters P. Then zX ¢ 3.P, because zx n P = {z}.

As a consequence of (3-2), given ©’, the direction yZ = yX € X, P becomes ©’_-longitudinal as y — o0, and,
accordingly, zy € stg(log, 74) < X P. With Corollary 2.7, it follows that the antipodal direction zX ¢ ¥_P
cannot have too small angle with P, i.e. Z,(x,P) = €y(©’) > 0. Applying comparison to the triangle A(x, X, z)
as above then yields a uniform estimate for the entry time of xy into P:

d(x,z) - sineg(©) < d(x, P)
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The segment xy converges to the ray x{ as y — 00, and the entry point subconverges to a point in x§ N P. This
shows that the ray x¢ enters P, and that the entry point Z satisfies the same estimate:

d(x,2) - sineg(©) < d(x, P)

Since this estimate holds for all © (containing © in their interior), we also obtain it for ©. O

Remark 7 The longitudinality assumption (that £ € stg(74)) is necessary, in both Proposition 3.43 and
Proposition 3.44, if 7,00 S Omoa. Note that 0P does in general not contain the stars around the type Tyoq
simplices in Oy P other than 7. Accordingly, there may exist 7;,,q4-regular rays which are asymptotic to P,
but not strongly asymptotic. Note that such rays cannot be ¢,,,4-regular.

We will later use different versions and consequences of the proposition. For instance, we can also uniformly
estimate the entry time into Weyl cones in P asymptotic to 74 :

Corollary 3.45 (Rays diving into Weyl cones) Suppose that x € X, £ € stg(74+) and X € P. Then the ray x£
enters the Weyl cone V (X, st(74+)) < P, and its entry point w satisfies

d(x,w) < (siny(0©))7! - d(x,3).

Proof Let z € P be the entry point of x£ into P, as given by the previous proposition. Then
d(x,7) < (sinep(©)) ™! - d(x, %).

Let w' € z€ = x¢ N P be a point at distance d(x,w') > (sin€y(©))~! - d(x,%). Applying CAT(0) comparison
to the triangle A(x,%,w'), we get that Z,/(z,%) = £, (x,%) < €o. It follows that w'% € ost(log,, 7_), i.e. the
segment w'% is anti-longitudinal. Hence w' € V(&, st(74)). O

The next versions of the proposition estimate the rate at which rays move away from Weyl cones and sectors:

Corollary 3.46 (Rays leaving Weyl cones) Let p : [0,+00) — X be a O-regular unit speed ray, and let
to = 0 denote the time when p exits the Weyl cone V = V(p(0), st(74)). Then

L (i) (p(+0), V) = €0(©) > 0

and
d(p(1),V) = (t — to) siney(O)

fort > ty.

Proof If #p = 0, then p(0) ¢ X,(0)V = st(log,) 7+), and the angle estimate holds due to ©-regularity. If
to > 0, we may assume that p(0) € P. Then 5(0) € X,V and p can be extended by a ray in P to a line
I : R — X backward asymptotic to /(—0) € stg(7—). Applying Proposition 3.44 to subrays of [ yields the
angle estimate also in this case. As before, triangle comparison based on the angle estimate yields the distance
estimate d(p(t),V) = d(p(t),P) = (t — 1) sinep(O). ]

Corollary 3.47 (Rays leaving Weyl sectors) Let p : [0,+00) — X be a unit speed ray of type 0(p) = €
O N Tooa < int(Timoq), and let ty = 0 denote the time when p exits the Weyl sector V = V(p(0), 7). Then
Lp(to) (p(t0)7 “’/) = 60(@) >0

and
d(p(1), \7) > (t — 1p) siney(O)

fort = 1ty.
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Proof The exit direction j(fo) is not tangent to V, p(ty) ¢ Zp(m)\V/. Since it has type 0(p(to)) € int(Tpmoq), it
spans the simplex 7(p(1)), i.e. p(to) € int(7(p(f0))). It follows that the simplex 7(p(fo)) is not contained in
the (finite) subcomplex > p(to)f/, equivalently, ost(7(p(t))) N Ep(to)‘v/ = (. This yields the angle estimate,
and triangle comparison the distance estimate. |

We apply the above estimates to show that Weyl cones with the same type and tip must coincide up to a certain
radius, if they are close up to a certain larger radius in some uniformly regular direction:

Lemma 3.48 (Initial coincidence of nearby truncated Weyl cones) Let r,D,R > 0 be constants with
Rsiney(©) = r + D. Suppose that for simplices 7,7, € Flag_ (0xX) and a point x € X it holds
that

(V(x,sto(1+)) — B(x,R)) n Np(V(x,st(7}))) # &.

Then

V(x,st(t4)) n B(x,r) = V(x,st(7})) n B(x, ).

Proof Letye (V(x,sto(r4+)) —B(x,R)) nNp(V(x,st(7,))), and let 7/ be a simplex x-opposite to 7/, . Then
V! = V(x,st(r},)) < P' = P(r_, 7). Furthermore, the segment xy is ©-regular and has length > R. Let
z € xy denote the point where the segment xy exits the cone V', i.e. xy n V/ = xz. Then

Oroa (X:2) < V(x,8t(11)) N V(x, st(77,)).

Corollary 3.46 yields the estimate d(z,y) - sineg < D. Hence, the ©-regular segment xz has length >
R — (sin€y)~!'D > (sinep) 7. By Lemma 3.32, the diamond <. ,(x,z) agrees up to radius d(x,z) - siney > r
around its vertex x with both cones V/(x, st(7)) and V(x,st(7})). O

We give a version of the last result for sectors, namely that Weyl sectors with the same type and tip must coincide
up to a certain radius, if they are close up to a certain larger radius:

Lemma 3.49 (Initial coincidence of nearby truncated Weyl sectors) Let r,D,R > 0 be constants with
Rsiney(©) = r + D. Suppose that for simplices 7,7, € Flag, (05X) and a point x € X the truncated Weyl
sectors V(x,74) N B(x,R) and V(x,7/.) n B(x,R) are D-Hausdorff close. Then

V(x,74+) n B(x,r) = V(x,7}) n B(x,r).
Proof Consider a ©-regular unit speed ray with initial point x in the Weyl sector V(x, 7% ). Since the ray
remains in the D-neighborhood of the other sector V(x, 74) up to time R, it does not exit V(x, 7 ) before time
R — (sineg) ™' D, cf. Corollary 3.47. Therefore the intersection of the sectors V(x, 7:.) and V(x, 7)) contains

a ©-regular segment xz of length R — (sineg) ~'D. In view of Lemma 3.40, it follows that the Weyl hull of xz
is also contained in this intersection,

0(x,z) < V(x,74) n V(x,7}).

By Lemma 3.41, Q(x, z) contains a conical neighborhood of radius d(x, z) - sin €y > r around its tip x. So, the
sectors V(x, 74 ) and V(x, 7% ) coincide at least up to radius r. O
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3.7 Continuity of diamonds

Let X be again a model space. The main result of this technical section is that diamonds depend continuously
on their tips, see Proposition 3.56.

Let x_x; < X be a O-regular segment and consider the 7,,s-diamond

<> = <>7’m,,d (X_ ) .X+)
spanned by it. Our first goal is to estimate the inradius of the diamond.

We represent the diamond as an intersection of Weyl cones in an ambient parallel set,
O =Vx_,st(ty)) n V(xy,st(r—)) < P = P(1—,74).

We recall, see Proposition 3.16, that inside P each of the Weyl cones V(x,st(7+)) is the intersection of a
certain family of horoballs,

V(xz,st(rs)) = P[] {b <0},
Ce€Z4

with centers ( € Z+ < 0P and normalized by b¢(x3) = 0 for ¢ € Z1. Accordingly, for the convex function

b = sup b,
CeZ

where Z = Z_ U Z, , we have
O ={blp <0}

We estimate the decay of these Busemann functions b along the segment x_x .
Lemma 3.50 If ( € Zy, then b¢(x) — be(x+) = d(x—,x1) - siney(O).

Proof We extend x_x to a ©-longitudinal line / ¢ P. Then &4 := [(+) € stg(74+). If ( € Zy, then
the Weyl cone V(x,st(7+)) is contained in a horoball centered at ¢, and therefore st(7+) < B(¢, 5). Hence
B(&+,€0(0)) < st(1+) < B(¢, ). It follows that Z7s(¢+,() < 5 — €9(©). Thus, the Busemann function b,
has slope < —siney(©) along the ray x3&{+ D x_x. |

We denote by m the midpoint of the segment x_x .

Corollary 3.51 (Thickness of diamonds) b(m) < —3d(x_,x) - sin€y(©)

Proof Since b¢(x1) = 0 for { € Zy, the convexity of Busemann functions implies that b (m) < —3d(x_,x4)-
sin €9(O). Taking the supremum over Z yields the assertion. O

Next, we discuss product splittings of diamonds induced by splittings of the model space.

Suppose that the model chamber splits as a spherical join

(3-3) Omod = Urln(;d © Urznod )
and let X = X; x X be the corresponding product splitting of the model space, cf. section 2.5. If 7,04 < arlnod,
then also the 7,,,4-parallel sets, 7,,,4-Weyl cones and 7;,,,4-diamonds split off the X, -factor. Thus, the diamond

O =,y (x—, x4) splits as
O =01 x Xa,

and the cross section in the complementary factor is again a diamond, {); = X!

Tmod
xfxf cX;is (©n a,lnod)—regular. It is shorter than the segment x_x , but of comparable length. Indeed, the

(x7,x{) < Xi. The segment
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angle between the ©-regular segment x_x and the X;-factor is bounded above by diam(0) < 7 — ¢(0),
and hence:

(3-4) d(x_,x;) -sineg(©) < d(xy,x]) < d(x_,x;)
In the following discussion, we fix the unique splitting (3—3) such that O-ilmd is minimal with the property

Tmoa and o2 g,

that it contains 7,,¢. This includes the possibility of the trivial splitting with ¢! od =

mod ~—

accordingly, X = X; and X, = pt. We note that O-)%w 4 C OSt(Timod) -

In general, there is no better diameter bound than diam(o 4) < 5, but we do have a uniform radius bound

™
(3-5) 1ad (0,00, ) < po = po(0) < )

1

mod Would not be minimal.

on O :=0n O-liwd’ because otherwise o

We prove now that there is a uniform diameter bound for the cross section of diamonds.
For a type £ € © N T4, We define a &-height function
he O —-R
as follows: For every longitudinal (oriented) line [z < P of type € it holds that P = P(lg) = lg x CS(0c0lg).
We define h; as the restriction of a Busemann function,
hg i= bi(—o)lo-

The function h; has the following properties, and is determined by them up to an additive constant: It is
1-Lipschitz, affine (i.e. affine linear along every geodesic segment), constant on the intersections of {5 with
the cross sections pt x CS(&OOIE-) of P, and linear with slope = 1 on the intersections of < with the lines
lg x pt. The function /g is therefore independent of the ambient parallel set P and well-defined up to an additive
constant.

Since diam(ou0q) < 5, we have that rad(oueq,-) < 5 in particular on 7,4, and hence, for every simplex
7 € Flag, (0.X), that rad(st(7), ) < § on 7. In particular,

™
(3-6) Lx; (lg(io@), ) < B
on { — {x}, and it follows that

(3-7) hg(x_) < hg‘ < hg(x+).

The estimates (3—-6) and (3—7) improve, when restricting to the cross section of the diamond. The angle bound
(3-5) yields the estimate
£ (lg(£0),-) < po

on {1 — {x;"}. (Note that the line l¢ is parallel to Xy and [g(+00) € 0 X;.) It implies that
(3-8) he(xy) +d(xy,-) cos po < hg < hg(x) —d(x{,-) cos po
on .

Lemma 3.52 (Diameter bound) The diameter of the cross section of the T,q-diamond <> is uniformly
bounded by
diam($>1) < 2(cos po(©)) ' (x, x)).
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Proof From (3-8) we get the radius bound
rad({1,47) cos pp < he(xf) — he(x7) < d(xy,x7)

and hence the diameter bound as claimed. O

We apply our discussion to prove that diamonds depend continuously on their tips with respect to the Hausdorff
topology. We first consider diamonds inside a fixed parallel set.

Let { — P be as above, and let ' = &, (X, X))
O = Gma(,2,) = VL, st(ry)) A V(,, st(r)) < P
be a second diamond in the same parallel set P. Then the Weyl cones V(x- st(7+)) are intersections
V(e st(rs)) =P [ {b] <
CeZ+

of horoballs with the same centers, but the new Busemann functions b’ are normalized at the new tips x_, i.e.
b! ( %) = 0 for ¢ € Zy. The second diamond is then defined as the sublevel set

O = {V|p < 0}

of the convex function

/ /
b" = supby,
13574

Since the points x+,x", are the normalization points of the corresponding Busemann functions, it follows that
for all ( € Z4 we have

b — bel] < d(xs, X)),
and therefore
(3-9) b —b'|| < max(d(x_,x"),d(xs,x",)).

Here and below, || - || denotes the supremum-norm of functions X — R.

Lemma 3.53 There exist constants ¢(©),6(0) > 0 such that the following holds:
If max(d(x;,x, "), d(x}, %, 7)) <d < 8(0)d(x],x]), then & < N©)a(®' n $).

Proof We may assume without loss of generality that the splitting (3-3) is trivial, i.e. X = X].

Take a point y € {>. We connect y to the midpoint m of x_x, by the geodesic segment ym and consider the
behavior of the convex function b along ym. This will provide an estimate for the time when the segment ym
enters the other diamond <}’. In view of (3—-9), we have

O n <>/ (e {b|P < *d}
Since !
b(m) < —3 sin€p(O)d(x_, x4)
by Corollary 3.51, and
d(y,m) < diam(<) < 2(cos po(©)) 'd(x_,xy)

by Lemma 3.52, the point z € ym at distance d(y,z) = tz:n;‘)((@))d satisfies b(z) < —d. O
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Corollary 3.54 There exist constants c(©),5(0©) > 0 such that the following holds: If also the segment
x'_x/, < P is ©-longitudinal, and if

N

max(d(x_,x),d(xs,%})) < d < 5(O)d(xy ],

then
distyaus (<, <>’) < ¢(O)d.

Proof Note that d (xli,x’li) < d(x+,x)). By the triangle inequality,
(1-28(0)) -d(x,x7) <d(x) ", x17) < (1+25(0)) - d(xy,x7).

After replacing 6 by §(1 — 26) and switching the roles of ¢ and <), the previous lemma yields that also
- NC(@)d(O’ N <). The assertion follows. O

Now we extend our results and estimate the Hausdorff distance between arbitrary 7,,,4-diamonds < =
Qrmoa (=3 x4) and & = &7 (x,x, ) which do not have to lie in the same parallel set.

We first consider the euclidean building case. There, nearby diamonds have large overlap:

Lemma 3.55 (Nearby diamonds in euclidean buildings) Let X be a euclidean building. There exist constants
c(0,0),§(0,0") > 0 such that the following holds: If the segment x_x.. is © -regular and if

max(d(x_,x_), d(x+,%,)) < d < 5(0,0')d(x; . x} ),

then
distraus (O, <>’) < ¢(O, @’)d.

Proof According to Lemma 3.5, if 6(©, ©’) is chosen sufficiently small, then the segments x’_x/, and xzx,
are ©'-regular.

Let P = P(7—,7+) D <) be an ambient parallel set as considered above. In order to find a point in the
intersection P n <’ close to x,, we apply Corollary 3.46 to the ambient Weyl cone V(x_,st(74)) D < and
the ©-regular segment x_x’, (respectively, a ray extending it). We obtain a point y; € x_x/, n P at distance
< (sineg(©’))~!d from ¥/, and, consequently, distance < (1 + (sine(©’))~!)d from x..

Since {7, (X=, 1) € Orpa(®—, /1) N P, Corollary 3.54 yields estimates for the Hausdorff distances of
Orpoa (X, y4) from the diamonds <, ,(x_,x’,) and ¢, and hence for the Hausdorff distance between the
latter two diamonds. The estimates are linear in d with constants only depending on ©’. Note hereby that
all diamonds split off the same X-factor, and that the quantity d (xf,xf), which appears as a bound in the
hypothesis of Corollary 3.54, varies continuously with the pair (x_, x).

Similarly, working with an ambient Weyl cone V(x/_,st(7")) > ¢’ and the ©’-regular segment x_x/,,
one obtains a point y_ € x_x/, n V(x/,,st(7")) uniformly close to x”_. Using the intermediate diamond
Ornod V=X ) € Orpoa (0, X)) n V(X! st(77)), one estimates the Hausdorff distance from ¢, ,(x—,x/,) to

Q. ]
We return to the general model space case and are now ready to show:

Proposition 3.56 (Continuity of diamonds) The 7,,,4-diamonds in X depend continuously, with respect to
the Hausdortf topology, on their T,,,q -regular pair of tips.
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Proof If X is a euclidean building, this is a direct consequence of the previous lemma. We assume therefore
that X is a symmetric space.

Consider a diamond <) = {,  (x_,x;) and an ambient parallel set P. As a consequence of the Hausdorff
distance estimates for diamonds in the same parallel set, cf. Corollary 3.54, there exists 4 > 0 such that <} has
Hausdorff distance < Je from all diamonds <, (x_,x" ) with X}, € B(xy,8) n P.

Let U < Isom(X) be a neighborhood of the identity such that d(ux,x) < e for all x € Ne(¢) and all u € U.
Then the diamonds <, , (ux”_, ux/,) with u € U and x'y € B(x+, §) NP are e-Hausdorff close to <>. The pairs of
tips of these diamonds form a neighborhood of (x_,x) in X x X, because the manifold P, , < 0 - Xx0_+ X

mod mod

of type Timoa parallel sets P(7_, 7 ), respectively, of pairs (7_,7.) of opposite simplices 74 of types 7 . is
a homogeneous space for the Lie group G = Isom,(X). |

3.8 Topology at infinity and partial bordification

We will describe the topologies on the visual compactification X = X U d,,X and on the 7;,,4-bordification
X' = X U 0y, X in terms of shadows and related “basic subsets”.
We need the following notions of shadows at infinity in d,.X and 0, X.
Definition 3.57 (Shadows at infinity) (i) For points x,y € X we define the shadow of the point y as seen from
x by
pSh,, := {£ 1y € x{} < 00X,

and for r > 0 the shadow of the open r-ball around y by

bShy, , := {£:x{ N B(y,r) # J} € 0uX.
(i1) For points x,y € X we define the 7,,0,4-shadow of the point y as seen from x by

pSh;:"y"”’ ={r:yeV(x,st(1))} < o, X,
and for r > 0 the 7;,,4-shadow of the open r-ball around y by

bShTmod = {T : V(_x7 St(T)) M B(y, r) ;ﬁ @} c aTmudX’

x?,y?r
By coning off the shadows at infinity at points in X and removing large balls around their tips, we obtain the
subsets of X and X™ which we will use to describe, respectively, construct the natural topologies.
Definition 3.58 (Basic subsets) (i) For points x,y € X and radii » > 0, we define the subsets
PO, , :={z:z#yexz} X,

and
b0, = {z:x2n B(y,r) # J} C X,
and the basic subsets
p()x,y :=pO,, upSh, , X and bOyy, :=bO,,, UbShy,, < X.
(i1) For points x,y € X and radii r > 0, we define the subsets

pO := {z: xZ Tyoa-regularand z # y € $r,, (X,2) } € X

and
bOwd := {z : xz Tyoq-regular and -, (x,2) N B(y,r) # &} < X,
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and the 7,04 -basic subsets

pOy 1= pOfmed U pShimed < X™ and  bOys := b0y, U bShy, , < X

We observe the following relations between point and ball shadows:
heyr= () pSh,, and bShiw = | ] pShw

Z€B(y,7) Z€B(y,r)

There are analogous relations between point and ball type basic subsets:
Onyr= |J PO, and bOPwi= | pOpw

Z€B(y,r) 2€B(y,r)
We note that the 7,,,4-versions of the shadows and basic subsets are generalizations of these to arbitrary rank
and agree with them in rank one.

We first recall the description of the visual topology on the visual compactification X.

Fact 3.59 (i) For every point x € X, the basic subsets bO, .. form together with the open subsets of X a basis
of the visual topology on X .

(ii) For every ray x{ < X, every sequence y, — oo of points y, € x£ and every bounded sequence of radii
r, > 0 the basic subsets bOy,), ., form a neighborhood basis of §.

This restricts to the following description of the visual topology on 0o, X .

Fact 3.60 (i) For every point x € X, the shadows bSh, . . form a basis of the visual topology on 0xX. If X is
a euclidean building, then also the shadows pSh, . form a basis.

(ii) For every ray x{ < X, every sequence y, — o0 of points y, € x{ and every bounded sequence of radii
r, > 0, the shadows bSh, ,, . form a neighborhood basis of §. If X is a euclidean building, then also the
shadows pSh, ,, - form a neighborhood basis. Moreover, if X is a symmetric space, then for x # y € x§ also the
shadows bSh, ,, . form a neighborhood basis.

Now we construct natural topologies on d,, X and, at least partially, on X™.

Lemma 3.61 The subsets bO™¢ are open in X. If X is a euclidean building, then also the subsets pO’¢ are
open.

Proof The openness of bO™ ¢ follows from the semicontinuity of diamonds, cf. Lemma 3.33. If X is a
euclidean building, then the openness of pO’ is a consequence of Corollary 3.46. O

Lemma 3.62 If xy is Tyoq-regular, then y € B(y,r) < bOywd for all sufficiently small r > 0.

Proof If r is sufficiently small, then the segments xz are 7,,,4-regular for all z € B(y, r). O

Lemma 3.63 (i) If z € bO7, then there exists s > 0 such that bO"* < bO"* .

X,),1 X,2,8 X,),F°

(ii) If X is a euclidean building and z € pOy"y, then there is s > 0 with bO"™ OT””"’ .

X,Z,8

Proof (i) Due to the semicontinuity of diamonds, see Lemma 3.33, there exists s > 0O such that for every
7 € B(z, s) the segment x7’ is Tjoq-regular and the diamond -, ,(x,7') still intersects the ball B(y, r).

(i1) The argument is the same, but using Corollary 3.46. It implies that there exists s > 0 such that for every
7 € B(z, s) the segment x7’ is T,04-regular and the diamond -, ,(x,7') still contains y. |
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Corollary 3.64 (i) The subsets bO;:'f‘:_“ form together with the open subsets of X the basis of a topology T, on

X™ If X is a euclidean building, then also the subsets pOZ’?‘”’ form a basis.

(ii) For every simplex T € 0., X, every asymptotically uniformly T,,,q4 -regular sequence y, — oo in V(x, st(7))
Tmod
X,¥YnsTn

(X" Ty). If X is a euclidean building, then also the subsets pO;';" form a neighborhood basis. In particular,

and every bounded sequence of radii r, > 0, the basic subsets bO form a neighborhood basis for T in
T, is first-countable.

Proof (i) Suppose that 7 belongs to a finite intersection m; bSh]m¢ . This means that V(x, st(7)) intersects all

X, Yiyti*
balls B(y;, r;). Let z € V(x,0st(7)) —{x} be apoint so that -, (x, z) also intersects them. Then z € N; bOwe, .
With the lemma it follows that 7 € bO;””Z”’fé alia¥ bO;:’;?[‘frl_ for all sufficiently small s. Furthermore, n; bOy%d, is

openin X.

Tmod

The subsets bO;:'ff_" are unions of subsets of the form p(:)xf . If X is a euclidean building, then vice versa the

subsets p(_);j'f"d are unions of subsets of the form bOZ'f‘:," by the last lemma.

(i1) Suppose that 7 € bSh, , - and that bO™ ¢ O™ for all n. Then there exist points z, € B(y,, r,) such

Xy YnsTn X, ),
that xz, i Teq-regular and - (x,z,) N B(y,r) = .
If X is locally compact, then after passing to a subsequence, xz, subconverges to a ray x( < V(x, st(7)) with
¢ € ost(1). Let w € x( be a point such that y € {, _(x,w), and let w, € xz, be points converging to it,
wy — w. Then {7 (x, w,) NB(y, r) # & for large n, due to the semicontinuity of diamonds, see Lemma 3.33,
and hence also -, ,(x,z,) N B(y,r) # J, a contradiction.

If X is a euclidean building, then it follows with Corollary 3.46 that y € ., . (x,z,), for large n, which is also
a contradiction.

Thus, the subsets bO"*  form a neighborhood basis. If X is a euclidean building, it follows that also the

Xy¥nstn
Tmod

smaller open subsets p();';j c box?ymrn form a neighborhood basis. |

We compare now the topologies 7, for different base points x.

By construction, they all restrict to the given topology on X.

Tmod

Regarding the comparison of the topologies 7 at infinity on ¢, _X and on the entire bordification X, we

Tmod
use that if a topological space is first-countable, then its topology is determined by the sequential convergence.
Namely, a subset is a neighborhood of a point, if and only if it cannot be avoided by a sequence converging to
this point. We therefore compare sequential convergence for the topologies 7,. We will do this only partially,

namely for arbitrary sequences in 0, X, but only for asymptotically uniformly 7,,,,-regular sequences in X.

Tmod

This will be sufficient for the purposes of this paper.

We first observe that 7;-convergence translates into Hausdorff convergence of diamonds and Weyl cones.

Lemma 3.65 (i) The convergence 7, — 7 in 0,,X with respect to T is equivalent to the Hausdorff
convergence V(x,st(7,))) n B(x,R) — V(x,st(7)) n B(x,R) of truncated Weyl cones for all radii R > 0.

(ii) For an asymptotically uniformly T,,,4-regular sequence x,, — oo in X, the convergence x,, — 7 in (X, T;)
is equivalent to the Hausdorff convergence <), ,(x,x,) "B(x,R) — V(x,st(7)) nB(x, R) of truncated diamonds
for all radii R > 0

Proof The first statement follows from the second one in view of Lemma 3.32.

For the second statement, suppose that x, — 7. Then for every point y € V(x,st(7)) and radius r > 0, the
diamonds <, ,(x,x,) intersect B(y, r) for all sufficiently large n. Hence, d(y, {~,,(x,x,)) — 0 as n — +o0,
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and the continuity of diamonds (Proposition 3.56) implies that . (x,y) < N, (<, (%, %)) with a sequence
€, — 0. Again in view of Lemma 3.32, this yields the asserted Hausdorff convergence. The converse direction
is clear. i

Corollary 3.66 The topology T, on X' ™ is Hausdorff.

Proof This is a direct consequence of first-countability and the last lemma, because it implies that limits of
sequences are unique. m|

We now compare the topologies 7, on 0, ,X. We do this by comparing them to the visual topology on 0 X.
For every type £ € int(7,,,04), there is the natural identification

(3-10) =N ¢

Tmod

with the subspace 07! (§) c 0.X, assigning to a point £ € 0,,X with type 0(&) = £ the type Tyoq Simplex T
spanned by it, £ € int(7).

Lemma 3.67 For every type e int(7,04) and every point x € X, the bijection (3-10) is a homeomorphism
with respect to the restrictions of the visual topology on X to ~1(¢) and the topology T, on X" t0 0, ,X.
Proof Let (£,) and ¢ be a sequence and a point in 67 (£) < 0,,X, and let (7,,) and 7 be the corresponding
sequence and point in 0, X, i.e. §, € int(7,) and £ € int(7). We must show that §, — ¢ ifand only if 7, — 7
with respect to the topologies in consideration.

Suppose that 7, — 7 with respect to 7,. Then V(x,st(r,)) — V(x,st(7)) by the previous lemma. In
particular, increasingly long subsegments xy, < x&, < V(x,st(7,)) become arbitrarily close to segments
Xy, < V(x,st(7)). We want to find Hausdorff close segments in V(x,st(7)) of the same type £. By
da(x,yn) — da(x,3n)| < d(yu,¥2) — O and, in a euclidean
Weyl chamber through y, with tip x, we find a point z, € V(x,st(7)) with da(x,z,) = da(x,y,). Then
d(zn,¥n) = |da(zn, ¥0)| = |da(x,22) — da(x,¥,)| — 0, and hence d(z,,y,) — O by the triangle inequality.
Moreover, 0(xz,) = 0(xy,) = & and therefore z, € x&, because ¢ is the only point in st(7) with type &. It
follows that x§, — x£,i.e. &, — £.

the triangle inequality for A-lengths (2-7),

Conversely, suppose that £, — &, i.e. x£, — x£. Then any ball centered at x¢£ is intersected by x&,, for all
sufficiently large n. Thus, 7, — 7 by our description of 7;-neighborhood bases. a

Corollary 3.68 The restriction of the topology T, to 0 X does not depend on x.

Tmod

Definition 3.69 (Visual topology) We call this topology on 0, X the visual topology.

Tmod

Now we show that the topologies 7T agree on the entire bordification X ™ N Tonod -regular directions”. We

reformulate the condition for 7,-convergence for asymptotically uniformly 7,,,4-regular sequences x,, — o0
given in Lemma 3.65 above, in order to show its independence of x. We do this separately in the symmetric
space (locally compact) and euclidean building cases.

In the locally compact case, we can express 7-convergence in terms of accumulation at infinity (the limit set)
in X:

Lemma 3.70 Suppose that X is locally compact. Then x, — T € 0, X with respect to T, if and only if the

Tmod

accumulation set of (x,) in X (with respect to the visual topology of X ) is contained in ost(7) < 05 X.
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Proof Since X is locally compact, the sequence (x,) subconverges in both X and X™. The latter holds,
because the sequence of diamonds <, ,(x,x,) Hausdorff subconverges and, in view of Lemma 3.32, the
Hausdorff sublimits must be type 7,,,a Weyl cones. Note also that (x,) accumulates in X only at the 704~
regular part 0! (0st(7,04)) Of 00X, as a consequence of asymptotic uniform 7,,.4-regularity.

Therefore, if the assertion is wrong, we may assume after passing to a subsequence, that x, — 7 in X" and
x, — & € ost(7’) in X for different simplices 7,7’ € 0., ,X. But then {,, ,(x,x,) — V(x,st(7)) according to
Lemma 3.65. Since xx, — x&’, it follows that &’ € st(7), a contradiction. O

In the euclidean building case, we can strengthen the condition of Hausdorff convergence of Weyl cones to
initial coincidence up to increasing radii.

Lemma 3.71 Suppose that X is a euclidean building. Then x, — 7 € 0, ,X with respect to Ty, if and only if
for every R > 0 it holds that )., ,(x,x,) N B(x,R) = V(x,st(7)) n B(x,R) for all sufficiently large n.

Proof This is a consequence of Lemmas 3.65 and 3.48. |

Corollary 3.72 Whether an asymptotically uniformly T,,,q-regular sequence x, — oo in X converges to a
simplex T € 0., ,X in (X", T;), does not depend on x.

Proof If X is locally compact, this follows immediately from Lemma 3.70. Assume therefore that X is a
euclidean building.

Let x,x' € X and suppose that x, — 7 € 0 X with respect to 7. By Lemma 3.71, there exists a sequence

Tiod
yn — 00 of points y, € xx, N V(x,st(r)). Let ¥/, € x'x, be points uniformly close to the points y,, e.g. such
that d(y/,,y,) < d(¥’,x). Then the sequence (y),) is contained in a tubular neighborhood (of radius d(x’, x)) of
V(x,st(7)), and hence also in a tubular neighborhood (of radius 2d(x’, x)) of V(x/, st(7)), because the two Weyl
cones have finite Hausdorff distance (< d(x’, x)). The sequences (y,) and (y/,) inherit from (x,) asymptotically

uniform 7,,,4-regularity.

Consider the subsegments x'z, = x'y, n V(x’,st(7)). According to Corollary 3.46, the distances d(z),,y,,) are
uniformly bounded, and therefore z, — co. Since -, , (X', z),) < O,y (K, x0) N V(X st(7)), it follows, using
again Lemma 3.32, that (¥, x,) — V(¥ st(7)). Hence, x, — 7 also with respect to 7. O

The corollary justifies the following definition.

Definition 3.73 (Flag convergence) We say that an asymptotically uniformly 7,,,4-regular sequence x,, — o0
in X flag converges to a simplex 7 € 0, X, if x, — 7 in (X™ T;) for some base point x.

Tmod*™ *

Now we can also make precise the coincidence of the topologies 7y “in 7,,,4-regular directions”. Suppose that

A < X is an asymptotically uniformly 7,,,4-regular subset, and consider the subset
A" =Aud, XX,

Tmod

Corollary 3.74 The topology induced by T, on A" does not depend on x.

Definition 3.75 (Topology of flag convergence) We call this topology on A™™ the topology of flag conver-
gence.
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As shown above, the topologies 7; and hence the topology of flag convergence on A™ are Hausdorff and
first-countable. Neighborhood bases at infinity have been described in Corollary 3.64.

We further discuss the flag convergence of sequences.

A situation when an asymptotically uniformly regular sequence flag converges, is when it stays close to a Weyl
cone:

Lemma 3.76 Suppose that the asymptotically uniformly T,,,q-regular sequence x, — o0 is contained in the
tubular neighborhood of the type 7,04 Weyl cone V(x,st(7)). Then x,, — 7.

Proof If X is locally compact, this follows from Lemma 3.70.

Suppose therefore that X is a euclidean building. Consider the points y, where the segments xx,, exit the Weyl
cone V(x,st()), i.e. xy, = xx, N V(x,st(7)). Then Corollary 3.46 implies that d(y,,x,) is bounded. Hence
Yn — 00 is an asymptotically uniformly 7,,,4-regular sequence in V(x,st(7)), and x, € p(_);f';j’ . The basic
form a neighborhood basis of 7. Thus, x, — 7 also in this case. a

mod

subsets pO;yn
We give a name to this stronger form of flag convergence:

Definition 3.77 (Conical convergence, cf. [KLP2, Def. 6.1]) We say that an asymptotically uniformly
Tmod-regular sequence x, — o0 in X flag converges conically to T € 0, X if it is contained in a tubular
neighborhood of the Weyl cone V(x, st(7)).

Corollary 3.78 Let V(x,st(7)) and V(x',st(7")) be type Tmoa Weyl cones. Suppose that for some D > 0
the intersection of their D-neighborhoods contains an asymptotically uniformly T,,,q4-regular sequence. Then

T=1.

Proof If (x,) is such an asymptotically uniformly 7,,4-regular sequence, then x, — 7 and x, — 7’. The
assertion follows from the Hausdorff property of the topologies 7. |

The following convergence criterion will be useful when X is not locally compact.

Lemma 3.79 Let x, — o0 be an asymptotically uniformly T,,,,-regular sequence in X, and let (7,) be a
sequence in 0y, ,X such that for some point x € X and some constant D > 0 it holds that x, € Np(V (x, st(7)))

for all m > n. Then the sequence (7,) converges, 7, — T € 0r, X, and x, € Np(V(x,st(7))) for all n. In

Tmod

particular, x,, — T conically.

Proof If X is locally compact, then there exists a convergent subsequence of simplices, 7,, — 7. It follows
that x, € Np(V(x,st(7))) for all n, and the assertion holds in this case.

Suppose therefore that X is a euclidean building (because otherwise X is locally compact). For suitable O, the
segments xx, are O-regular for large n. Let 7, € pShyimed. Applying Lemma 3.48, we obtain for any radius
r > 0 that

V(x,st(r,)) N B(x,r) = V(x,st(1)) N B(x,r)

for m = n = ny(r). Thus, both sides are independent of m and n, and isometric to
V(x,st(7m)) N B(x,r) = C(x,r)

for m > no(r). The union of the nested family of cones C(x,r) as r — +00 is a type Tuoq Weyl cone
V(x,st(7)). It follows that 7,, — 7 and x, € Np(V(x,st(7))). ]
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3.9 Ultralimits of parallel sets, Weyl cones and diamonds

Let X be a model space.

For a sequence of base points *, € X and a sequence of scale factors A, > 0 with w-lim )\, = 0, we consider
the ultralimit
(X *w) = w-lim(A\, X, *,)

of rescaled copies of X. We will use the following result :

Theorem 3.80 (B. Leeb, B. Kleiner, [KIL, ch. 5]) X, is a euclidean building of the same rank and type as
the model space X .

We will need later that certain families of subsets are closed under taking ultralimits.

Sequences of maximal flats in X ultraconverge to maximal flats in X, see also [KIL, ch. 5]: If F,, € X, n e N,
are maximal flats such that w-lim \,d(F,, *,) < +00, then

F, = w-lim\,F, c X,

is a maximal flat. Furthermore, if #, : F, — Fu0q are charts such that w-lim \,d(x;, ' (0),*,) < +oo for the
base point 0 € F,,,4, then the ultralimit

(3-11) /151 = w-lim m;l 2 Froa — Xo,

of the isometric embeddings ;"

* MFmoa — X, is an isometric embedding, and it is the inverse of
a chart s, for F,. (Note that w-lim,(\,Fy0q,0) = (Fyoq,0) canonically, because F,yq is self similar,

(MiFmod; 0) = (Fmod, 0) canonically, and locally compact.)

Euclidean Weyl sectors (chambers) ultraconverge to euclidean Weyl sectors (chambers), if their tips ultra-
converge: Let V(x,,7,) < X, be Weyl sectors and suppose that x, = (x,) € X, exists. Since sectors
are contained in maximal flats, we may assume that V(x,,7,) < F, and work with the charts k, and k.
Then (Oukin)Tn < OoFmoa is one of finitely many faces, and therefore w-always the same face 7. We put
7 i= (Oppk ;)7 < 05 F,, and obtain that

(3-12) w-lm A,V (%, ) = V(Xw, Tw)

and, regarding types, 6(7,,) = 6(7,) for w-all n. Applying (3—12) to the chambers & > 7 in 0y Fmoq and
taking the union, one obtains in particular that

(3-13) w-lim A,V (x,, st(7,) 0 O Fy) = V(xy, st(7w) N 0nFy),

a fact, which will be useful below.

Generalizing the fact for maximal flats, we will show next that parallel sets ultraconverge to parallel sets.

Consider a sequence of parallel sets P, = P(7,,7,7) X and assume that w-lim \,d(*,, P,) < +0. Let

P, = w-im\,P, c X,,.

Lemma 3.81 (Ultralimits of parallel sets) P,, is again a parallel set, i.e. P, = P(7, 7}

ww

) with a pair of
opposite simplices T+ < 0,,X,,. Moreover, (1) = 0(7F) for w-all n.
Proof We may assume without loss of generality that x, € P, and that (7.F) = T’;_ro , forall n.

In order to represent the P, as parallel sets of geodesic lines, we fix a type & € int(7,,04) and denote by
¢, € int(7,) the ideal points of type 6(¢,) = £. Then P, = P(l,) with the oriented geodesic line I, = P,
extending the ray *,&,.
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The ultralimit of lines
l, ;= w-lim \,l, c P,

is again an oriented line of type £. Let &, := I,(+0) € 0.X,, denote its forward ideal endpoint, and let

7 < 0,X,, denote the type T"Jfo , simplices spanned by the ideal endpoints /,,(+00).

Since every point in P, is contained in a maximal flat F,, > [,, and since sequences of maximal flats F,, © [,
ultraconverge to maximal flats F,, © [,,, we have that

P, < P(l,).
We must show that P, fills out P(/,,). Note that, as an ultralimit of subsets, P,, is closed.
Let x,, = (x,) € X,,. The ray x,{,,  X,, is the ultralimit of the rays x,&, < X,,. We apply Proposition 3.43 and
Proposition 3.44 to conclude that x,,&, dives within uniformly bounded time into P,,. Namely, fix a constant
d > 0 and choose © > £. Let C” := max(C(©,d), (sin€y(0))~!) with the constants appearing in these results.
Let y, € x,&, be the point at distance d(x,,y,) = C"-d(x,, P,). Then y, € Ny(P,). (If X is a euclidean building,
even y, € P,.) The ultralimit point y,, € x,&, is defined and has distance d(x,,y,) = C"d(xy,,P,) < +©
from x,,. Since \,d — 0, we have that y,, € w-lim \,Ny(P,) = w-limNy 4(A,P,) = No(P,,) = P,,. Thus,
the ultralimit ray x,&, enters P, within uniformly bounded time.

As a consequence, every geodesic line I, — X,, parallel to [, must already be contained in P,,. This means
that P, = P(l,) = P(7;, 7). ]

ww

Using the result on parallel sets, we will deduce the ultraconvergence of Weyl cones from the ultraconvergence
of Weyl sectors. Consider a sequence of Weyl sectors V(x,, 7,) < X which ultraconverge as in (3-12). Then
the corresponding Weyl cones ultraconverge, too:

Lemma 3.82 (Ultralimits of Weyl cones) w-lim A,V (x,, st(7,)) = V(xw, st(7)).

Proof The left-hand side is the union of the ultralimits w-lim A,V (x,, 0,) for all sequences of chambers
On D Ty in 0 X . By (3—13), these ultralimits are euclidean Weyl chambers V(x,,, 0,,) with chambers o,, D 7,
in 0xX,, i.e. o, < st(7,). This shows that

w-lim A,V (x,, st(7,)) < V(xw, st(7,))-

To verify the reverse inclusion, we work inside parallel sets containing the Weyl cones. Let 7, € 05X be faces
Xn-opposite to the faces 7,,. Then V(x,, st(,)) < Py = P(Tn, Tn).

Consider a sequence of maximal flats F,, = P, containing the points x,,, and the ultralimit flat F, = w-lim A, F,.
Then 7, € 0o Fy and 7, € 0o F,,. Applying (3—13) yields that

V(xy, st(1w)) N Fypy = V(xw, st(1w) N 0Fy,) = w-lim A,V (x, st(7,) N 0 Fy).
The union of all flats F, arising in this way as ultralimits is precisely P, := w-lim \,P,,. Hence
V(xy, st(7w)) N Py € w-lim A,V (x,, st(73)).

Now we use that parallel sets ultraconverge to parallel sets. By Lemma 3.81, P,, = P(7,, 7,,) with a face 7,
which is x,,-opposite to 7. It follows that V(x,,, st(7,)) < P, and

V(xw, st(7,,)) < w-lim A\, V(x,, st(1,)),
which finishes the proof. |

Finally, we describe ultralimits of sequences of diamonds. Consider a sequence of ©-regular segments

- : e —
x,; % < X and the Toq-diamonds $p i= &7 (%, X!

Oy i= w-lim A\, <O

) spanned by them. Let
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Lemma 3.83 (Ultralimits of diamonds) If the sequence of segments x;, x,” ultraconverges to a segment

n
x,xb < X, then &y = Or (X0, X0
Proof We recall that diamonds are forever. In order to work inside sequences of parallel sets, let (7,7, 7,") be

pairs of (x;,x;")-opposite type 7. , simplices in 0.oX. Putting P, := P(7,7,7,;) and V¥ := V(x},st(7)) =
P, , we have that

On =V AVIcP,

Lemma 3.81 implies that
P, = w-lim\,P, = P(7, 7))

w W
with a pair (7, 7.1) of (x,,x])-opposite type Tri) , simplices in dX,,. Moreover,
by Lemma 3.82,

VI = w-lim\,VE = V(xf, st(rF)) < Py,

Clearly,
Quwc V, nVEcP,,

and we must prove that $,, = V, n V.

Since the segment xx,

~ is O-regular, and hence, in particular, is 7,,,4-regular, the intersection of interiors

int(Vy ) nint(V}) isdense in V; n V. Since <, is closed (being an ultralimit of subsets), it therefore suffices
to show that int(V ) nint(V}) < &y .

Let z, € int(V;) n int(V.}). We may assume that z,, = (z,) with z, € P,. Since z,, € int(VZ), the segments
X, 7, and z,x; are longitudinal. It follows that the segments x;, z, and z,x, are longitudinal for w-all n. So,
€V, "V =3, and z, € . m|

4 Modified Carnot-Finsler metric and its contraction
property

4.1 A modified Carnot-Finsler type metric on diamonds
Suppose that X is a model space.

Definition 4.1 A broken path xox; . . . x; in a diamond <> is called non-longitidinal, if each segment x;x; 1 of
this path is nonlongitudinal.

On the diamond <) = ., ,(x—,x;) we introduce the pseudo-metric d¢, which is obtained by infimizing the
length of broken non-longitudinal paths xgx; ...x; in < with xo = x_,x; = x4 . The triangle inequality and
symmetry are clearly satisfied by d¢, but, in general, d¢, is only a pseudo-metric, because points may have
infinite distance.

The modified metric d¢, is larger than the original metric,
de = d|o.

It obviously agrees with d in the non-longitudinal directions, i.e. for a non-longitudinal segment xy < { we
have d¢, (x,y) = d(x,y). However, d,, is strictly larger than d in the longitudinal directions:
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Lemma 4.2 For a longitudinal segment xy in <>, we have
d<>(xa)’) =C- d(xay)

with a constant C = C(0(Xy)) > 1 depending continuously on the direction type 6(Xy).

Proof We choose an (x_,x )-opposite type ((Tmods Tmoa) pair of simplices (7—, 7). Then { < P(7—, 7).
The longitudinal segment xy can be extended inside P(7_, 7+ ) to alongitudinal ray x¢, i.e. £ € ost(74)uost(7_),
say £ € ost(7y). Along xy, the Busemann function b¢ decays with minimal possible slope = —1. On the
other hand, along any non-longitudinal segment in P(7_, 7 ), and hence along any piecewise non-longitudinal
geodesic path in <) connecting x to y, it has slope > —1+¢ with a constant e > 0 depending continuously on the
(Tits) distance of £ from 0 st(74 ), whichin turn depends only on §(Xy). It follows that (1—¢)-d¢ (x,y) = d(x,y),
whence the assertion. O

Whether the modified metric d¢, can be bounded above in terms of the original metric, depends on the geometry
of the face type T4 © Omod- Note that!

St(Tmod ) = WT,,me- mod & Amod

is a proper convex subcomplex, because X has no euclidean factor, and hence contained in a closed hemisphere.
In fact, it is contained in all closed hemispheres with center in 7,,,4. (Recall that chambers have diameter < % )
Thus, st(7,0q) is itself a hemisphere if and only if 7,04 is a root type vertex, Tmos = {(}, and the spherical

Coxeter complex (@04, W) is reducible with the 0-sphere {+(} as a join factor.

Lemma 4.3 If st(7,,04) is not a closed hemisphere, then
de < C-d|g

with a constant C = C(opq) > 1.

Proof We must bound above the <>-length of longitudinal segments.

Let P(7—,7+) D < be an ambient parallel set for an (x_,x, )-opposite pair of simplices (7_,7) of type

(1. T

- od> Tamg) - Then a longitudinal segment x”_x/, < ¢ is contained in a maximal flat F < P(7_, 7). Assuming

that the segment is oriented so that x/, € V(x%,0st(74)), we have ' := (X, X)) < &, and the “flat
diamond" ¢’ N F is the intersection of the two flat sectors V(x’,st(74+)) N F = V(x’,st(71) N 05 F). Note
that 74 < 0o F, 50 st(74) N O F = St(Timod) -

We will bound d¢ (x”_,x, ) above by connecting the points x; inside {’ N F by a piecewise non-longitudinal
path with controlled length. This can be done by a path x”_yx/_ in the boundary of )’ n F.. To see this, choose
a pair of antipodes (4 € 74 and note that st(71) < B((4, %) is a proper convex subset. Accordingly, the
convex subcomplexes st(74) N JooF of the apartment 0o F are proper subsets of the “complementary” closed
hemispheres B((4, T) N 0xF . Since the open hemispheres are disjoint, a ray x’ 7, in the boundary of the flat
sector V(x'_,st(14.) N 0o F) with 0y € st(74) N B((4, 5) N O F intersects the boundary of the other flat sector
V(x/,,st(T—) n 0 F), and we take y to be the (unique) intersection point. The path x_yx, in the boundary of
&' N F then consists of two non-longitudinal segments contained in boundaries of 7,,,4-Weyl cones.

To control the length of the path x”_yx/, , we note that, since there are only finitely many face types Tyod < Omod,
and hence only finitely many possible isometry types of subcomplexes st(74+) N 05 F, the ray x’_n; in the
boundary of V(x"_, st(71.) N 05 F) can be chosen so that Zzy,(n4, () < 5 —¢ for auniform § = 6(opmeq) > 0.
Then Zy(x_,x4) = 0. The triangle A(x"_,y,x/,) lies in the flat F, and elementary euclidean geometry yields

'st(Timoa) here refers to the star within ayeg .
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an estimate of the form d(x’_,x',) > ¢ - (d(x__,y) + d(y,x.)) with a constant ¢ = ¢(d) > 0, and hence
do( %) < e -d(x ). :

Thus, under the assumption of the lemma, the modified metric d¢, is uniformly equivalent to the original metric
d on X, and in particular it is an honest metric. Furthermore, the distortion is small in almost non-longitudinal
directions:

Lemma 4.4 If st(7,,,4) is not a closed hemisphere and if xy — < is a longitudinal segment with direction
e-close to a non-longitudinal direction, then

de(x,y) < (1 + Ce) -d(x,y)

with the constant C from the previous lemma.

Proof For the proof, we switch notation (replacing x,y by x/;) and use some of the notation in the proof of
the previous lemma.

Suppose that the direction of the longitudinal segment x”_x/, is e-close to a non-longitudinal direction. Then a
ray x’_n4 in the boundary of V(x’_,st(71) n doF) can be chosen so that £ (x,,73.) < e. Lety’, € x'_ny be
the point with d(x’_,y’,) = d(x’_,x_). Note that the triangle A(x"_,y’_,x’,) lies in the flat F and that its side

x"_y', is non-longitudinal.
If y/, € {, then we can estimate using the previous lemma:
do (¥, 2y ) < do (W) +do (Vo)) <d(d 2y ) + C-d(y, X)) < (1+ Ce)-d(x,x,)

Otherwise, the segment x”_y’, leaves <{)’, equivalently, the Weyl cone V(x,,st(7_)) in a point y’. Then the
path x”_y'x_ consists of two non-longitudinal segments and, according to the triangle inequality, has length
<dWY,) +d(, ) < (14 - d(,2,). 0

Suppose now that st(7;,,¢) is a hemisphere, which means as mentioned above that 7,,,¢ = {(} is a root type
vertex and st(Teq) = B(C, %), i.e. the spherical Coxeter complex (doq, W) is reducible and splits off the
0-sphere {+(} as a join factor.

Accordingly, 7+ = {(+} are antipodal root type vertices, st(7+) = B((+, ) and the model space splits off a
rank one factor, i.e. it splits metrically as the product

X=TxX

of a rank one symmetric space or a metric tree 7 and a model space X’ of corank one. The ideal vertices in
OrisT < OrirsX are the type E ideal points. The type T, parallel sets are of the form [ x X’ for a geodesic line
[ < T, the Tyoq-Weyl cones of the form r x X’ for a geodesic ray r — T, and the 7,,,4-diamonds are of the
form s x X’ for a geodesic segment s — T. A segment in X is 7,,,q-regular if and only if it is not contained in a
cross section pt x X’. The longitudinal segments in 7;,,4-diamonds are precisely the 7,,,4-regular ones. Thus,
the non-longitudinal paths are precisely the paths contained in cross sections.

It follows that two points in <} have finite <{>-distance if and only if they lie in the same cross section, and on
cross sections d¢ coincides with d. In particular, d¢, is not an honest metric in this case.

Remark 8 Our discussion shows that any two points x,y € { with finite {>-distance can be connected by a
polygonal path in {» with d-length d¢(x,y) consisting of at most two non-longitudinal segments.
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4.2 Contraction properties of nearest point projections in euclidean buildings

In this section, let X be a euclidean building without flat factor.
Recall that for a closed convex subset C — X the nearest point projection m¢ : X — C is 1-Lipschitz. In

this section, we give sharper contraction estimates for projections to diamonds. This is based on the following
general observation. Here, int(XzC) denotes the interior of ¥;C as a subset of ¥zX.

Lemma 4.5 Fore > 0 and A > 1 there exists R = R(e,A) > 0 such that the following holds:

Let C < X be closed convex, and let x, y € X be points with projections X = w¢(x) and y = 7c(y). Suppose that
d(x,y) < A-d(%,y) and d(x,X) > R-d(%,7). Then the direction Xy is e-close to a direction in X3C — int(XxC).

Proof The assertion is scale invariant and we may therefore assume that d(x,y) = 1.

Since ¥ = 7c(x), we have that Z;(%x, $;C) > . In particular, Z(x,5) > T and, analogously, Z5(y,%) > .
To see that these angles can exceed 7 only by arbitrarily little if R is sufficiently large, we proceed as follows
using triangle comparison.

In order to bound cos Z3(x,y) from below, we divide the quadrilateral [J(x,y, y, X) into the triangles A(X,y,y)
and A(X,x,y). Let D = d(x,y). Applying comparison to A(X,y,y) yields for the angle oo = Z3(¥,y) that

1
cosa = —

o

because Z;(X,y) > 5. And applying comparison to A(X,x,y) yields for the angle 3 = Zz(x,y) that

X, x
) A
< =
sin 8 D
because d(x,y) < A. It follows for Zz(x,y) < a + [ that

A2
cos Zz(x,y) = cosacos B — sinasin§ = \/71)2 ﬁ

The right-hand side tends — 0 as R — +c0. Thus, Zx(x,¥) < 5 + € for suitable R > R(¢,A).

Now let v € X;C be the direction where the shortest arc in E)—CX connecting %X to xy enters X;C. Since
Z3(xx,v) =, it follows that Zz(v,X3) < €. By its definition, v ¢ int(XxC). O

In the special case of 7,,,0¢-diamonds & = &, (x_,xy), the lemma yields, cf. Lemma 3.34:
Corollary 4.6 If C = {), then the direction Xy (in the above lemma) is e-close to a non-longitudinal direction.

We apply this observation to estimate the local contraction of projections. The main result of this section is the
following estimate which is interesting in itself:

Theorem 4.7 (Contraction estimate) For a Tyq-diamond { = {, ,(x_,x;), the map

(X,d) =2 (O, doy)
is locally 1-Lipschitz outside <.
Proof Suppose that xy is a segment disjoint from <), and let » > 0 be so small that xy stays outside the

r-neighborhood of <{». We fix constants ¢,A~! ~ 0 and subdivide xy into subsegments of length < R~'r
with the constant R = R(e,A) from Lemma 4.5. We project the subdivision points to . According to the
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corollary, the segments connecting the projections of subsequent subdivision points have directions e-close to
non-longitudinal directions or have length < A~! times the length of the corresponding subdivision segment.

If St(Tmod) < Amoa is not a hemisphere, then the modified metric d¢, is uniformly equivalent to the original
metric d|¢ and almost undistorted in almost non-longitudinal directions, cf. Lemmas 4.3 and 4.4. Denoting by
¢ the polygonal path in <> connecting the projections of the subdivision points, and by L and L, the lengths
measured with respect to the metrics d and d¢,, we obtain

c 1
do(m6(1), 76 (1)) < Lo(@) < (1+ Co) - L) + 5 - d(x,y) < (1+Cle+ 1)) -d(x,)
with the constant C of Lemma 4.3. The assertion follows in this case by letting ¢, A~! — 0.

Otherwise, if st(7,04) is @ hemisphere, the assertion becomes trivial: The euclidean building splits as the
product X =~ T x X’ of a metric tree T and a euclidean building X’, and the 7,,,4-diamonds are of the form
¢ = s x X' for segments s < T (cf. above). The projection has the form 7, = 7, x idys with the nearest point
projection 7y : T — 5. Outside <), the m;-component is locally constant, so 7 locally maps into one cross
section. The assertion holds, because d¢, and d agree on cross sections. |

S Regular implies Morse

In this chapter we prove the main result of this paper, the Morse Lemma for 7,,,,-regular quasigeodesics in
model spaces, Theorem 1.3 in the introduction.

5.1 Rectifiable paths in euclidean buildings

Let X be a euclidean building.

It is natural to ask (compare the definitions in sections 3.1 and 3.2):

Question 5.1 Are 7,,,4-regular paths in euclidean buildings contained in type 7,,,4 parallel sets as longitudinal
paths?

The goal of this section is to answer the question affirmatively for locally rectifiable paths, cf. Theorem 5.6
below.

We begin by discussing basic properties of 7,,,4-regular paths ¢ : I — X.

The segment c(f)c(s) is 7. ,-regular for +s > +¢ and its 7. ,-direction 74 (c(t)c(s)) < VX at (1) is
therefore well-defined.

Lemma 5.2 Let ¢ € I such that +t is not maximal in +1. Then the 7= ,-direction T (c(t)c(s)) for +s > +t

does not depend on s, i.e. there is a well-defined type T;l—r o simplex 74.(t) < X)X such that

O

T+ (c(t)e(s)) = 74(1) for +s > +t

Proof The direction c(t)c(s; € XX varies continuously with s, and the type TX  open stars are the

mod
connected components of the 7

noq-regular part of 3. )X. The direction must therefore remain in the same

open star. O

Lemma 5.3 For [a,b] I and t € (a,b), the T  -directions 7 () are opposite to each other if and only if

mod
c(t) € Ora(cla), c(b)).
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Proof The segment c(f)c(a) is 7, ,-regular and c(f)c(b) is 7, ,-regular. Hence c(f) can only lie in the
interior of -, (c(a),c(b)) and, according to the description (3—1) of the interior of diamonds, it does so if
and only if the 7= -directions 7_(c(f)c(a)) = 7—() and 7+ (c(t)c(b)) = 74 (t) of these segments at c(t) are
opposite to each other. =]

As a consequence of these two lemmas, we obtain a “local-global" equivalence for the straightness of triples on
the path:
Corollary 5.4 For [d',b'] c [a,b] c I and t € (d',b"), we have:

c() € Or,(c(a), (b)) < (1) € Or,py(c(d), (b))

Another useful consequence is:

Corollary 5.5 If [d',b'] < [a,b] I andif ¢(d'),c(V) € & = {5,y (c(a), ¢(b)), then the segment ¢(a’)c(b)
is longitudinal in ).

Proof With the last lemma, we see that the pair of T,;l—: ,-directions 74 (a’) is opposite, as well as the pair
74+ (b'). The assertion then follows e.g. from Corollary 3.38. O

The main result of this section is a positive answer to Question 5.1 for arbitrary (i.e. possibly non-discrete)
euclidean buildings in the rectifiable uniform case:

Theorem 5.6 Let X be a euclidean building. Then every rectifiable © -regular path ¢ : [a,b] — X is contained
in the © -diamond { = {go(c(a),c(b)) spanned by its endpoints and is longitudinal in <.
We break the proof up into several steps.

We observe first that, arguing by contradiction, we may assume that the path does not touch the diamond at all
except at its endpoints:

Lemma 5.7 If the path c : [a,b] — X is Tyeq-regular and not contained in ) = {, (c(a),c(b)), then there
exists a nondegenerate subinterval [a',b'] < [a,b] such that ¢(t) ¢ {r,,(c(d’),c(b')) forallt € (a',b).

Proof Denote ) =, ,(c(a),c(b)), and let (d’,b’) be a connected component of the nonempty open subset
{tel:c(t) ¢ $}. Then c(d'),c(b) € < and, invoking Corollary 5.5, we know that the segment c(a’)c(b’) is
longitudinal, and hence -, ,(c(d’),c(b')) < . ]

The intuition behind the proof of the theorem is that it “costs length” for a 7,,,4-regular path to move outside
the diamond of its endpoints, due to the contraction properties of projections as described in section 4.2. The
key step in the proof is:

Lemma 5.8 Let ¢ : [a,b] — X be a path such that the oriented segment c(a)c(b) connecting its endpoints is
Tmod -regular and such that ¢(t) ¢ & = &+, ,(c(a),c(b)) forall t € (a,b). Then

L(c) = do(c(a), c(D))-
Proof Let 7wy : X — < denote the nearest point projection. We consider the projected curve ¢ := m¢ o ¢ :

I — . Since c lies outside <) except for its endpoints, Theorem 4.7 yields that

L(c) = L (?)
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where L is the length measured with respect to the modified metric d¢,. The assertion follows, because
Lo (€) = do(c(a), c(b)) =

As a consequence, almost distance minimizing (cf. Definition 2.1) uniformly 7,,,4-regular paths must touch
the diamond of their endpoints:

Lemma 5.9 There exists ¢ = €(©) > 0 such that the following holds: If the path c : [a,b] — X is © -regular
and e-distance minimizing, then ¢(t) € { for some t € (a, D).

Proof Due to the compactness of O, there exists an € = ¢(©) > 0 such that d¢, > (1+¢)-d for ©-longitudinal
pairs of points in <, cf. Lemma 4.2. The assertion then follows from the previous lemma. O

Based on Corollary 5.4, we can extend the last result to rectifiable paths of arbitrary length, because these
contain arbitrarily distance minimizing subpaths:

Lemma 5.10 If c: [a,b] — X is O-regular and rectifiable, then c¢(t) € { for some t € (a,b).

Proof Let ¢ = ¢(©) be the constant from Lemma 5.9. There exists a nondegenerate subinterval [a’,b'] <
[a, b] such that the subpath c¢|[, 4 is e-distance minimizing, cf. Lemma 2.2. Then Lemma 5.9 implies that
c(t) € $npy(c(d), c(b')) for some t € (a',b"). With Corollary 5.4, it follows that also ¢(7) € $. ]

We are ready to conclude the proof of the theorem.

Proof of Theorem 5.6. Suppose that ¢ is not contained in $g(c(a),c(b)). Then, by O-regularity, it is also not
contained in ) = <, ,(c(a),c(b)). According to Lemma 5.7, after replacing ¢ by a subpath, we may assume
that ¢(¢) ¢ < for all 7 € (a,b). But this contradicts Lemma 5.10, so c¢ is contained in $g(c(a),c(b)). Itis
longitudinal by Corollary 5.5. a

As a consequence of the theorem, we obtain with Lemma 3.11 that rectifiable uniformly 7,,,4-regular paths are,
up to reparametrization, bilipschitz; they become bilipschitz when parametrized by arc length:

Corollary 5.11 (Bounded detours) L(c) < L(©) -d(c(a),c(D))

We have the following implications of the theorem for infinite paths:

Corollary 5.12 (i) Every locally rectifiable and uniformly T,,,4-regular path ¢ : I — X is contained in a type
Tmod parallel set as a longitudinal path.

(ii) Every locally rectifiable and uniformly T,,,, -regular path c : [0, +00) — X with infinite length is contained
as a longitudinal path in a Weyl cone V(c(0), st(c(+0o0)) for a unique simplex c(+o0) € Flag,  (0X).

(iii) Every locally rectifiable and uniformly 7,,,q-regular path ¢ : R — X, both of whose ends have infinite
length, is contained as a longitudinal path in a parallel set P(c(—0),c(+0o0)) for a unique pair of opposite
simplices c¢(+0) € FlagTird(&ooX).

Proof (i) By Theorem 5.6, for every compact subinterval [a,b] < I, the corresponding part of the path is
contained in the diamond <, ,(c(a),c(b)). These diamonds are nested, i.e. for [¢',b'] < [a,b] < I, it holds
that . (c(d'),c(b')) < &ru(cla),c(b)). Since the path ¢ is uniformly 7,,,4-regular, the closure of the
union of these diamonds over all compact subintervals of [ is either a type 7,04 diamond, a Weyl cone or a
parallel set. The longitudinality follows from the longitudinality part of the theorem.
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(ii) The sequence (c(n))uen, is ©-regular and diverges to infinity in view of Corollary 5.11. By the theorem,
c([0,n]) < Ge(c(0),c(n)) for all n. In this situation, Lemma 3.79 applies, after enclosing the diamonds
Oroa (€(0), ¢(n)) into auxiliary Weyl cones V(c(0),st(7,)), and yields that the sequence (c(n)) is contained
in a Weyl cone V(c(0),st(c(+c0)) for a simplex c(+c0) € Flag, (0,X), which is unique according to
Lemma 3.76. Since V(c(0), st(c(400)) then also contains the diamonds <, ,(c(0), c(n)), it contains the entire
path c.

(iii) By part (ii), there exist unique simplices ¢(£00) € FlagTid (0uX) sothat ¢(£[zt, +0)) < V(c(+1), st(c(£00))).
It follows that for any #; < #, and any ideal points {4 € ost(c(+00)), the biinfinite broken path &_c(#;)c(t2)&+
iS Timoq -straight. Proposition 3.23 then implies that the simplices ¢(+00) are opposite and the path ¢ is contained

in the parallel set P(c(—00),c(+0)) as a longitudinal path. O

Definition 5.13 (Endpoint at infinity) For a locally rectifiable and uniformly 7,,,4-regular path ¢ : [0, +o0) —
X with infinite length, we call the simplex ¢(+c0) € Flag, (0xX) its Tiod -endpoint at infinity or ideal Tipd-
endpoint.

We apply our results to paths of infinite length which remain close to a Weyl cone or a parallel set. In some
situations one can show that they must be contained in it.

Corollary 5.14 Let ¢ : [0,+00) — X be a ©-regular L-bilipschitz ray which is contained in the tubular D -
neighborhood of a type T,qa Weyl cone V with tip at ¢(0). Then V = V(c(0), st(c(+00))) and c is contained
in V as a longitudinal path.

Proof Suppose that ¢([0, +0)) = Np(V(c(0),st(ry))) for a simplex 7, € Flag, (0X) and some D > 0.
According to Corollary 5.12, ¢ is contained in the Weyl cone V(c¢(0), st(c(+0))) as a longitudinal path. The
sequence (c(n))uen is ©-regular. Corollary 3.78 therefore implies that 7. = ¢(40). O

If a biinfinite 7,,,4-regular bilipschitz path is close to a type 7,,,4 parallel set, we need a longitudinality property
for its projection to be able to conclude that it must be contained in the parallel set. We denote by ¢ = mpoc
the projection of the path c to the parallel set P.

Corollary 5.15 There exists a constant [ = [(L,©,D) > 0 such that the following holds:

Suppose that ¢ : R — X is a ©-regular L-bilipschitz line which is contained in the tubular D -neighborhood
of a type Tyoq parallel set P. If for some interval [a’,b'] — R of length > I the segment ¢(a')c(b') < P is
longitudinal, then P = P(c(—),c(400)) and c is contained in P as a longitudinal path.

Proof Suppose that P = P(7_,74) with opposite simplices 74 € Flagﬂid((?ooX), and ¢(R) < Np(P) for
some D > 0. The projection ¢ = 7p o ¢ is coarsely longitudinal by Lemma 3.14. More precisely, we choose
©’ depending on © and put / = LcD with the constant ¢ = ¢(©,0’) > 0 from Lemma 3.5. Then Lemma 3.14
yields that for all subintervals [a’, b’] = R of length > [ the segment ¢(a')¢(b') < P is longitudinal. It follows
for the bilipschitzrays ry = ¢[[o, 1) and r— = ¢[(_ ) that mpor4 is contained in a tubular neighborhood of the
Weyl cone V(¢(0), st(74+)) = P, and hence r4 in a tubular neighborhood of V(¢(0), st(74)). By Corollary 5.14,
T+ = ¢(£00). According to Corollary 5.12, ¢ is a longitudinal path in P(c(—0), c(+00)) = P. O

Remark 9 For discrete buildings, the answer to Question 5.1 is affirmative without restriction on the paths.
Using that discrete euclidean buildings are locally conical, it is not hard to show that every 7,,,4-regular path
¢ : [a,b] — X in a discrete euclidean building X is contained in -, ,(c(a), c(b)).
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5.2 The Morse Lemma for quasigeodesics in CAT(0) model spaces

We recall that the Morse Lemma for quasigeodesics in Gromov hyperbolic spaces asserts that uniform quasi-
geodesics are uniformly close to geodesics. The main result of this paper is the following generalization to
model spaces of arbitrary rank, where geodesic lines (rays, segments) are replaced by parallel sets (cones,
diamonds):

Theorem 5.16 (Morse Lemma) Let X be a model space. Suppose that q : [a_,ay] — X is a (©,B)-
regular (L, A)-quasigeodesic and that x_x is a © -regular segment oriented B-Hausdorff close to g(a_)q(ay).
Then the image of g is contained in the D-neighborhood of the diamond <}, (x_,x.), with a constant
D =D(L,A,0,B,X) > 0.

Proof We will deduce the theorem from the corresponding result for bilipschitz paths in euclidean buildings, cf.
Theorem 5.6, by passing to ultralimits. We may work without loss of generality with continuous quasigeodesics.

We argue by contradiction. Suppose that a uniform constant D does not exist and consider, for a fixed model
space X and fixed data (L, A, ©, B), sequences of (O, B)-regular (L,A)-quasigeodesics

Gn: Iy = la, ,a}] — X,

no’n

of ©-regular segments x, x;” oriented B-Hausdorff close to the segments g,(a, )g.(a, ), and of positive

n

numbers D, — +00, such that the image of g, is contained in the D, -neighborhood of
<>i‘l = <>Tm0d ('x; ) x; )7
2 +

but not in its %Dn -neighborhood. We may assume that ¢, < 0 < ;| and that ¢,(0) has almost maximal

n
distance > %Dn from <,. Note that liminf, D, 1|aj{| > 0.

Let P, = P(7,7,7,7) = X be a type Tyoq parallel set through the points x such that the segment x, x;" is

n

longitudinal. Then
On = Vi st(r) A V(s stlry

n )) = Pn
and the image of g, is contained in the D, -neighborhood of P,,.

The next result provides important information on the position of the quasigeodesics g, relative to the parallel
sets P, if the length of g, grows faster than the scale D,,.

Let g, = 7p, © g, denote the nearest point projection of g, to P, . We fix some ©’. (As usual, ©’ is supposed
to contain O in its interior.)

Lemma 5.17 (Coarsely longitudinal on scale D,) For every subinterval [b, ,b,}| < I, of length > L(A +
¢(B+ D,)) the segment g,(b, )gn(b,") < P, is ©'-longitudinal, where ¢ = ¢(©,0’) > 0 is the constant from
Lemma 3.5.

Proof This is a direct consequence of Lemmas 3.7 and 3.14, because the segment g,,(a,, )g,(a;") is longitudinal
by the choice of P,. |

Now we pass to the ultralimit.

We choose base points *, € {, with d(g,(0),*,) < D,, rescale (copies of) the space X with the scale factors
D;' — 0 and then take the ultralimit (with respect to some nonprincipal ultrafilter w). As proven in [KIL, ch.
5], the ultralimit of rescaled model spaces

(X, %) = w-lim(D; X, ,)
n
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is a euclidean building of the same type o4, cf. section 3.9. The ultralimit of parallel sets

P, = w—limDn_an c X,

n
is again a type 7,04 parallel set,
Pw = P(Toja T:)r)

for a pair of opposite type Tn;_ro 4 simplices 7 < 00X, cf. Lemma 3.81. The ultralimit of diamonds

Suw 1= w—limD;IOn c P,
is a closed convex subset which contains the base point *,,. It is in general not a diamond, but it inherits the
following geometric property from the diamonds <$,:

Lemma 5.18 If the segment y_y} < <, is longitudinal, then -, ,(v,,v}) € Ow -

Proof The segment y_ v/ is the ultralimit of segments y, ;" < <, and these segments are longitudinal for
w-all n. Hence -, (v, , ¥ ) < On due to Lemma 3.37. With Lemma 3.83 it follows that ., ,(v,,y)) =
w-Em D r (i) < Do O

The rescaled paths D, 'q, : D; ', — D, 'X given by

(DrTI‘In)(tn) = qn(Dntn)

are (©, D, 'B)-regular (L, D, 'A)-quasigeodesics. Their ultralimit g, = w-lim, D, 'g, : I, — X,, given by

qu(tw) = (qn(Dntn))

is a well-defined L-bilipschitz path because D, 'A — 0, cf. Lemma 2.16, and ©-regular because D, !B — 0.

Its domain is the interval I, = [a],a}] N R, where a = w-lim D, 'at and +aZ € (0, +o0]. If |at| < +o0,
then the endpoint
qu(al) = w-limg,(af) = w-limxF =: x*

exists and lies in {,,. Otherwise, the corresponding end of ¢, has infinite length and diverges to infinity.

By construction,
Qw(lw) < Nl (<>0J)7

but
qu (Iw) ¢ <>w-

In particular, ¢, (l,) < Ni(P,), and we denote by g, = 7p_ o q, the nearest point projection. Then
d(Gw,qw) < 1.

Regarding the position of g,, relative to the parallel set, it inherits from the g, uniform longitudinality beyond
a certain scale:

Lemma 5.19 (Coarsely longitudinal ultralimit) For every subinterval [b_,b.| < I, of length > %CL the
segment G, (b_)q.(b+) < P, is ©-longitudinal.

Proof Apply Lemma 5.17 taking into account that D, 'A, D, 'B — 0. o

If g, has infinite length, then the coarse longitudinality restricts the asymptotics of its end(s); they must flag
converge to the simplices 7. We get the following information on <,
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Lemma 5.20 If |a}| = +oo, then V (%, st(72)) < O .

Proof Suppose that af = +oo. We have that d(7¢,, © quw,Gw) < 2. Lemma 5.19 therefore implies that
the segment connecting =, to the point 7 (g, (t)) € < is longitudinal for all sufficiently large ¢ > 0, i.e.
7o, (qw(t)) € V(*w,st(7))). In particular, for any sequence # — +o0 it holds that m¢, (g (%)) — 7.
(equivalently, g, (tx) — 7.) as k — +00, even conically, cf. Lemma 3.76. The longitudinality of the segments

implies furthermore that

<>Tmod (*w’ T (Qw (t))) < Quws

cf. Lemma 5.18. The assertion follows now with the description of flag convergence in euclidean buildings
given in Lemma 3.71. The case a,, = —0 is analogous. |

This allows us to classify the possibilities for {,:

Corollary 5.21 <, either equals the diamond <y, ,(x_,x), or one of the two Weyl cones V(x;, st(7F)), or

w W w

the full parallel set P,,, depending on whether both, one or none of the points x, are defined.

Proof If the endpoint x= of g, exists, then clearly >, = V(x%,st(7})), because <, < V(xi,st(r;})). If it
does not exist, then V (%, st(7¥)) = <$,, by the previous lemma.

Thus, if none of the endpoints exists, then {>,, = P,, by convexity. And, if exactly one endpoint x> exists,

then ., = V(x%,st(r})), also by convexity. If both endpoints exist, then ., = <, (x,, %), and equality
follows from Lemma 3.83, cf. also Lemma 5.18. O

Now we apply our results on rectifiable regular paths from section 5.1 to g, in order to control its position also
on the small scale:

Lemma 5.22 ¢, (1,) < -

Proof If both endpoints x of g, exist, then o, = -, ,(xz,x,) and Theorem 5.6 implies the assertion.

w W

In the other cases, we use that g,,(I,,) = N1({w).

If ., has exactly one endpoint, say x; , and thus is a bilipschitz ray, then ., = V(x;, st(7.")) and Corollary 5.14
implies the assertion.

If g,, has no endpoints at all and thus is a bilipschitz line, then ., = P,,. We use that the projection g, to P,
is coarsely longitudinal, cf. Lemma 5.19. We therefore can apply Corollary 5.15 which yields the assertion in
this case. |

The last lemma contradicts that g,,(I,,) ¢ .. This concludes the proof of Theorem 5.16. O

Remark 10 (i) It follows moreover that the projection g = 7, © ¢ of ¢ to the diamond { = <, (x—,x4)
is coarsely longitudinal, by which we mean that for every subinterval [b_,b,| < [a_,ay] of length >
L(A+c(B+D)) the segment g(b_)g(by) < < is ©'-regular and longitudinal, with a constant ¢ = ¢(0, ©’) > 0.
This is a consequence of Lemma 3.14 and was used in the proof of the theorem, compare Lemma 5.17.

(i1) In the building case, the argument works equally well if we replace X by a sequence of euclidean buildings
X, of fixed type 0,,,4. Hence, the bound for the size of the tubular neighborhood depends only on the rank of
the euclidean building and not on further geometric properties of it, D = D(L, A, Tioa, ©, B, rank(X)).

(iii) The theorem remains valid if one allows the model spaces to have flat factors, because the case with flat
factors immediately reduces to the case without.
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We have the following implications of the theorem for infinite quasigeodesics:

Corollary 5.23 (i) Suppose that q : [0,+0) — X is a (O, B)-regular (L,A)-quasiray. Then the image
of q is contained in the (D + B)-neighborhood of the Weyl cone V(g(0),st(q(+o0)) for a unique simplex
q(+o0) € Flag, (00X).

(ii) Suppose that g : R — X is a (O, B)-regular (L,A)-quasiline. Then the image of g is contained in
the (D + B)-neighborhood of the parallel set P(q(—o0),q(+00)) for a unique pair of opposite simplices
q(+w) € FlagTJ_rd((?ooX).

In both cases, q is coarsely longitudinal in the sense of Remark 10.

Proof (i) Let p,x, be ©-regular segments oriented B-Hausdorff close to the segments ¢(0)g(n). According to
the theorem, ([0, n]) < Np(<r,,q(Pn, Xn)). We extend the diamonds to cones, i.e. welet 7, € Flag,  (0.0X) be
simplices such that {7 (P, Xn)  V(pu, st(7,)). Then ¢([0,n]) = Np(V(pu, st(74))), and hence ¢([0,n])
Np+s(V(q(0),st(r,))). The sequence g(n) — oo is asymptotically uniformly 7,,,,-regular, because the
quasiray ¢ is (©, B)-regular. Applying the convergence criterion in Lemma 3.79, it follows that the sequence
(Ta) converges, T, — 7o € Flag, (JoX), and the image of g is contained in the (D + B)-neighborhood of
V(g(0),st(74)). We put g(+00) = 7. The uniqueness follows from Corollary 3.78.

(ii) According to part (i), there exist unique simplices 71, = g(+0) € FlagTid(ﬁooX ) such that g(£n) — 71
conically as n — +00. More precisely,
(5-1) q(£[—n, +0)) = Np1s(V(q(Fn),st(T+x)))-
The segment g(—n)g(n) is ©'-regular and arbitrarily long for large n. Let y_,y, be a subsegment of it at
distance > (D + B) - (sinep(©’))~! from the endpoints g(+n). By Corollary 3.46,

Y=n¥n < V(q(=n),st(71a)) 0 V(g(n), st(t—c0))-

Then for any interior point z, of this segment, it holds that log, T+ = 74(2,q(£n)), and it follows that
the simplices 744 are z,-opposite. Furthermore, the ©’-cones V(g(z),st(©’)) enter the parallel set P =
P(T—o, T+oo) within uniformly bounded time, cf. Proposition 3.44, and in view of (5-1) it follows that
Np.g(P) contains the image of q.

The coarse longitudinality is a consequence of Lemma 3.14. |

Remark 11 As a consequence of the corollary, the image of every uniformly coarsely 7;,04-regular uniform
quasiline is contained in a uniform neighborhood of a union of two opposite Weyl cones in a parallel set. The
cones have a common tip which can be chosen uniformly close to any point on the quasiline.

Definition 5.24 (Endpoint at infinity) For a (O, B)-regular quasiray ¢ : [0, +00) — X we call the simplex
q(+o) € Flangad(éooX) itS Tnoq -endpoint at infinity or ideal T,,,q-endpoint.

We apply our results to infinite quasigeodesics which remain close to a Weyl cone or a parallel set and show
that they must be uniformly close.

Corollary 5.25 Let g : [0,+00) — X be a (O, B)-regular (L,A)-quasiray which is contained in a tubular
neighborhood of a type T,,q Weyl cone V with tip at g(0). Then V = V(g(0), st(q(+00))) and q is contained
in the tubular (D + B)-neighborhood of V as a coarsely longitudinal path.
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Proof Suppose that ¢([0, +0)) = N,(V(g(0),st(7+))) for a simplex 7, € Flag_ (JxX) and some r > 0.
According to Corollary 5.23, ¢ is contained in the (D + B)-neighborhood of the Weyl cone V(g(0), st(g(+0c0)))
as a coarsely longitudinal path. The sequence (g(n)),en is asymptotically uniformly 7,,,4-regular. Corol-
lary 3.78 therefore implies that 7, = g(+0). O

If a coarsely 7,,04-regular quasline is close to a type 7,4 parallel set, we need a coarse longitudinality property
to be able to conclude that it must be uniformly close to the parallel set. We denote by g = 7p o ¢ the projection
of g to the parallel set P.

Corollary 5.26 There exists a constant [ = I(L,A, ©,B,r) > 0 such that the following holds:

Suppose that ¢ : R — X is a (0, B) -regular (L, A)-quasiline which is contained in a tubular neighborhood
of a type Tyoq parallel set P. If for some interval [a,b] — R of length > [ the segment g(a)q(b) < P is
longitudinal, then P = P(q(—), q(+0)) and q is contained in Npg(P) as a coarsely longitudinal path.

Proof Suppose that P = P(7_, 7. ) with opposite simplices 74 € Flagﬂid(ﬁooX), and ¢(R) < N,(P) for
some r > 0. The projection § = mp o g is coarsely longitudinal along P by Lemma 3.14. It follows with
Corollary 5.25 that 74 = g(40). According to Corollary 5.23, g is contained as a coarsely longitudinal path
in the (D + B)-neighborhood of P(g(—x),g(+x)) = P. O

5.3 Regular implies Morse for undistorted maps and actions

We relate the Morse Lemma (Theorem 5.16) to terminology used in our paper [KLP2].

There we defined (in the setting of symmetric spaces) a Morse quasigeodesic as a quasigeodesic satisfying the
conlusion of the Morse Lemma with 7;,,4-diamonds replaced by ©-diamonds, i.e. every finite subpath of the
quasigeodesic is uniformly close to a diamond whose tips are uniformly close to the endpoints of the subpath.
More precisely:

Definition 5.27 (Morse quasigeodesic, cf. [KLP2, Definition 7.14]) An (L,A, ©, D)-Morse quasigeodesic
in X is an (L,A)-quasigeodesic ¢ : I — X such that for all subintervals [#1,72] < I the subpath gl ;) is
contained in the tubular D-neighborhood of a ©-diamond g (x1,x2) with d(x;,¢(#;)) < D.

We call a quasigeodesic 7,,4-Morse if itis (L, A, ©, D)-Morse for some data (L,A, ©,D).

In particular, 7,,,4-Morse quasigeodesics are uniformly coarsely 7;,,4-regular.
Our Morse Lemma yields the converse:

Corollary 5.28 (Regular implies Morse for quasigeodesics) Uniformly coarsely T,,,4 -regular quasigeodesics
in model spaces are uniform T,,,4-Morse quasigeodesics.

Proof Let ¢ : I — X be a (©,B)-regular (L,A)-quasigeodesic. From the conclusion of Theorem 5.16
and the (©, B)-regularity of g, it follows for any ©’ (whose interior contains ©) that ¢ is uniformly close
also to the ©'-diamond {¢/(x_,x;), and analogously for the subsegments q][b_JJ ,] for all subintervals
[b_,b+] < [a—,a]. This means that g is a (L,A,©’, D’)-Morse quasigeodesic for some uniform constant
D' =D'(L,A,0©,0 B,X). O

Based on the notion of Morse quasigeodesic, we defined in [KLP2] Morse embeddings and Morse actions. The
definitions apply verbatim to all model spaces.

We first consider maps into model spaces. Suppose that 7,,,; and © are ¢-invariant.
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Definition 5.29 (Morse embedding, cf. [KLP2, Definition 7.23]) A T0q-Morse embedding from a quasi-
geodesic space Z into X is a map f : Z — X which sends uniform quasigeodesics in Z to uniform Morse
quasigeodesics in X. We call it a ©-Morse embedding if it sends uniform quasigeodesics to uniform ©-Morse
quasigeodesics.

Thus, the map is a 7,,,0¢-Morse embedding if for any parameters /, a the (I, a)-quasigeodesics in Z are mapped
to (L,A, ©, D)-Morse quasigeodesics in X with the parameters L,A, ©, D depending on /,a. It is a ©-Morse
embedding, if © is fixed and only L,A, D depend on [, a.

In particular, 7,,,;-Morse embeddings are coarsely uniformly 7,,,4-regular quasiisometric embeddings. (Note
that they are embeddings only in a coarse sense.) We obtain the converse:

Corollary 5.30 (Regular implies Morse for quasiisometric embeddings) Coarsely uniformly T,,,q-regular
quasiisometric embeddings from quasigeodesic metric spaces into model spaces are uniform T,,,;-Morse
embeddings.

Proof Letf :Z — X be a (O, B)-regular (L,A)-quasiisometric embedding from a quasigeodesic space Z.
Then ¢ maps uniform quasigeodesics in Z to (©, B)-regular uniform quasigeodesics in X. These are uniform
Tmod -Morse quasigeodesics. O

Now we consider isometric group actions on model spaces. We recall that, since X has no flat factor, every
such action becomes type preserving after restricting it to a suitable finite index subgroup.

We call an action Morse, if its orbit maps are Morse. More precisely:

Definition 5.31 (Morse action, cf. [KLP2, Definition 7.30]) We say that an isometric action I' —~ X of a
finitely generated group I' is ©-Morse if one (any) orbit map ' — I'x < X is a ©-Morse embedding with
respect to a(ny) word metric on I'. We call the action 7;,,4-Morse if it is ©-Morse for some ©.

Morse actions are undistorted in the sense that the orbit maps are quasiisometric embeddings. In particular,
they are properly discontinuous. Furthermore, ©-Morse actions are (coarsely) ©-regular. Again, we obtain a
converse:

Corollary 5.32 (URU implies Morse) Uniformly T,,,4-regular undistorted isometric actions by finitely gen-
erated groups on model spaces are uniformly T,,,;-Morse.

Proof The orbit maps are coarsely uniformly 7,,,4-regular quasiisometric embeddings. |

5.4 Examples of regular bilipschitz paths

We construct examples of regular bilipschitz paths in model spaces, which are not close to geodesics. One finds
such paths already in the euclidean model Weyl chamber A = A,,. = V(0, 0,04) and, accordingly, inside
every euclidean Weyl chamber of a model space.

Let Timod = Omod, and let © < int(o,,g) be c-invariant. Pick a sequence of numbers s, > 1 and a non-
converging sequence of unit vectors v, € . (Here, we identify o,,s with the “unit sphere” V(0, onoq) N
0B(0,1).) For instance, we can take (v,) to be an alternating sequence taking exactly two values v; = vo;_|
and vy = vy, k € N, where v;,v; € ©. Now, define the 1-Lipschitz path p : [0, +00) — V(0,0,04) by
concatenating the segments x,x,.1, where each vector X,x,;1 equals s,v,. We claim that the path p is a
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©-regular quasigeodesic ray in V(0, 0,,04) . First of all, it follows from the definition of p that it is ©-straight.
Therefore, by Proposition 3.23 the sequence (x,) is ©-longitudinal: All segments x,,x, for n > m are ©-
longitudinal. By the same reason (inserting additional subdivision points), all segments p(s)p(t) for s < t are
O -longitudinal as well, i.e. the path p is ©-longitudinal. In particular, p is ©-regular. That p is quasigeodesic,
follows from the fact that the distance d(-,0) from the origin grows along p with uniformly positive slope
> €(0©) > 0.

Our next goal is to ensure that p is not close to a geodesic ray. In order to accomplish this, we choose the
sequence (s,) such that

nErJIrlOO(an —§p) = +00.

Suppose that there exists a geodesic ray r : [0, +00) — V(0, onoa), r(t) = tu with a unit vector u € V(0, 0jnoq) .,
and a constant C’ such that
p([0, +0)) < N (r([0, +00))).

Since the sequence of lengths vectors X,x,;; diverges to infinity and the vectors are contained in the C’-
neighborhood of ([0, +0)), it follows that the directions of these vectors converge to the direction vector u
of the ray r. This contradicts the assumption that the sequence of vectors (v,) does not converge.

6 Quasiisometric embeddings of spaces and undistorted actions

In this chapter we prove our main applications of the Morse Lemma: Theorems 1.4 and 1.5 from the introduction,
stating the hyperbolicity of quasiisometrically embedded uniformly regular subsets of model spaces and the
existence of a continuous extension to the Gromov boundary.

Throughout the chapter, we assume that the face type Tjoq  Omoq and the subsets © < 0st(7,0q) are ¢-
invariant. Then T’;_ro 4 = Tmoa and ©4 = O, i.e. directions antipodal to 7,,,4-regular (O -regular) directions are
also 7,,04-regular (©-regular), and segments satisfying one of these regularity properties keep it when reversing
orientation.

6.1 Regular subsets of euclidean buildings

Let X be a euclidean building. We now apply our results on regular paths in section 5.1 to regular subsets.

Definition 6.1 (Rectifiably regularly path connected) A subset R < X is called rectifiably © -regularly path
connected if any two distinct points in R can be connected by a rectifiable ©-regular path contained in R.

Note that such subsets are in particular ©-regular. We will now study their geometric and topological properties.

Fix a point r € R. Then the function
¥ 1(rr)

is well-defined on R — {r} and continuous. (Compare the discussion of 7,,,4-directions in the beginning of
section 5.1.)

Lemma 6.2 The function 7(r-) is locally constant on R — {r}.

Proof The target of the function, the set of type 7,,,4 simplices in X, X, is a discrete space. a
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Corollary 6.3 If ri,r» € R — {r} with 7(rr;) # 7(rr2), then r; and r, lie in different path components of
R—{r}.

The next observation relies on our main result on regular bilipschitz paths in section 5.1.

Lemma 6.4 Let c: [a,b] — R be a rectifiable embedded path. Then for every t € (a,b), the points c(a) and
c(b) lie in different path components of R — {c(1)}.

Proof Theorem 5.6 and Lemma 5.3 imply that the 7,,4-directions 74 () are opposite to each other. Since
T(c(t)c(a)) = 7—(t) and 7(c(t)c(b)) = T4(¢), the previous corollary yields the assertion. O

Corollary 6.5 (i) All embedded paths ¢ : [a,b] — R are rectifiable.
(ii) Any two embedded paths in R with the same endpoints agree up to reparametrization.

(iii) The image of a non-embedded path ¢ : [a,b] — R contains the image of the (up to reparametrization
unique) embedded path connecting its endpoints.

Proof Let ci,c2 : I = [a,b] — R be paths with the same endpoints, and suppose that ¢; is embedded and
rectifiable. (By assumption, any two points in R are connected by a rectifiable embedded path in R.) By
Lemma 6.4, ¢, must go through every point on ¢y, i.e. ¢1(I) € c2(I).

If ¢, is also embedded, the lemma implies moreover that the order of the points must be preserved, i.e. there
exists a monotonic injective map ¢ : I — I such that ¢, 0 ¢ = ¢. The image ¢(I) < I is compact, due to the
continuity of ¢,. If ¢(I) # I and (z,#') is a connected component of I — ¢(I), then necessarily c,(f) = c(7')
and we arrive at a contradiction. Therefore, ¢ must be bijective and hence a homeomorphism. This shows part
(ii), and (i) follows directly.

The initial part of the proof now yields (iii). |

Let dgr denote the intrinsic path metric on R.
Corollary 6.6 (R,dg) is a metric tree.

Proof Corollary 6.5 implies that (R, dg) is a geodesic metric space, the distance of two points given by the
length of the unique embedded path connecting them. This path is also the unique geodesic segment in (R, dg)
connecting the two points.

It follows furthermore, that the intersection of any two geodesic segments with the same initial point is again
a geodesic segment (with this initial point), and that geodesic triangles in (R, dg) are tripods, i.e. (R,dg) is
O-hyperbolic. a

Note furthermore, that the embedding
(R7 dR) - (Xv d)

is L(©)-bilipschitz, cf. Corollary 5.11.

We summarize our discussion so far:

Theorem 6.7 Rectifiably © -regularly path connected subsets of euclidean buildings are metric trees, when
equipped with their intrinsic path metrics. The inclusion is a bilipschitz embedding with bilipschitz constant
controlled by ©.
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We can say more about the extrinsic geometry of R in X, infinitesimally and asymptotically.

Every embedded path ¢ : [0, €) — R has a well-defined 7,04 -initial direction 7(c) Ye(0)X satisfying

7(c(0)e(?)) = 7(c)

forall 0 <t < ¢, cf. Lemma 5.2.

Addendum 6.8 (Antipodal infinitesimal branches) For any two embedded paths cj,c; : [0,€) — R with
the same initial point ¢1(0) = ¢,(0), the T4 -initial directions 7(cy) and 7(c) are either equal or antipodal.
In the former case, there exist numbers ¢y, ¢ € (0,€) such that the subpaths ci|[,] and cz|[o,,] agree up to
reparametrization.

Proof If the images ¢;((0, €)) are not disjoint, i.e. if there exist €;, e, € (0, €) such that c;(e;) = c2(€2), then
cl ][076 ;] and | [0,e,] agree up to reparametrization, cf. Corollary 6.5(ii). In this case, of course, 7(c1) = 7(c2).

Otherwise, if ¢1((0,€)) N ¢c2((0,€)) = &, then the concatenation ¢ = ¢ * ¢ : (—¢,€) — R of the path ¢; and
the reversed path ¢,(—1) := c2(¢) of ¢3, is a rectifiable embedded path in R. The statement then follows from
Lemma 5.3. O

Every embedded path ¢ : [0,4+00) — R with infinite length has a well-defined T7,,,4-endpoint at infinity
c(+o) € dr,,,X so that

Tmod

c([0, +00)) = V(c(0), st(c(+0))),
cf. Corollary 5.12.

Addendum 6.9 (Antipodal endpoints at infinity) For any two embedded paths ci,c; : [0,+00) — R with
infinite length, the T,,,q4-endpoints at infinity ¢;(+0) € 0, X are either equal or antipodal. In the former case,
there exist numbers t, t; > 0 such that the subpaths cl\[,l,+oo) and cz|[,27+oo) agree up to reparametrization.

Proof Since R is intrinsically a metric tree, cf. Corollary 6.6, we may assume after modifying the paths,
that they have the same initial point ¢;(0) = ¢»(0) and are otherwise disjoint. Then the concatenation ¢ =
c1 *¢ : R — R is an embedded path in R, both of whose ends have infinite length. It is in particular uniformly
O-regular and locally rectifiable, cf. Corollary 6.5. The assertion then follows from Corollary 5.12. a

6.2 Regular maps into euclidean buildings

Let X still be a euclidean building. Our discussion of regular subsets immediately implies a restriction on the
geometry of spaces which can be mapped into buildings by regular maps:

Corollary 6.10 (From tree) If Z is a path metric space and Z — X is a © -regular bilipschitz map, then Z is
a metric tree.

Proof Theimage of the embedding is arectifiably © -regularly path connected subset of X and hence, according
to Theorem 6.7, a metric tree. Thus, Z is bilipschitz homeomorphic to a metric tree. Lemma 2.15 implies that
Z itself is a metric tree. |

Consider now a ©-regular bilipschitz map
b:T—X
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from a metric tree 7. From our earlier discussion, we obtain information on the infinitesimal and asymptotic
behavior.

By Addendum 6.8, we have in every point ¢ € T a well-defined induced infinitesimal map

Sib 5T — X)dX = Flag,  (S)X)

such that, if ¢ : [0,€) — T is a geodesic path starting in ¢(0) = 7 in the direction v € X, T, then the ©-regular
image bilipschitz path b o ¢ has the 7,,,4-initial direction

T(boc) = (Xb)(v).

Furthermore, the infinitesimal maps ;b are antipodal, i.e. they send distinct directions in 3,7 to opposite type
Tmod Simplices in Eb(,)X .

Definition 6.11 (Antipodal map) A map from a set into the set of simplices of a spherical building is called
antipodal if it sends distinct elements to antipodal simplices.

By Addendum 6.9, there is a well-defined boundary map at infinity

Opb : 0T — 07 X = Flagmod(aocX)

Tmod

such that, if p : [0, +00) — T is a unit speed geodesic ray in T, then the ©-regular image bilipschitz ray b o p
in X has the 7;,,4-endpoint at infinity

(bop)(+0) = (ub)(p(+0))
Also Oyb is antipodal. Let

E:T—»l/)_(\TJ)CXT”””’

denote the map from the visual compactification T = T U @, T to the subset b(T) = b(T) U 0y, X of the
Tmoa-bordification X = X U 0, ,X, which combines the map b with the boundary map 0,b. Since the
image b(T) c X is a O-regular subset, we have a well-defined topology of flag convergence on b(T') extending

the visual topology on 0., X and the subspace topology on b(T), see our discussion in section 3.8. It makes

Tmod

therefore sense to speak of the continuity of b, and we can state:

Theorem 6.12 (Antipodal continuous extension at infinity) The extension b of b is continuous with respect

to the topology of flag convergence (on b(T) ). In particular, the boundary map 0.b is continuous with respect
to the visual topology. Moreover, it is antipodal.

Proof Trees are rank one euclidean buildings and we use the description of the visual topology on their visual
compactification as given in Fact 3.59. We denote the point shadows and the corresponding basic subsets in
0T and T =T U 05T by pShf_ and pC_)f_ = pOf, v pShf,.

We must show that b is continuous at 0, T. Consider points ¢, € T. Applying (Theorem 5.6 and) Corol-
lary 5.12(ii) to geodesic rays in T', which start in 7 and pass through ¢, we obtain that

A ~T ~\ Tmoc
b(pO,J/) < pOZ(rib(r’) :
Let p : [0,+00) — T be a geodesic ray. Then b o p is a ©-regular bilipschitz ray in X, which is contained

—_—

in the Weyl cone V(b(p(0)), st((ub)(p(+00)))). The subsets pOZ’E’;‘EO)%b(p(u» Nb(T) for u — +oo therefore

—~—

form a neighborhood basis of (9x,b)(p(+00)) in b(T), cf. Corollary 3.64. Since their b-preimages contain the
neighborhoods PO;T;(O), p(u) Of p(+00), it follows that b is continuous at p(+o0) € do T .

The antipodality of 0,,b follows from part (i) of Corollary 5.12. |
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6.3 Regular quasiisometric embeddings into model spaces

Let X be a model space. From our results on regular maps to euclidean buildings we deduce now by an ultralimit
argument corresponding results for coarsely regular maps to model spaces and isometric actions. We first show
that the large scale geometry of spaces, which admit coarsely regular maps into model spaces, is restricted:

Theorem 6.13 (From hyperbolic space) If g : Z — X is a (coarsely) uniformly T,,,;-regular quasiisometric
embedding from a quasigeodesic metric space into a model space, then Z is Gromov hyperbolic.

Proof Since Z is quasiisometric to its Rips complex Ripsg(Z) for sufficiently large R, we can assume without
loss of generality that Z is a geodesic metric space. In order to verify its hyperbolicity, it suffices to show that
every asymptotic cone of Z is a metric tree, see e.g. [DK].

We work with the setup as described in section 2.7. For a sequence of scale factors )\, > 0 converging to zero, a
sequence of basepoints *, € Z and the sequence of image points !, := g(*,) in X, we consider the asymptotic
cones
(Zyy *w) = w-m(N,Z, %),  (Xw, *,,) = w-lm(\,X, ).
Note that they are geodesic spaces, since the original spaces are. By Lemma 2.16, compare also the proof of
Theorem 5.16, the quasiisometric embedding g gives rise to a uniformly 7,,,4-regular bilipschitz embedding
Qo ' L — Xw-

Therefore, according to Corollary 6.10, Z,, is a metric tree. a

Now we discuss the asymptotics of coarsely regular maps from hyperbolic spaces.
Let Z be a locally compact geodesic d-hyperbolic metric space, and consider its Gromov compactification
Z - Z v awZ,

where 0,7 is the space of equivalence classes of geodesic rays in Z. Here, two rays are called equivalent if
they are asymptotic in the sense that their images have finite Hausdorff distance.

The topology on Z can be described at infinity as follows, see [DK]. Fix a sufficiently large number r, say,
r > 34 and define the following basic subsets of Z: For points z,w € Z, let the subset bO,,, ,  Z consist of
all points z € Z, such that every geodesic (segment or ray) zZ connecting z to 7 has nonempty intersection with
the open ball B(w, r). Given an ideal boundary point { € 0,Z and a ray p : [0,+o0) — Z representing it,

p(+00) = ¢, then the countable collection of basic subsets bO (0),p(n),- fOr n € N forms a neighborhood basis

p(n)
of ¢ in Z. In particular, the topology on Z is first-countable.

Consider now a (O, B)-regular (L, A)-quasiisometric embedding
q:7Z—X.

If p:[0,+00) — Z is a geodesic ray, then g o p is a (©, B)-regular (L,A)-quasiray in X and has a well-de-
fined 7,,04-endpoint at infinity (g o p)(+) € 0, ,X, cf. Corollary 5.23 and Definition 5.24. More precisely,
the image of g o p is contained in a tubular neighborhood with uniformly controlled radius of the Weyl
cone V((g o p)(0),st((qg o p)(+0))). In particular, the endpoint (g o p)(+0o0) depends only on the endpoint
p(+0) € 0,Z. Hence g induces a well-defined boundary map at infinity

O0wnq : OZ — Or, X = Flagnmd(ﬁooX)

such that, if p : [0,4+00) — Z is a ray in Z, then the (©, B)-regular image quasiray ¢ o p in X has the
Tmod -€ndpoint at infinity
(g0 p)(+20) = (90nq)(p(+0)).
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Furthermore, also as a consequence of Corollary 5.23, duq is antipodal. Let

§:7Z—q(Z) < X

denote the map from the visual compactification Z = Z U 05 Z to the subset ¢(Z) = ¢(Z) v 0y, ,X of the

Tmod
Tmod

Tmod -bordification X" = X u 0y, ,X, which combines the map ¢ with the boundary map d,g. Since the
image ¢(Z) < X is a (O, B)-regular subset, we have a well-defined topology of flag convergence on ¢(Z), and

we can state:

Theorem 6.14 (Antipodal continuous extension at infinity) The extension g of g is continuous at 0x,Z
with respect to the topology of flag convergence on q(Z). The boundary map 0yq is antipodal and hence a
topological embedding with respect to the visual topology on 0, ,X.

Proof Suppose that g is not continuous at the ideal point ( € dZ. Since the topology on Z is first-countable,
there exists a sequence Z, — (¢ in Z such that the sequence (g(Z,)) in ¢(Z) avoids a neighborhood of

0xq(C) € 0r,,,X.

Fix a base point z € Z and let 7z, be geodesic segments or rays in Z connecting z to Z,. If z, € 0 Z, then the
(0, B)-regular (L, A)-quasiray ¢(zZ,) is uniformly close to the Weyl cone V(g(z), st(0xxq(Zs))), compare the
definition of the boundary map d,,q above. If 7, € Z, then ¢(zZ,) is a (©, B)-regular (L, A)-quasigeodesic.
Since z, — 0 as n — +00, the (O, B)-regular segment ¢(z)q(z,) is ©-regular for all sufficiently large n, cf.
Lemma 3.5, and ¢(zZ,) is then uniformly close to the diamond <, ,(¢(z),q(Z,)) by Theorem 5.16.

After passing to a subsequence, we may assume that the zZ, converge to a ray z(. Again, the quasiray ¢(z¢) is
uniformly close to the Weyl cone V(g(z), st(0q(())).

Since zZ, — z(, there exists a sequence w, — o0 of points w, € zZ, uniformly (arbitrarily) close to z{. Then
the asymptotically ©-regular sequence (g(w,)) is contained in a tubular neighborhood of V(g(z), st(0x¢q(())),
ie. g(wp,) — 0xq(C) conically. For a sufficiently large R > 0 independent of n, the balls B(g(wy,),R)
intersect V(g(z), st(0xq(¢))) and also V(g(z), st(0xq(Zn))), respectively, <+, ,(q(z),q(Zx)). This means that

0q(C) € bShips 1 g and 4(Z,) € b0 g(wn) -

Let y, € B(q(wn),R) n V(q(z),st(0xq(¢))). Then also the sequence (y,) is asymptotically ©-regular and,

Tmod

according to Corollary 3.64, the subsets bO () yn 2R nq(Z) form a neighborhood basis for the point d,q(()

—~— —~—

in ¢(Z). Consequently, also the smaller neighborhoods b(_);’gz”s” dOv) R nq(Z) of 05q(¢) form a neighborhood
basis. Thus §(z,) — 0xq((), a contradiction. This shows that g is continuous at 0,,Z.

The antipodality of 0y ¢g follows from Corollary 5.23. That 04q is a topological embedding follows, because
it is injective (by antipodality), 0,Z is compact and 0, X is Hausdorff. |

Tmod

We now turn to an equivariant setting and specialize the above discussion to group actions. We show that the
class of groups, which admit asymptotically regular actions on model spaces, is restricted:

Theorem 6.15 (From hyperbolic group) IfI' —~ X is an (asymptotically) uniformly T,,,q -regular undistorted
isometric action of a finitely generated group on a model space, then the group I' is word hyperbolic.

Proof Asymptotically uniformly 7,,,4-regular actions are coarsely uniformly 7,,,,-regular, cf. Remark 3, i.e.
their orbit maps are coarsely uniformly 7,,,4-regular. By assumption, they are also quasiisometric embeddings.
The assertion therefore follows from Theorem 6.13. |

The boundary maps at infinity of the orbit maps induce a well-defined boundary map

Ol — 0r,,,X = Flag_  (0:0X)
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which is I'-equivariant. The image of this map is the 7,4-limit set of I' in Flag, (0X). The latter follows
from the continuity of the extension with respect to the topology of flag-convergence. With Theorem 6.14 we
obtain:

Corollary 6.16 (URU implies asymptotically embedded) If I" —~ X is a uniformly 7,4 -regular undistorted
isometric action of a finitely generated group on a model space, then I is T,,q4-asymptotically embedded in
the isometry group of X in the sense of [KL.P4], i.e. I" is hyperbolic and there exists an equivariant antipodal
homeomorphism 0, T' — A, ,(T') < Flag, (0:0X).

Since for symmetric spaces 7,,,4-asymptotically embedded is equivalent to 7,,,4-Anosov, see [KLLP4], we get:

Corollary 6.17 For a finitely generated group I' and a homomorphism I' — G to a semisimple Lie group the
following are equivalent:

(1) p 1S Timod -ANOSOV.

(ii) p is a uniformly T,,,4-regular quasiisometric embedding.

Proof The direction (1)=(2) is proven in [KLP4, Theorem 5.47]. The converse implication is the content of
Corollary 6.17. O
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