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Abstract

Our main result is a local-to-global principle for Morse quasigeodesics, maps and actions.

As an application of our techniques we show algorithmic recognizability of Morse actions

and construct Morse “Schottky subgroups” of higher rank semisimple Lie groups via

arguments not based on Tits’ ping-pong. Our argument is purely geometric and proceeds

by constructing equivariant Morse quasiisometric embeddings of trees into higher rank

symmetric spaces.
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1 Introduction

This is a sequel to our paper [KLP5] and mostly consists of the material of section 7 of our ear-

lier paper [KLP1] (the only additional material appears in Theorem 4.8 and the appendix

to the paper). We recall that quasigeodesics in Gromov hyperbolic spaces can be recog-

nized locally by looking at sufficiently large finite pieces, see [CDP]. In our earlier papers

[KLP4, KLP5, KLP2, KL1, KL2], for higher rank symmetric spaces X (of noncompact type)

we introduced an analogue of hyperbolic quasigeodesics, which we call Morse quasigeodesics.

Morse quasigeodesics are defined relatively to a certain face τmod of the model spherical face

σmod of X. In addition to the quasiisometry constants L,A, τmod-Morse quasigeodesics come

equipped with two other parameters, a positive number D and a Weyl-convex subset Θ of the

open star of τmod in the modal spherical chamber σmod. In [KLP1, KLP5, KLP2] we also defined

τmod-Morse maps Y Ñ X from Gromov-hyperbolic spaces to symmetric spaces. These maps

are defined by the property that they send geodesics to uniformly τmod-Morse quasigeodesics,

i.e. τmod-Morse quasigeodesics with a fixed set of parameters, pΘ, D, L,Aq.

The main result of this paper is a local characterization of Morse quasigeodesics in X:

Theorem 1.1 (Local-to-global principle for Morse quasigeodesics). For L,A,Θ,Θ1, D

there exist S, L1, A1, D1 such that every S-local pΘ, D, L,Aq-local Morse quasigeodesic in X is a

pΘ1, D1, L1, A1q–Morse quasigeodesic.

Here S-locality of a certain property of a map means that this property is satisfied for

restrictions of this map to subintervals of length S. We refer to Definition 3.34 and Theorem

3.34 for the details. Based on this principle, we prove in Section 3.7 a local-to-global principle

for Morse maps from hyperbolic metric spaces to symmetric spaces.

We prove several consequences of these local-to-global principles:

1. The structural stability of Morse subgroups of G, generalizing Sullivan’s Structural Sta-

bility Theorem in rank one [Su] (see also [KKL] for a detailed proof); see Theorems 4.4 and 4.6.
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While structural stability for Anosov subgroups was known earlier (Labourie, Guichard-Wienhard),

our method is more general and applies to a wider class of discrete subgroups, see [KL4].

Theorem 1.2 (Openness of the space of Morse actions). For a word hyperbolic group

Γ, the subset of τmod-Morse actions is open in HompΓ, Gq.

Theorem 1.3 (Structural stability). Let Γ be word hyperbolic. Then for τmod-Morse actions

ρ : Γ ñ X, the boundary embedding αρ : B8Γ Ñ Flagpτmodq depends continuously on the action

ρ.

In particular, actions sufficiently close to a faithful Morse action are again discrete and

faithful. We supplement this structural stability theorem with a stability theorem on domains

of proper discontinuity, Theorem 4.8.

2. The locality of the Morse property implies that Morse subgroups are algorithmically

recognizable; Section 4.3:

Theorem 1.4 (Semidecidability of Morse property of group actions). Let Γ be word

hyperbolic. Then there exists an algorithm whose inputs are homomorphisms ρ : Γ Ñ G (defined

on generators of Γ) and which terminates if and only if ρ defines a τmod-Morse action Γ ñ X.

If the action is not Morse, the algorithm runs forever. Note that in view of [K2], there are

no algorithms (in the sense of BSS computability) which would recognize if a representation

Γ Ñ IsompH3q is not geometrically finite.

3. We illustrate our techniques by constructing Morse-Schottky actions of free groups on

higher rank symmetric spaces; Section 4.2. Unlike all previously known constructions, our proof

does not rely on ping-pong arguments, but is purely geometric and proceeds by constructing

equivariant quasi-isometric embeddings of trees. The key step is the observation that a certain

local straightness property for sufficiently spaced sequences of points in the symmetric space

implies the global Morse property. This observation is also at the heart of the proof of the

local-to-global principle for Morse actions.

Since [KLP1] was originally posted in 2014, several improvements on the material of section

7 of [KLP1] and, hence, of the present paper were made:

(a) Different forms of Combination Theorems for Anosov subgroups were proven in [DKL,

DK1, DK2] in the papers by the 1st and the 2nd author and, subsequently, by the 1st author

and Subhadip Dey. The first one was a generalization of the technique in section 4.2 the present

paper, but the other two generalizations are based on a form of the ping-pong argument.

(b) Explicit estimates in the local-to-global principle for Morse quasigeodesics and, hence,

Morse embeddings, were obtained by Max Riestenberg in [1]. Riestenberg’s estimates are based

on replacing certain limiting arguments used in the present paper with differential-geometric

and Lie-theoretic arguments.
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Organization of the paper.

The notions of Morse quasigeodesics and actions are discussed in detail in section 3. In that

section, among other things, we establish local-to-global principles for Morse quasigeodesics.

In section 4 we apply local-to-global principles to discrete subgroups of Lie groups: We show

that Morse actions are structurally stable and algorithmically recognizable. We also construct

Morse-Schottky actions of free groups on symmetric spaces. In section 5 (the appendix to the

paper) we prove further properties of Morse quasigeodesics that we found to be useful in our

work.
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2 Preliminaries

2.1 Basic notions of geometry of symmetric spaces

Throughout the paper we will be using definitions, notations and results of our earlier work.

We refer the reader to our earlier papers, e.g. [KLP4, KLP5, KLP2, KL1, KL2] for the vari-

ous notions related to symmetric spaces, such as polyhedral Finsler metrics on symmetric spaces

([KL1]), the opposition involution ι of σmod, model faces τmod of σmod and the associated τmod-flag

manifolds Flagpτmodq (sections 2.2.2 and 2.2.3 of [KLP5]), type map θ : B8X Ñ σmod, open Schu-

bert cells Cpτq Ă Flagpτmodq (section 2.4 of [KLP5]), ∆-valued distances d∆ on X (section 2.6

of [KLP5]), Θ-regular geodesic segments (see §2.5.3 of [KLP5]), parallel sets, stars, open stars

and Θ-stars, stpτq, ostpτq, and stΘpτq, Weyl sectors V px, τq (section 2.4 of [KLP5]), Weyl cones

V px, stpτqq and Θ-cones V px, stΘpτqq, diamonds ♢τmod
px, yq and Θ-diamonds ♢Θpx, yq (section

2.5 of [KLP5]), τmod-regular sequences and groups (section 4.2 of [KLP5]), τmod-convergence

subgroups, flag-convergence, the Finsler interpretation of flag-convergence (see [KL1, §4.5 and

5.2] and [KLP5]), τmod-limit sets Λτmod
pΓq Ă Flagpτmodq (section 4.5 of [KLP5]), visual limit set

(page 4 of [KLP5]), uniformly τmod-regular sequences and subgroups (section 4.6 of [KLP5]),

Morse subgroups (section 5.4 of [KLP5]) and, more generally, Morse quasigeodesics and Morse

maps (Definitions 5.31, 5.33 of [KLP2]), antipodal limit sets (Definition. 5.1 of [KLP5]) and

antipodal maps to flag-manifolds (Definition 6.11 of [KLP2]).

In the paper we will be frequently using convexity of Θ-cones in X:

Proposition 2.1 (Proposition 2.10 in [KLP5]). For every Weyl-convex subset Θ Ă stpτmodq,
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for every x P X and τ P Flagpτmodq, the cone V px, stΘpτqq Ă X is convex.

2.2 Standing notation and conventions

• We will use the notation X for a symmetric space of noncompact type, G for a semisimple

Lie group acting isometrically and transitively on X, and K is a maximal compact sub-

group of G, so that X is diffeomorphic to G{K. We will assume that G is commensurable

with the isometry group IsompXq in the sense that we allow finite kernel and cokernel for

the natural map G Ñ IsompXq. In particular, the image of G in IsompXq contains the

identity component IsompXqo.

• We let τmod Ď σmod be a fixed ι-invariant face type.

• We will use the notation xn
f

ÝÑ τ P Flagpτmodq for the flag-convergence of a τmod-regular

sequence xn P X to a simplex τ P Flagpτmodq.

• We will be using the notation Θ,Θ1 for an ι-invariant, compact, Weyl-convex (see Defini-

tion 2.7 in [KLP5]) subset of the open star ostpτmodq Ă σmod.

• We will always assume that Θ ă Θ1, meaning that Θ Ă intpΘ1q.

• Constants L,A,D, ϵ, δ, l, a, s, S are meant to be always strictly positive and L ě 1.

2.3 ζ-angles

We fix as auxiliary datum a ι-invariant type ζ “ ζmod P intpτmodq. (We will omit the subscript

in ζmod in order to avoid cumbersome notation for ζ-angles.) For a simplex τ Ă B8X of type

τmod, i.e. τ P Flagpτmodq, we define ζpτq P τ as the ideal point of type ζmod. Given two such

simplices τ˘ P Flagpτmodq and a point x P X, define the ζ-angles

=ζ
xpτ´, τ`q “ =ζ

xpτ´, ξ`q :“ =xpξ´, ξ`q, (2.2)

where ξ˘ “ ζpτ˘q.

Similarly, define the ζ-Tits angle

=
ζ
T itspτ´, τ`q “ =

ζ
T itspτ´, ξ`q :“ =xpξ´, ξ`q, (2.3)

where x belongs to a flat F Ă X such that τ´, τ` Ă BT itsF . Then simplices τ˘ (of the same

type) are antipodal iff

=
ζ
T itspτ´, τ`q “ π

for some, equivalently, every, choice of ζ as above.

Remark 2.4. We observe that the ideal points ζ˘ are opposite, =Titspζ´, ζ`q “ π, if and only

if they can be seen under angle » π (i.e., close to π) from some point in X. More precisely,

there exists ϵpζmodq such that:
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If =xpζ´, ζ`q ą π ´ ϵpζmodq for some point x then ζ˘ are opposite.

This follows from the angle comparison =xpζ´, ζ`q ď =T itspζ´, ζ`q and the fact that the Tits

distance between ideal points of the fixed type ζmod takes only finitely many values.

For a τmod-regular unit tangent vector v P TX we denote by τpvq Ă B8X the unique simplex

of type τmod such that ray ρv with the initial direction v represents an ideal point in ostpτpvqq.

We put ζpvq “ ζpτpvqq. Note that ζpvq depends continuously on v.

For a τmod-regular segment xy in X we let τpxyq “ τpvq, where v is the unit vector tangent

to xy.

Then, for a τmod-regular segments xy, xz and τ P Flagpτmodq, we define the ζ-angles

=ζ
xpy, τq “ =ζ

xpτpxyq, τq, =ζ
xpy, zq “ =ζ

xpτpxyq, τpxzqq

Thus, the ζ-angle depends not on y, z but rather on the simplices τpxyq, τpxzq. These ζ-

angles will play the role of angles the between diamonds ♢τmod
px, yq and ♢τmod

px, zq, meeting

at x. Note that if X has rank 1, then the ζ-angles are just the ordinary Riemannian angles.

2.4 Distances to parallel sets versus angles

In this section we collect some geometric facts regarding parallel sets in symmetric spaces,

primarily dealing with estimation of distances from points in X to parallel sets.

Remark 2.5. The constants and functions in this section are not explicit and their existence

is proven by compactness arguments. For explicit computations here and in Theorem 3.18, we

refer the reader to the PhD thesis of ...

We first prove a lemma (Lemma 2.6) which strengthens Corollary 2.46 of [KLP5].

Lemma 2.6. Suppose that τ˘ are antipodal simplices in BT itsX. Then every geodesic ray γ

asymptotic to a point ξ P ostpτ`q, is strongly asymptotic to a geodesic ray in P pτ´, τ`q.

Proof. If ξ belongs to the interior of the simplex τ`, then the assertion follows from Corollary

2.46 of [KLP5]:

Weyl sectors V px1, τq and V px2, τq are strongly asymptotic if and only if x1 and x2 lie in

the same horocycle at τ .

We now consider the general case. Suppose, that ξ belongs to an open simplex intpτ 1q, such

that τ is a face of τ 1. Then there exists an apartment a Ă BT itsX containing both ξ (and,

hence, τ 1 as well as τ) and the simplex τ´. Let F Ă X be the maximal flat with B8F “ a.

Then F contains a geodesic asymptotic to points in τ´ and τ`. Therefore, F is contained in

P pτ´, τ`q. On the other hand, by the same Corollary 2.46 of [KLP5], applied to the simplex

τ 1, we conclude that γ is strongly asymptotic to a geodesic ray in F .

The following lemma provides a quantitative strengthening of the conclusion of Lemma 2.6:
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Lemma 2.7. Let Θ be a compact subset of ostpτ`q. Then those rays xξ with θpξq P Θ are uni-

formly strongly asymptotic to P pτ´, τ`q, i.e. dp¨, P pτ´, τ`qq decays to zero along them uniformly

in terms of dpx, P pτ´, τ`qq and Θ.

Proof. Suppose that the assertion of lemma is false, i.e., there exists ϵ ą 0, a sequence Ti P R`

diverging to infinity, and a sequence of rays ρi “ xiξi with ξi P Θ and dpxi, P pτ´, τ`qq ď d, so

that

dpy, P pτ´, τ`qq ě ϵ, @y P ρpr0, Tisq. (2.8)

Using the action of the stabilizer of P pτ´, τ`q, we can assume that the points xi belong to a

certain compact subset of X. Therefore, the sequence of rays xiξi subconverges to a ray xξ with

dpx, P pτ´, τ`qq ď d and ξ P Θ. The inequality (2.8) then implies that the entire limit ray xξ is

contained outside of the open ϵ-neighborhood of the parallel set P pτ´, τ`q. However, in view

of Lemma 2.6, the ray xξ is strongly asymptotic to a geodesic in P pτ´, τ`q. Contradiction.

We next relate distances from points x P X to parallel sets and the ζ-angles at x. Suppose

that the simplices τ˘, equivalently, the ideal points ζ˘ “ ζpτ˘q (see section 2.3), are opposite.

Then

=ζ
xpτ´, τ`q “ =xpζ´, ζ`q “ π

if and only if x lies in the parallel set P pτ´, τ`q. Furthermore, =ζ
xpτ´, τ`q » π if and only if x is

close to P pτ´, τ`q, and both quantities control each other near the parallel set. More precisely:

Lemma 2.9. (i) If dpx, P pτ´, τ`qq ď d, then =ζ
xpτ´, τ`q ě π ´ ϵpdq with ϵpdq Ñ 0 as d Ñ 0.

(ii) For sufficiently small ϵ, ϵ ď ϵ1pζmodq, we have: The inequality =ζ
xpτ´, τ`q ě π´ϵ implies

that dpx, P pτ´, τ`qq ď dpϵq for some function dpϵq which converges to 0 as ϵ Ñ 0.

Proof. The intersection of parabolic subgroups Pτ´
X Pτ`

preserves the parallel set P pτ´, τ`q

and acts transitively on it. Compactness and the continuity of =¨pζ´, ζ`q therefore imply that

π ´ =¨pζ´, ζ`q attains on the boundary of the tubular r-neighborhood of P pτ´, τ`q a strictly

positive maximum and minimum, which we denote by ϕ1prq and ϕ2prq. Furthermore, ϕiprq Ñ 0

as r Ñ 0. We have the estimate:

π ´ ϕ1pdpx, P pτ´, τ`qqq ď =xpζ´, ζ`q ď π ´ ϕ2pdpx, P pτ´, τ`qqq

The functions ϕiprq are (weakly) monotonically increasing. This follows from the fact that,

along rays asymptotic to ζ´ or ζ`, the angle =¨pζ´, ζ`q is monotonically increasing and the

distance dp¨, P pτ´, τ`qq is monotonically decreasing. The estimate implies the assertions.

The control of dp¨, P pτ´, τ`qq and =¨pζ´, ζ`q “spreads” along the Weyl cone V px, stpτ`qq,

since the latter is asymptotic to the parallel set P pτ´, τ`q. Moreover, the control improves, if

one enters the cone far into a τmod-regular direction. More precisely:

Lemma 2.10. Let y P V px, stΘpτ`qq be a point with dpx, yq ě l.

(i) If dpx, P pτ´, τ`qq ď d, then

dpy, P pτ´, τ`qq ď D1
pd,Θ, lq ď d
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with D1pd,Θ, lq Ñ 0 as l Ñ `8.

(ii) For sufficiently small ϵ, ϵ ď ϵ1pζmodq, we have: If =xpζ´, ζ`q ě π ´ ϵ, then

=ypζ´, ζ`q ě π ´ ϵ1
pϵ,Θ, lq ě π ´ ϵpdpϵqq

with ϵ1pϵ,Θ, lq Ñ 0 as l Ñ `8.

Proof. The distance from P pτ´, τ`q takes its maximum at the tip x of the cone V px, stpτ`qq,

because it is monotonically decreasing along the rays xξ for ξ P stpτ`q. This yields the right-

hand bounds d and, applying Lemma 2.9 twice, ϵpdpϵqq.

Those rays xξ with uniformly τmod-regular type θpξq P Θ are uniformly strongly asymptotic

to P pτ´, τ`q, i.e. dp¨, P pτ´, τ`qq decays to zero along them uniformly in terms of d and Θ, see

Lemma 2.7. This yields the decay D1pd,Θ, lq Ñ 0 as l Ñ `8. The decay of ϵ1 follows by

applying Lemma 2.9 again.

3 Morse maps

In this section we investigate the Morse property of sequences and maps. The main aim of

this section is to establish a local criterion for being Morse. To do so we introduce a local

notion of straightness for sequences of points in X. Morse sequences are in general not straight,

but they become straight after suitable modification, namely by sufficiently coarsifying them

and then passing to the sequence of successive midpoints. Conversely, the key result is that

sufficiently spaced straight sequences are Morse. We conclude that there is a local-to-global

characterization of the Morse property.

3.1 Morse quasigeodesics

Definition 3.1 (Morse quasigeodesic). A pΘ, D, L,Aq-Morse quasigeodesic in X is an

pL,Aq-quasigeodesic p : I Ñ X (defined on an interval I Ă R) such that for all t1, t2 P I

the subpath p|rt1,t2s is D-close to a Θ-diamond ♢Θpx1, x2q with dpxi, pptiqq ď D.

We will refer to a quadruple pΘ, D, L,Aq as aMorse datum and abbreviateM “ pΘ, D, L,Aq.

Set M`D1 “ pΘ, D`D1, L, A`2D1q. We say that M contains Θ if M has the form pΘ, D, L,Aq

for some D ě 0, L ě 1, A ě 0.

The following lemma is immediate from the definiton of a M -Morse quasigeodesic.

Lemma 3.2 (Perturbation lemma). If p, p1 are paths in X such that p is M-Morse and

dpp, p1q ď D1 then p1 is M ` D1-Morse.

A Morse quasigeodesic p is called a Morse ray if its domain is a half-line. If I “ R then a

Morse quasigeodesic is called a Morse quasiline.
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Morse quasirays do in general not converge at infinity (in the visual compactification of X),

but they τmod-converge at infinity. This is a consequence of:

Lemma 3.3 (Conicality). Every Morse quasiray p : r0,8q Ñ X is uniformly Hausdorff close

to a subset of a cone V ppp0q, stΘpτqq for a unique simplex τ of type τmod.

Proof. The subpaths p|r0,t0s are uniformly Hausdorff close to Θ-diamonds. These subconverge

to a cone V px, stΘpτqq x uniformly close to pp0q and τ a simplex of type τmod. This establishes

the existence. Since ppnq
f

ÝÑ τ , the uniqueness of τ follows from the uniqueness of τmod-limits,

see [KLP5, Lemma 4.23].

Definition 3.4 (End of Morse quasiray). We call the unique simplex given by the previous

lemma the end of the Morse quasiray p : r0,8q Ñ X and denote it by

pp`8q P Flagpτmodq.

Hausdorff close Morse quasirays have the same end by Lemma 3.3. In section 3.3 we will

prove uniform continuity of ends of Morse quasirays with respect to the topology of coarse

convergence of quasirays.

3.2 Morse maps

We now turn to Morse maps with more general domains (than just intervals).

Definition 3.5. Let Y be a Gromov-hyperbolic geodesic metric space. A map f : Y Ñ X is

called M -Morse if it sends geodesics in Y to M -Morse quasigeodesics.

Thus, every Morse map is a quasiisometric embedding. While this definition makes sense

for general metric spaces, in [KLP2] we proved that the domain of a Morse map is necessarily

hyperbolic.

More generally, one can define Morse maps on quasigeodesic metric spaces:

Definition 3.6 (Quasigeodesic metric space). Ametric space Z is called pl, aq-quasigeodesic

if all pairs of points in Y can be connected by pl, aq-quasigeodesics. A space is called quasi-

geodesic if it is pl, aq-quasigeodesic for some pair of parameters l, a.

Every quasigeodesic space is quasiisometric to a geodesic metric space. Namely, if Z is pλ, αq-

quasigeodesic space then it is quasiisometric to its pλ ` αq-Rips complex. The quasigeodesic

spaces considered in this paper are discrete groups equipped with word metrics.

Definition 3.7 (Morse embedding). Let pΘ, D, L,Aq be a Morse datum. An pΘ, D, L,A, l, aq-

Morse embedding (or a map) from an pl, aq-quasigeodesic space Z into X is a map f : Z Ñ X

which sends pl, aq-quasigeodesics in Z to pΘ, D, L,Aq-Morse quasigeodesics in X.

Of course, every pl, aq-quasigeodesic metric space is also pl1, a1q-quasigeodesic space for any
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l1 ě l, a1 ě a. The next lemma shows that this choice of quasigeodesic constants is essentially

irrelevant.

Lemma 3.8. Let f : Z Ñ X be a map from a Gromov-hyperbolic pl, aq-quasigeodesic space Z.

If f is M “ pΘ, D, L,A, l, aq-Morse then for any pl1, a1q, it sends pl1, a1q-quasigeodesics in Z to

M 1 “ pΘ, D1, L1, A1q-Morse quasigeodesics in X. Here the datum M 1 depends only on M, l1, a1

and the hyperbolicity constant δ of Z.

Proof. This is a consequence of the definition of Morse quasigeodesics, and the Morse Lemma

applied to Z.

Notice that the parameter Θ in the Morse datum M 1 is the same as in M . Hence, we arrive

to

Definition 3.9. A map f : Z Ñ X of a quasigeodesic hyperbolic space Z is called Θ-Morse if

it sends uniform quasigeodesics in Z to Θ-Morse uniform quasigeodesics in X.

This notion depends only on the quasi-isometry class of Z, i.e. the precomposition of a

Θ-Morse embedding with a quasi-isometry is again Θ-Morse. For this to be true we have to

require control on the images of quasigeodesics of arbitrarily bad (but uniform) quality.

Let Γ be a hyperbolic group with fixed a finite generating set S, and let Y be the Cayley

graph of Γ with respect to S. For x P X, an isometric action Γ ñ X determines the orbit

map ox : Γ Ñ Γx Ă X. Every such map extends to the Cayley graph Y of Γ, sending edges to

geodesics in X.

Definition 3.10. An isometric action Γ ñ X or a representation ρ : Γ Ñ G, is calledM -Morse

(with respect to a base-point x P X) if the (extended) orbit map ox : Y Ñ X is M -Morse.

Similarly, a subgroup Γ ă G is Morse if the inclusion homomorphism Γ ãÑ G is Morse.

The Morse property of an action and the parameter Θ, of course, does not depend on

the choice of a generating set of Γ and a base-point x, but the triple pD,L,Aq does. Thus,

it makes sense to talk about a Θ-Morse and τmod-Morse actions of hyperbolic groups, where

Θ Ă ostpτmodq. In [KLP5, KLP2, KL1] we gave many alternative definitions of Morse actions,

including the equivalence of this definition to the notion of Anosov subgroups.

3.3 Continuity at infinity

Let X, Y be proper metric spaces. We fix a base point y P Y .

Definition 3.11. A sequence of maps fn : Y Ñ X is said to coarsely converge to a map

f : Y Ñ X if there exists C ă 8 such that for every R there exists N “ NpC,Rq for which

dpfn|B, f |Bq ď C,

where B “ Bpy,Rq.
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Note the difference of this definition with the notion of uniform convergence on compacts:

Since we are working in the coarse setting, requiring the distance between maps to be less than

ϵ close to zero is pointless.

In view of the Arzela–Ascoli theorem, the space of pL,Aq-coarse Lipschitz maps Y Ñ X

sending y to a fixed bounded subset of X, is coarsely sequentially compact: Every sequence

contains a coarsely converging subsequence.

In the next lemma we assume that Y is a geodesic δ-hyperbolic space and X is a symmetric

space of noncompact type. The lemma itself is an immediate consequence of the perturbation

lemma, Lemma 3.2.

Lemma 3.12. Suppose that pn : R` Ñ X is a sequence of M-Morse rays which coarsely

converges to a map p : R` Ñ X. Then p is M 1-Morse, where M 1 “ M `C and the constant C

is the one appearing in the definition of coarse convergence.

In particular, a coarse limit of a sequence of (uniformly) Morse quasigeodesics is again

Morse.

For the next lemma, we equip the flag manifold F “ Flagpτmodq with some background

metric dF.

Lemma 3.13. Suppose that pn : R` Ñ X is a sequence of M-Morse rays coarsely converging

to a M-Morse ray p : R` Ñ X. Then the sequence τn :“ pnp8q of ends of the quasirays pn
converges to τ “ pp8q. Moreover, the latter convergence is uniform in the following sense. For

every ϵ ą 0 there exists n0 depending only on M and C and NpR,Cq (appearing in Definition

3.11) such that for all n ě n0, dFpτn, τq ď ϵ.

Proof. Suppose that the claim is false. Then in view of coarse compactness of the space of

M -Morse maps sending y to a fixed compact subset of X, there exists a sequence ppnq as

in the lemma, coarsely converging to p, such that the sequence pnp8q “ τn converges to

τ 1 ‰ pp8q “ τ . By the coarse convergence pn Ñ p, there exists C ă 8 and a sequence

tn Ñ 8 such that dppnptnq, pptnqq ď C. By the definition of Morse quasigeodesics, there exists

a sequence of cones V pxn, stpτnqq (with xn in a bounded subset B Ă X) such that the image

of pn is contained in the D-neighborhood of V pxn, stpτnqq. Thus, the sequence ppnptnqq flag-

converges to τ 1, while ppptnqq flag-converges to τ . According to [KLP5, Lemma 4.23], altering

a sequence by a uniformly bounded amount, does not change the flag-limit. Therefore, the

sequence ppptnqq also flag-converges to τ 1. Hence, τ “ τ 1. A contradiction.

3.4 A Morse Lemma for straight sequences

In order to motivate the results of this section we recall the following sufficient condition for a

piecewise-geodesic path in a Hadamard manifold Y of curvature ď ´1 to be quasigeodesic (see

e.g. [KaLi]):
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Proposition 3.14. Suppose that c is a piecewise-geodesic path in Y whose angles at the vertices

are ě α ą 0 and whose edges are longer than L, where α and L satisfy

coshpL{2q sinpα{2q ě ν ą 1. (3.15)

Then c is an pLpνq, Apνqq-quasigeodesic.

By considering c with vertices on a horocycle in the hyperbolic plane, one see that the

inequality in this proposition is sharp.

Corollary 3.16. If L is sufficiently large and α is sufficiently close to π then c is (uniformly)

quasigeodesic.

In higher rank, we do not have an analogue of the inequality (3.15), instead, we will be

generalizing the corollary. However, angles in the corollary will be replaced with ζ-angles. We

will show (in a String of Diamonds Theorem, theorem 3.30) that if a piecewise-geodesic path

c in X has sufficiently long edges and ζ-angles between consecutive segments sufficiently close

to π, then c is M -Morse for a suitable Morse datum.

In the following, we consider finite or infinite sequences pxnq of points in X.

Definition 3.17 (Straight and spaced sequence). We call a sequence pxnq pΘ, ϵq-straight

if the segments xnxn`1 are Θ-regular and

=ζ
xn

pxn´1, xn`1q ě π ´ ϵ

for all n. We call it l-spaced if the segments xnxn`1 have length ě l.

Note that every straight sequence can be extended to a biinfinite straight sequence.

Straightness is a local condition. The goal of this section is to prove the following local-

to-global result asserting that sufficiently straight and spaced sequences satisfy a higher rank

version of the Morse Lemma (for quasigeodesics in hyperbolic space).

Theorem 3.18 (Morse Lemma for straight spaced sequences). For Θ,Θ1, δ there exist

l, ϵ such that:

Every pΘ, ϵq-straight l-spaced sequence pxnq is δ-close to a parallel set P pτ´, τ`q with sim-

plices τ˘ of type τmod, and it moves from τ´ to τ` in the sense that its nearest point projection

x̄n to P pτ´, τ`q satisfies

x̄n˘m P V px̄n, stΘ1pτ˘qq (3.19)

for all n and m ě 1.

Remark 3.20 (Global spacing). 1. As a corollary of this theorem, we will show that straight

spaced sequences are quasigeodesic:

dpxn, xn`mq ě clm ´ 2δ

with a constant c “ cpΘ1q ą 0. See Corollary 3.29. In particular, by interpolating the sequence

pxnq via geodesic segments we obtain a Morse quasigeodesic in X.
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2. Theorem 3.18 is a higher-rank generalization of two familiar facts from geometry of

Gromov-hyperbolic geodesic metric spaces: The fact that local quasigeodesics (with suitable

parameters) are global quasigeodesics and the Morse lemma stating that quasigeodesics stay

uniformly close to geodesics. In the higher rank, quasigeodesics, of course, need not be close

to geodesics, but, instead (under the straightness assumption), are close to diamonds/Weyl

cones/parallel sets.

3. One can obviously strengthen the Corollary 3.16 by stating that for each ϵ ă π there

exists L0pϵq such that if α ě π ´ ϵ and L ě L0pϵq then c is a uniform quasigeodesic in X. A

similar strengthening is false for symmetric spaces of rank ě 2. For instance, when W – S3 and

ϵ “ 2π{3, then no matter what Θ,Θ1 and l are, the conclusion of Theorem 3.18 fails already

for sequences contained in a single flat.

In order to prove the theorem, we start by considering half-infinite sequences and prove that

they keep moving away from an ideal simplex of type τmod if they do so initially.

Definition 3.21 (Moving away from an ideal simplex). Given a face τ Ă BT itsX of type

τmod and distinct points x, y P X, define the angle

=ζ
xpτ, yq :“ =xpz, yq

where z is a point (distinct from x) on the geodesic ray xξ, where ξ P τ is the point of type ζ.

We say that a sequence pxnq moves ϵ-away from a simplex τ of type τmod if

=ζ
xn

pτ, xn`1q ě π ´ ϵ

for all n.

Lemma 3.22 (Moving away from ideal simplices). For small ϵ and large l, ϵ ď ϵ0 and

l ě lpϵ,Θq, the following holds:

If the sequence pxnqně0 is pΘ, ϵq-straight l-spaced and if

=ζ
x0

pτ, x1q ě π ´ 2ϵ,

then pxnq moves ϵ-away from τ .

Proof. By Lemma 2.10(ii), the unit speed geodesic segment c : r0, t1s Ñ X from pp0q to pp1q

moves ϵpdp2ϵqq-away from τ at all times, and ϵ1p2ϵ,Θ, lq-away at times ě l, which includes the

final time t1. For lpϵ,Θq sufficiently large, we have ϵ1p2ϵ,Θ, lq ď ϵ. Then c moves ϵ-away from

τ at time t1, which means that =ζ
x1

pτ, x0q ď ϵ. Straightness at x1 and the triangle inequality

yield that again =ζ
x1

pτ, x2q ě π ´ 2ϵ. One proceeds by induction.

Note that there do exist simplices τ satisfying the hypothesis of the previous lemma. For

instance, one can extend the initial segment x0x1 backwards to infinity and choose τ “ τpx1x0q.

Now we look at biinfinite sequences.
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We assume in the following that pxnqnPZ is pΘ, ϵq-straight l-spaced for small ϵ and large l. As

a first step, we study the asymptotics of such sequences and use the argument for Lemma 3.22

to find a pair of opposite ideal simplices τ˘ such that pxnq moves from τ´ towards τ`.

Lemma 3.23 (Moving towards ideal simplices). For small ϵ and large l, ϵ ď ϵ0 and

l ě lpϵ,Θq, the following holds:

There exists a pair of opposite simplices τ˘ of type τmod such that the inequality

=ζ
xn

pτ¯, xn˘1q ě π ´ 2ϵ (3.24)

holds for all n.

Proof. 1. For every n define a compact set C¯
n Ă Flagpτmodq

C˘
n “ tτ˘ : =ζ

xn
pτ˘, xn¯1q ě π ´ 2ϵu.

As in the proof of Lemma 3.22, straightness at xn`1 implies that C´
n Ă C´

n`1. Hence the family

tC´
n unPZ form a nested sequence of nonempty compact subsets and therefore have nonempty

intersection containing a simplex τ´. Analogously, there exists a simplex τ` which belongs to

C`
n for all n.

2. It remains to show that the simplices τ´, τ` are antipodal. Using straightness and the

triangle inequality, we see that

=ζ
xn

pτ´, τ`q ě π ´ 5ϵ

for all n. Hence, if 5ϵ ă ϵpζq, then the simplices τ´, τ` are antipodal in view of Remark 2.4.

The pair of opposite simplices pτ´, τ`q which we found determines a parallel set in X. The

second step is to show that pxnq is uniformly close to it.

Lemma 3.25 (Close to parallel set). For small ϵ and large l, ϵ ď ϵpδq and l ě lpΘ, δq, the

sequence pxnq is δ-close to P pτ´, τ`q.

Proof. The statement follows from the combination of the inequality (3.4) (in the second part

of the proof of Lemma 3.23) and Lemma 2.9.

The third and final step of the proof is to show that the nearest point projection px̄nq of

pxnq to P pτ´, τ`q moves from τ´ towards τ`.

Lemma 3.26 (Projection moves towards ideal simplices). For small ϵ and large l, ϵ ď ϵ0
and l ě lpϵ,Θ,Θ1q, the segments x̄nx̄n`1 are Θ1-regular and

=
ζ
x̄n

pτ´, x̄n`1q “ π

for all n.

Proof. By the previous lemma, pxnq is δ0-close to P pτ´, τ`q if ϵ0 is sufficiently small and l is

sufficiently large. Since xnxn`1 is Θ-regular, the triangle inequality for ∆-lengths yields that

the segment x̄nx̄n`1 is Θ1-regular, again if l is sufficiently large.
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Let ξ` denote the ideal endpoint of the ray extending this segment, i.e. x̄n`1 P x̄nξ`. Then

xn`1 is 2δ0-close to the ray xnξ`. We obtain that

=
ζ
T itspτ´, ξ`q ě =ζ

xn
pτ´, ξ`q » =ζ

xn
pτ´, xn`1q » π

where the last step follows from inequality (3.24). The discreteness of Tits distances between

ideal points of fixed type ζ implies that in fact

=
ζ
T itspτ´, ξ`q “ π,

i.e. the ideal points ζpτ´q and ζpξ`q are antipodal. But the only simplex opposite to τ´ in

B8P pτ´, τ`q is τ`, so τpξ`q “ τ` and

=
ζ
x̄n

pτ´, x̄n`1q “ =
ζ
x̄n

pτ´, ξ`q “ π,

as claimed.

Proof of Theorem 3.18. It suffices to consider biinfinite sequences.

The conclusion of Lemma 3.26 is equivalent to x̄n`1 P V px̄n, stΘ1pτ`qq. Combining Lem-

mas 3.25 and 3.26, we thus obtain the theorem for m “ 1.

The convexity of Θ1-cones, cf. Proposition 2.1, implies that

V px̄n`1, stΘ1pτ`qq Ă V px̄n, stΘ1pτ`qq,

and the assertion follows for all m ě 1 by induction.

Remark 3.27. The conclusion of the theorem implies flag-convergence x˘n Ñ τ˘ as n Ñ `8.

However, the sequences pxnqnP˘N do in general not converge at infinity, but accumulate at

compact subsets of stΘ1pτ˘q.

3.5 Lipschitz retractions to straight paths

Consider a (possibly infinite) closed interval J in R; we will assume that J has integer or infinite

bounds. Suppose that p : J X Z Ñ P “ P pτ´, τ`q Ă X is an l-separated, λ-Lipschitz, pΘ, 0q-

straight coarse sequence pointing away from τ´ and towards τ`. We extend p to a piecewise-

geodesic map p : J Ñ P by sending intervals rn, n ` 1s to geodesic segments ppnqppn ` 1q via

affine maps. We retain the name p for the extension.

Lemma 3.28. There exists L “ Lpl, λ,Θq and an L-Lipschitz retraction of X to p, i.e., an

L-Lipschitz map r : X Ñ J so that r ˝ p “ Id. In particular, p : J X Z Ñ X is a pL̄, Āq-

quasigeodesic, where L̄, Ā depend only on l, λ,Θ.

Proof. It suffices to prove existence of a retraction. Since P is convex in X, it suffices to

construct a map P Ñ J . Pick a generic point ξ “ ξ` P τ` and let bξ : P Ñ R denote the

Busemann function normalized so that bξpppzqq “ 0 for some z P J XZ. Then the Θ-regularity
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assumption on p implies that the slope of the piecewise-linear function bξ ˝ p : J Ñ R is strictly

positive, bounded away from 0. The assumption that p is l-separated λ-Lipschitz implies that

l ď |p1
ptq| ď λ

for each t (where the derivative exists). The straightness assumption on p implies that the

function h :“ bξ ˝ p : J Ñ R is strictly increasing. By combining these observations, we

conclude that h is an L-biLipschitz homeomorphism for some L “ Lpl, λ,Θq. Lastly, we define

r : P Ñ J, r “ h´1
˝ bξ.

Since bξ is 1-Lipschitz, the map r is L-Lipschitz. By the construction, r ˝ p “ Id.

Corollary 3.29. Suppose that p : JXZ Ñ X is a l-spaced, λ-Lipschitz, pΘ, ϵq-straight sequence.

Pick some Θ1 such that Θ Ă intpΘ1q and let δ “ δpl,Θ,Θ1, ϵq be the constant as in Theorem

3.18. Then for L “ Lpl ´ 2δ, λ ` 2δ,Θ1q we have:

1. There exists an pL, 2δq-coarse Lipschitz retraction X Ñ J .

2. The map p is a pΘ1, D1, L1, A1q-quasigeodesic with D1, L1, A1 depending only on l, λ,Θ,Θ1, ϵ.

Proof. The statement immediately follows the above lemma combined with Theorem 3.18.

Reformulating in terms of piecewise-geodesic paths, we obtain

Theorem 3.30 (String of diamonds theorem). For any pair of Weyl convex subsets Θ ă Θ1

and a number D ě 0 there exist positive numbers ϵ, S, L, A depending on the datum pΘ,Θ1, Dq

such that the following holds.

Suppose that c is an arc-length parameterized piecewise-geodesic path (finite or infinite) in

X obtained by concatenating geodesic segments xixi`1 satisfying for all i:

1. Each segment xixi`1 is Θ-regular and has length ě S.

2.

=ζ
xi

pxi´1, xi`1q ě π ´ ϵ.

Then the path c is pΘ1, D, L,Aq-Morse.

3.6 Local Morse quasigeodesics

According to Theorem 3.30, sufficiently straight and spaced straight piecewise-geodesic paths

are Morse. In this section we will now prove that, conversely, the Morse property implies

straightness in a suitable sense, namely that for sufficiently spaced quadruples the associated

midpoint triples are arbitrarily straight. (For the quadruples themselves this is in general not

true.)

Definition 3.31 (Quadruple condition). For points x, y P X we let midpx, yq denote the

midpoint of the geodesic segment xy. A map p : I Ñ X satisfies the pΘ, ϵ, l, sq-quadruple

condition if for all t1, t2, t3, t4 P I with t2 ´ t1, t3 ´ t2, t4 ´ t3 ě s the triple of midpoints

pmidpt1, t2q,midpt2, t3q,midpt3, t4qq

16



is pΘ, ϵq-straight and l-spaced.

Proposition 3.32 (Morse implies quadruple condition). For L,A,Θ,Θ1, D, ϵ, l exists a

scale s “ spL,A,Θ,Θ1, D, ϵ, lq such that every pΘ, D, L,Aq-Morse quasigeodesic satisfies the

pΘ1, ϵ, l, s1q-quadruple condition for every s1 ě s.

Proof. Let p : I Ñ X be an pL,A,Θ, Dq-Morse quasigeodesic, and let t1, . . . , t4 P I such that

t2 ´ t1, t3 ´ t2, t4 ´ t3 ě s. We abbreviate pi :“ pptiq and mi “ midppi, pi`1q.

Regarding straightness, it suffices to show that the segment m2m1 is Θ1-regular and that

=ζ
m2

pp2,m1q ď ϵ
2
provided that s is sufficiently large in terms of the given data.

By the Morse property, there exists a diamond ♢Θpx1, x3q such that dpx1, p1q, dpx3, p3q ď D

and p2 P NDp♢Θpx1, x3qq. The diamond spans a unique parallel set P pτ´, τ`q. (Necessarily,

x3 P V px1, stΘpτ`qq and x1 P V px3, stΘpτ´qq.)

We denote by p̄i and m̄i the projections of pi and mi to the parallel set.

We first observe that m2 (and m3) is arbitrarily close to the parallel set if s is large enough.

If this were not true, a limiting argument would produce a geodesic line at strictly positive

finite Hausdorff distance P p0, Ds from P pτ´, τ`q and asymptotic to ideal points in stΘpτ˘q.

However, all lines asymptotic to ideal points in stΘpτ˘q are contained in P pτ´, τ`q.

Next, we look at the directions of the segments m̄2m̄1 and m̄2p̄2 and show that they

have the same τ -direction. Since p̄2 is 2D-close to V pp̄1, stΘpτ`qq, we have that the point

p̄1 is 2D-close to V pp̄2, stΘpτ´qq, and hence also m̄1 is 2D-close to V pp̄2, stΘpτ´qq. There-

fore, p̄1, m̄1 P V pp̄2, stΘ1pτ´qq if s is large enough. Similarly, m̄2 P V pp̄2, stΘ1pτ`qq and hence

p̄2 P V pm̄2, stΘ1pτ´qq. The convexity of Θ1-cones, see Proposition 2.1, implies that also m̄1 P

V pm̄2, stΘ1pτ´qq. In particular, =
ζ
m̄2

pp̄2, m̄1q “ 0 if s is sufficiently large.

Since m2 is arbitrarily close to the parallel set if s is sufficiently large, it follows by another

limiting argument that =ζ
m2

pp2,m1q ď ϵ
2
if s is sufficiently large.

Regarding the spacing, we use that m̄1 P V pp̄2, stΘ1pτ´qq and m̄2 P V pp̄2, stΘ1pτ`qq. It follows

that

dpm̄1, m̄2q ě c ¨ pdpm̄1, p̄2q ` dpp̄2, m̄2qq

with a constant c “ cpΘ1q ą 0, and hence that dpm1,m2q ě l if s is sufficiently large.

Theorem 3.18 and Proposition 3.32 tell that the Morse property for quasigeodesics is equiv-

alent to straightness (of associated spaced sequences of points). Since straightness is a local

condition, this leads to a local to global result for Morse quasigeodesics, namely that the Morse

property holds globally if it holds locally up to a sufficiently large scale.

Definition 3.33 (Local Morse quasigeodesic). An S-local pΘ, D, L,Aq-Morse quasigeode-

sic in X is a map p : I Ñ X such that for all t0 the subpath p|rt0,t0`Ss is a pΘ, D, L,Aq-Morse

quasigeodesic.

Note that local Morse quasigeodesics are uniformly coarse Lipschitz.
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Theorem 3.34 (Local-to-global principle for Morse quasigeodesics). For L,A,Θ,Θ1, D

exist S, L1, A1, D1 such that every S-local pΘ, D, L,Aq-local Morse quasigeodesic in X is an

pΘ1, D1, L1, A1q-Morse quasigeodesic.

Proof. We choose an auxiliary Weyl convex subset Θ2 such that Θ ă Θ2 ă Θ1.

Let p : I Ñ X be an S-local pΘ, D, L,Aq-local Morse quasigeodesic. We consider its coarsi-

fication on a (large) scale s and the associated midpoint sequence, i.e. we put psn “ ppnsq and

ms
n “ midppsn, p

s
n`1q. Whereas the coarsification itself does in general not become arbitrarily

straight as the scale s increases, this is true for its midpoint sequence due to Proposition 3.32.

We want it to be sufficiently straight and spaced so that we can apply to it the Morse Lemma

from Theorem 3.18. Therefore we first fix an auxiliary constant δ, and further auxiliary con-

stants l, ϵ as determined by Theorem 3.18 in terms of Θ1,Θ2 and δ. Then Proposition 3.32

applied to the pΘ, D, L,Aq-Morse quasigeodesics p|rt0,t0`Ss yields that pms
nq is pΘ2, ϵq-straight

and l-spaced if S ě 3s and the scale s is large enough depending on L,A,Θ,Θ2, D, ϵ, l.

Now we can apply Theorem 3.18 to pms
nq. It yields a nearby sequence pm̄s

nq, dpm̄s
n,m

s
nq ď δ,

with the following property: For all n1 ă n2 ă n3 the segments m̄s
n1
m̄s

n3
are uniformly regular

and the points ms
n2

are δ-close to the diamonds ♢Θ1pm̄s
n1
, m̄s

n3
q.

Since the subpaths p|rns,pn`1qss filling in ppsnq are pL,Aq-quasigeodesics (because S ě s),

and it follows that for all t1, t2 P I the subpaths p|rt1,t2s are D1-close to Θ1-diamonds with D1

depending on L,A, s.

The conclusion of Theorem 3.18 also implies a global spacing for the sequence pms
nq, compare

Remark 3.20, i.e. dpms
n,m

s
n1q ě c ¨ |n ´ n1| with a positive constant c depending on Θ1, l. Hence

p is a global pL1, A1q-quasigeodesic with L1, A1 depending on L,A, s, c.

Combining this information, we obtain that p is an pΘ1, D1, L1, A1q-Morse quasigeodesic for

certain constants L1, A1 and D1 depending on L,A,Θ,Θ1 and D, provided that the scale S is

sufficiently large in terms of the same data.

3.7 Local-to-global principle for Morse maps

We now deduce from our local-to-global result for Morse quasigeodesics, Theorem 3.34, a local-

to-global result for Morse embeddings.

We restrict to the setting of maps of Gromov-hyperbolic pl, aq-quasigeodesic metric spaces

Z to symmetric spaces X.

Definition 3.35 (Local Morse embedding). We call a map f : Z Ñ X an S-local

pΘ, D, L,Aq-Morse map if for any pl, aq-quasigeodesic q : I Ñ Z defined on an interval I

of length ď S the image path f ˝ q is a pΘ, D, L,Aq-Morse quasigeodesic in X.

Theorem 3.36 (Local-to-global principle for Morse embeddings of Gromov hyper-

bolic spaces). For l, a, L,A,Θ,Θ1, D exists a scale S and a datum pD1, L1, A1q such that every

S-local pΘ, D, L,Aq-Morse embedding from an pl, aq-quasigeodesic Gromov hyperbolic space into

X is a pΘ1, D1, L1, A1q-Morse embedding.
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Proof. Let f : Z Ñ X denote the local Morse embedding. It sends every pl, aq-quasigeodesic

q : I Ñ Z to an S-local pΘ, D, L,Aq-Morse quasigeodesic p “ f ˝ q in X. By Theorem 3.34,

p is pL1, A1,Θ1, D1q-Morse if S ě Spl, a, L,A,Θ,Θ1, Dq, where L1, A1, D1 depend on the given

data.

Below is a reformulation of this theorem in the case of geodesic Gromov-hyperbolic spaces.

Let Z be a δ-hyperbolic geodesic space. An R-ball Bpz,Rq in Z need not be convex, but

it is δ-quasiconvex. In particular, the restriction of the metric from Z to Bpz,Rq results in a

p1, δq-quasigeodesic metric space.

Theorem 3.37 (Local-to-global principle for Morse embeddings of geodesic spaces).

For L,A,Θ,Θ1, D, δ exists a scale R and a datum pD1, L1, A1q such that if Z is a δ-hyperbolic

geodesic metric space and the restriction of f to any R-ball is pΘ, D, L,A, 1, δq-Morse, then

f : Z Ñ X is pΘ1, D1, L1, A1q-Morse.

4 Group-theoretic applications

As a consequence of the local-to-global criterion for Morse maps, in this section we establish

that the Morse property for isometric group actions is an open condition. Furthermore, for

two nearby Morse actions, the actions on their τmod-limit sets are also close, i.e. conjugate by

an equivariant homeomorphism close to identity. In view of the equivalence of Morse property

with the asymptotic properties discussed earlier, this implies structural stability for asymp-

totically embedded groups. Another corollary of the local-to-global result is the algorithmic

recognizability of Morse actions.

We conclude the section by illustrating our technique by constructing Morse-Schottky ac-

tions of free groups on higher rank symmetric spaces.

4.1 Stability of Morse actions

We consider isometric actions Γ ñ X of finitely generated groups.

Definition 4.1 (Morse action). We call an action Γ ñ X Θ-Morse if one (any) orbit map

Γ Ñ Γx Ă X is a Θ-Morse embedding with respect to a(ny) word metric on Γ. We call an action

Γ ñ X τmod-Morse if it is Θ-Morse for some τmod-Weyl convex compact subset Θ Ă ostpτmodq.

Remark 4.2 (Morse actions are τmod-regular and undistorted). (i) It follows immedi-

ately from the definition of Morse quasigeodesics that Θ-Morse actions are τmod-regular for the

simplex type τmod determined by Θ.

(ii) Morse subgroups of G are undistorted in the sense that the orbit maps are quasi-isometric

embeddings. In [KL1] we prove that Morse subgroups of G satisfy a stronger property: They

are coarse Lipschitz retracts of G. This retraction property is stronger than nondistortion:

Every finitely generated subgroup which is a coarse retract of G is undistorted in G, but there

are examples of undistorted subgroups which are not coarse retracts. For instance, the group
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Φ :“ F2 ˆF2 admits an undistorted embedding in the isometry group of X “ H2 ˆH2. On the

other hand, pick an epimorphism ϕ : F2 Ñ Z and define the subgroup Γ ă Φ as the kernel of

the homomorphism

pγ1, γ2q ÞÑ ϕpγ1q ´ ϕpγ2q.

Then Γ is a finitely generated undistorted subgroup of Φ (see e.g. [OS, Theorem 2]), but is not

finitely presented (see e.g. [BR]). Hence, Γ ă G “ IsompH2q ˆ IsompH2q is undistorted but is

not a coarse Lipschitz retract.

We denote by Homτmod
pΓ, Gq Ă HompΓ, Gq the subset of τmod-Morse actions Γ ñ X.

By analogy with local Morse quasigeodesics, we define local Morse group actions ρ : Γ ñ X

of a hyperbolic group (with a fixed finite generating set):

Definition 4.3. An action ρ is called S-locally pΘ, D, L,Aq-locally Morse, or pΘ, D, L,Aq-

locally Morse on the scale S, with respect to a base-point x P X, if the orbit map Γ Ñ Γ ¨x Ă X

induces an S-local pΘ, D, L,Aq-local Morse embedding of the Cayley graph of Γ.

According to our local-to-global result for Morse embeddings, see Theorem 3.37, an action

of a word hyperbolic group is Morse if and only if it is local Morse on a sufficiently large scale.

Since this is a finite condition, it follows that the Morse property is stable under perturbation

of the action:

Theorem 4.4 (Morse is open for word hyperbolic groups). For any word hyperbolic

group Γ the subset Homτmod
pΓ, Gq is open in HompΓ, Gq. More precisely, if ρ P Homτmod

pΓ, Gq is

M-Morse with respect to a base-point x P X then there exists a neighborhood of ρ in HompΓ, Gq

consisting entirely of M 1-Morse representations with respect to x, where M 1 depends only on

M .

Proof. Let ρ : Γ ñ X be a Morse action. We fix a word metric on Γ and a base point x P X.

Then there exist data M “ pL,A,Θ, Dq such that the orbit map Γ Ñ Γx Ă X extends to a

pΘ, D, L,Aq-Morse map of the Cayley graph Y on Γ.

We relax the Morse parameters slightly, i.e. we consider pL,A,Θ, Dq-Morse quasigeodesics

as pL,A ` 1,Θ, D ` 1q-Morse quasigeodesics satisfying strict inequalities. For every scale S,

the orbit map Γ Ñ Γx Ă X, defines an pL,A ` 1,Θ, D ` 1, Sq-local Morse embedding Y Ñ X.

Due to Γ-equivariance, this is a finite condition in the sense that it is equivalent to a condition

involving only finitely many orbit points. Since we relaxed the Morse parameters, the same

condition is satisfied by all actions sufficiently close to ρ.

Theorem 3.37 provides a scale S such that all S-local pΘ, D`1, L, A`1q-Morse embeddings

Y Ñ X are M 1-Morse for some Morse datum M 1 depending only on pL,A ` 1,Θ, D ` 1, Sq. It

follows that actions sufficiently close to ρ are τmod-Morse.

Corollary 4.5. For every hyperbolic group Γ the space of faithful Morse representations

Hominj,τmod
pΓ, Gq

is open in Homτmod
pΓ, Gq.
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Proof. Every hyperbolic group Γ has the unique maximal finite normal subgroup Φ Ÿ Γ (if Γ

is nonelementary then Φ is the kernel of the action of Γ on B8Γ). Since Morse actions are

properly discontinuous, the kernel of every Morse representation Γ Ñ G is contained in Φ.

Since HompΦ, Gq{G is finite, it follows that the set of faithful Morse representations is open in

Homτmod
pΓ, Gq.

The result on the openness of the Morse condition for actions of word hyperbolic groups,

cf. Theorem 4.4, can be strengthened in the sense that the asymptotics of Morse actions vary

continuously:

Theorem 4.6 (Morse actions are structurally stable). The boundary map at infinity of

a Morse action depends continuously on the action.

Proof. According to Theorem 4.4 nearby actions are uniformly Morse. The assertion there-

fore follows from the fact that the ends of Morse quasirays vary uniformly continuously, cf.

Lemma 3.13.

Remark 4.7. (i) Note that since the boundary maps at infinity are embeddings, the Γ-actions

on the τmod-limit sets are topologically conjugate to each other and, for nearby actions, by a

homeomorphism close to the identity.

(ii) In rank one, our argument yields a different proof for Sullivan’s Structural Stability

Theorem [Su] for convex cocompact group actions on rank one symmetric spaces. Other proofs

can be found in [La, GW] (for Anosov subgroups in higher rank), [Co, Iz, Bo] for rank one

symmetric spaces.

Our next goal is to extend the topological conjugation from the limit set to the domains

of proper discontinuity. Recall that in [KLP4] we constructed domains of proper discontinuity

and cocompactness for τmod-Morse group actions on flag-manifolds Flagpνmodq “ G{Pνmod
. Such

domains depend on a certain auxiliary datum, a balanced thickening Th Ă W , which is a Wτmod
-

left invariant subset satisfying certain conditions; see [KLP4, sect. 3.4]. Let νmod Ă σmod be an

ι-invariant face such that Th is invariant under the action of Wνmod
via the right multiplication

(this is automatic if νmod “ σmod since Wσmod
“ teu). The thickening Th Ă W defines a

thickening ThpΛτmod
pΓqq Ă Flagpνmodq. One of the main results of [KLP4] (Theorem 1.7) is

that each τmod-Morse subgroup Γ ă G acts properly discontinuously and cocompactly on

ΩThpΓq :“ Flagpνmodq ´ ThpΛτmod
pΓqq.

Theorem 4.8 (Stability of Morse quotient spaces). Suppose that ρn : Γ Ñ ρnpΓq “ Γn ă

G is a sequence of faithful τmod-Morse representations converging to a τmod-Morse embedding

ρ : Γ ãÑ G. Then:

1. The sequence of thickenings ThpΛτmod
pΓnqq Hausdorff-converges to ThpΛτmod

pΓqq.

2. If γn P Γ is a divergent sequence, then, after extraction, the sequence pρnpγnqq flag-

converges to a point in Λτmod
pΓq.
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3. There is a sequence of equivariant diffeomorphisms hn : ΩThpΓq Ñ ΩThpΓnq converging

to the identity map uniformly on compacts.

4. In particular, the quotient-orbifolds ΩThpΓnq{Γn are diffeomorphic to ΩThpΓq{Γ for all

sufficiently large n.

Proof. 1. First of all, suppose that a sequence τn P Flagpτmodq converges to τ P Flagpτmodq.

Then, since Flagpνmodq “ G{Pνmod
, there is a sequence gn P G, gn Ñ e, such that gnpτq “ τn.

Since

gnpThpτqq “ Thpgnτq “ Thpτnq,

it follows that we have Hausdorff-convergence of subsets Thpτnq Ñ Thpτq. Moreover, this

convergence of subsets is uniform: There exists n0 “ npδq such that if dpτn, τq ă δ for all

n ě n0 then dpThpτnq,Thpτqq ă ϵ “ ϵpδq for all n ě n0. Here ϵ Ñ 0 as δ Ñ 0. Since the

sequence of limit sets Λτmod
pΓnq Hausdorff-converges to Λτmod

pΓq, it follows that the sequence

of thickenings ThpΛτmod
pΓnqq Hausdorff-converges to ThpΛτmod

pΓqq. This proves (1).

2. Consider a sequence of geodesic rays eξn in the Cayley graph Y of Γ such that γn lies

in an R-neighborhood of eξn for all n. Then, in view of the uniform M 1-Morse property for

the representations ρn, each point ρnpγnqpxq belongs to the D1-neighborhood of the Weyl cone

V px, stpτnqq, where τn “ αnpξnq, αn : B8Γ Ñ Λτmod
pΓnq is the asymptotic embedding. Thus, by

the definition of flag-convergence, the sequences pρnpγnqq and pτnq have the same flag-limit in

Flagpτmodq. By Part 1, the sequence pτnq subconverges to a point in Λτmod
pΓq. Hence, the same

holds for pρnpγnqq.

3. The proof of this part is mostly standard, see [Iz] in the case whenX is a hyperbolic space.

The quotient orbifold O “ ΩThpΓq{Γ has a natural pF, Gq-structure where F “ Flagpνmodq.

The orbifold O has finitely many components, let Z be one of them and let Ẑ Ă ΩThpΓq be a

component projecting to Z. It suffices to construct maps hn on each component Ẑ and then

extend these maps to maps hn of ΩThpΓq by ρn-equivariance.

The covering map Ẑ Ñ Z induces an epimorphism ϕ : π1pZq Ñ ΓZ , where ΓZ is the Γ-

stabilizer of Ẑ. Let dev : Z̃ Ñ Ẑ Ă ΩThpΓq be the developing map, where Z̃ Ñ Z is the

universal covering. By Ehresmann-Thurston holonomy theorem (see [Lo], [CEG], [Go], [K1,

sect. 7.1]), for all sufficiently large n, the homomorphism ϕn :“ ρn ˝ ϕ is the holonomy of

an pF, Gq-structure on Z. Moreover, the developing maps devn : Z̃ Ñ F converge to dev

uniformly on compacts in the C8-topology. Since π1pẐq is contained in the kernel of ϕ, it

is also in the kernel of ϕn. Hence, the maps devn descend to maps ydevn : Ẑ Ñ F. The

sequence ydevn still converges to the identity embedding Ẑ ãÑ F uniformly on compacts. Pick

a compact fundamental set C Ă Ẑ for the ΓZ-action, i.e. a compact subset whose Γ-orbit

equals Ẑ. In view of Part 1 of the theorem, ydevnpCq Ă ΩThpΓnq for all sufficiently large n.

Therefore, we can assume that ydevnpẐq is contained in a component Ẑn of ΩThpΓnq. By the

compactness of the quotient-orbifolds, ydevn projects to a finite-to-one (smooth) orbi-covering

map cn : Z Ñ Zn :“ Ẑn{ρnpΓZq. Hence, ydevn : Ẑ Ñ Ẑn is a covering map as well. If Ẑn

were simply-connected, it would follow that ydevn is a diffeomorphism as required (and this is
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how Izeki concludes his proof in [Iz]). We will prove that ydevn is a diffeomorphism by a direct

argument.

Suppose that each ydevn is not injective. Then, by the equivariance of these maps, after

extraction, there exist convergent sequences zn Ñ z, z1
n Ñ z1 in Ẑ and a sequence γn P Γ such

that

ρnpγnqydevnpznq “ ydevnpz1
nq, γnpznq ‰ z1

n.

If the sequence pγnq were contained in a finite subset of Γ we would obtain a contradiction with

the uniform convergence on compacts ydevn Ñ id on Ẑ. Hence, after extraction, we may assume

that pγnq is a divergent sequence. We, therefore, obtain a dynamical relation between the points

z, z1 via the sequence pρnpγnqq. According to Part 2, the sequence pρnpγnqq flag-accumulates to

Λτmod
pΓq. The dynamical relation then contradicts fatness of the balanced thickening Th, see

[KLP4, sect. 5.2] and the proof of Theorem 6.8 in [KLP4].

We conclude that the maps
ydevn : Ẑ Ñ Ẑn

are diffeomorphisms for all sufficiently large n. Since ρn : Γ Ñ Γn are isomorphisms, equivari-

ance of the developing maps implies that the maps hn : ΩThpΓq Ñ ΩThpΓnq are diffeomor-

phisms for sufficiently large n.

4. This part is an immediate corollary of Part 3.

Remark 4.9. (i) In the case when X is a hyperbolic space, the equivariant diffeomorphism hn :

ΩpΓq Ñ ΩpΓnq combined with the equivariant homeomorphism of the limit sets ΛpΓq Ñ ΛpΓnq

yield an equivariant homeomorphism B8X Ñ B8X, see [Tu, Iz]. Such an extension does not

exist in higher rank since, in general, there is no equivariant homeomorphism of thickened limit

sets ThpΛτmod
pΓqq Ñ ThpΛτmod

pΓnqq. This can be already seen for group actions on products of

hyperbolic planes.

(ii) An analogue of Theorem 4.8 holds when we replace the group actions on flag-manifolds

with actions on Finsler compactifications of the symmetric space and replace flag-manifold

thickenings ThpΛτmod
q with Finsler thickenings ThF :upΛτmod

q Ă BF :uX. Proving this requires

extending Ehresmann–Thurston holonomy theorem to the category of smooth manifolds with

corners and we will not pursue it here.

4.2 Schottky actions

In this section we apply our local-to-global result for straight sequences (Theorem 3.18) to con-

struct Morse actions of free groups, generalizing and sharpening1 Tits’s ping-pong construction.

We consider two oriented τmod-regular geodesic lines a, b in X. Let τ˘a, τ˘b P Flagpτmodq

denote the simplices which they are τ -asymptotic to, and let θ˘a, θ˘b P σmod denote the types

of their forward/backward ideal endpoints in B8X. (Note that θ´a “ ιpθaq and θ´b “ ιpθbq.)

Let Θ be a compact convex subset of ostpτmodq Ă σmod, which is invariant under ι.

1In the sense that we obtain free subgroups which are not only embedded, but also asymptotically embedded

in G.
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Definition 4.10 (Generic pair of geodesics). We call the pair of geodesics pa, bq generic if

the four simplices τ˘a, τ˘b are pairwise opposite.

Let α, β P G be axial isometries with axes a and b respectively and translating in the positive

direction along these geodesics. Then τ˘a and τ˘b are the attractive/repulsive fixed points of

α and β on Flagpτmodq.

For every pair of numbers m,n P N we consider the representation of the free group in two

generators

ρm,n : F2 “ xA,By Ñ G

sending the generator A to αm and B to βn. We regard it as an isometric action ρm,n : F2 ñ X.

Definition 4.11 (Schottky subgroup). A τmod-Schottky subgroup of G is a free τmod-asymp-

totically embedded subgroup of G.

If G has rank one, this definition amounts to the requirement that Γ is convex cocompact

and free. Equivalently, this is a discrete finitely generated subgroup of G which contains no

nontrivial elliptic and parabolic elements and has totally disconnected limit set (see see [K1]).

We note that this definition essentially agrees with the standard definition of Schottky groups

in rank 1 Lie groups, provided one allows fundamental domains at infinity for such groups to

be bounded by pairwise disjoint compact submanifolds which need not be topological spheres,

see [K1] for the detailed discussion.

Theorem 4.12 (Morse Schottky actions). If the pair of geodesics pa, bq is generic and if

θ˘a, θ˘b P intpΘq, then the action ρm,n is Θ-Morse for sufficiently large m,n. Thus, such ρm,n

is injective and its image is a τmod-Schottky subgroup of G.

Remark 4.13. In particular, these actions are faithful and undistorted, compare Remark 4.2.

Proof. Let S “ tA˘1, B˘1u be the standard generating set. We consider the sequences pγkq

in F2 with the property that γ´1
k γk`1 P S and γk`1 ‰ γk´1 for all k. They correspond to the

geodesic segments in the Cayley tree of F2 associated to S which connect vertices.

Let x P X be a base point. In view of Lemma 3.8 we must show that the corresponding

sequences pγkxq in the orbit F2 ¨x are uniformly Θ-Morse. (Meaning e.g. that the maps R Ñ X

sending the intervals rk, k ` 1q to the points γkx are uniform Θ-Morse quasigeodesics.) As

in the proof of Theorem 3.34 we will obtain this by applying our local to global result for

straight spaced sequences (Theorem 3.18) to the associated midpoint sequences. Note that the

sequences pγkxq themselves cannot expected to be straight.

Taking into account the Γ-action, the uniform straightness of all midpoint sequences depends

on the geometry of a finite configuration in the orbit. It is a consequence of the following fact.

Consider the midpoints y˘m of the segments xα˘mpxq and z˘n of the segments xβ˘npxq.

Lemma 4.14. For sufficiently large m,n the quadruple ty˘m, z˘nu is arbitrarily separated and

Θ-regular. Moreover, for any of the four points, the segments connecting it to the other three

points have arbitrarily small ζ-angles with the segment connecting it to x.
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Proof. The four points are arbitrarily separated from each other and from x because the axes

a and b diverge from each other due to our genericity assumption.

By symmetry, it suffices to verify the rest of the assertion for the point ym, i.e. we show that

the segments ymy´m and ymzn are Θ-regular for large m,n and that limmÑ8 =ζ
ympx, y´mq “ 0

and limn,mÑ8 =ζ
ympx, znq “ 0.

The orbit points α˘mx and the midpoints y˘m are contained in a tubular neighborhood of the

axis a. Therefore, the segments ymx and ymy´m are Θ-regular for largem and =ympx, y´mq Ñ 0.

This implies that also =ζ
ympx, y´mq Ñ 0.

To verify the assertion for pym, znq we use that, due to genericity, the simplices τa and τb
are opposite and we consider the parallel set P “ P pτa, τbq. Since the geodesics a and b are

forward asymptotic to P , it follows that the points x, ym, zn have uniformly bounded distance

from P . We denote their projections to P by x̄, ȳm, z̄n.

Let Θ2 Ă intpΘq be an auxiliary Weyl convex subset such that θ˘a, θ˘b P intpΘ2q. We have

that ȳm P V px̄, stΘ2pτaqq for large m because the points ym lie in a tubular neighborhood of

the ray with initial point x̄ and asymptotic to a. Similarly, z̄n P V px̄, stΘ2pτbqq for large n. It

follows that x̄ P V pȳm, stΘ2pτbqq and, using the convexity of Θ-cones (Proposition 2.1), that

z̄n P V pȳm, stΘ2pτbqq.

The cone V pym, stΘ2pτbqq is uniformly Hausdorff close to the cone V pȳm, stΘ2pτbqq because

the Hausdorff distance of the cones is bounded by the distance dpym, ȳmq of their tips. Hence

there exist points x1, z1
n P V pym, stΘ2pτbqq uniformly close to x, zn. Since dpym, x

1q, dpym, z
1
nq Ñ

8 as m,n Ñ 8, it follows that the segments ymx and ymzn are Θ-regular for large m,n.

Furthermore, since =ζ
ympx1, z1

nq “ 0 and =ympx, x1q Ñ 0 as well as =ympzn, z
1
nq Ñ 0, it follows

that =ζ
ympx, znq Ñ 0.

Proof of Theorem concluded. The lemma implies that for any given l, ϵ the midpoint triples

of the four point sequences pγkxq are pΘ, ϵq-straight and l-spaced if m,n are sufficiently large,

compare the quadruple condition (Definition 3.31). This means that the midpoint sequences of

all sequences pγkxq are pΘ, ϵq-straight and l-spaced for large m,n. Theorem 3.18 then implies

that the sequences pγkxq are uniformly Θ-Morse.

Remark 4.15. 1. Generalizing the above argument to free groups with finitely many gener-

ators, one can construct Morse Schottky subgroups for which the set θpΛq Ă σmod of types of

limit points is arbitrarily Hausdorff close to a given ι-invariant Weyl convex subset Θ. This

provides an alternative approach to the second main theorem in [Be] using coarse geometric

arguments.

2. In [DKL] Theorem 4.12 was generalized (by arguments similar to the its proof) to free

products of Morse subgroups of G.

4.3 Algorithmic recognition of Morse actions

In this section, we describe an algorithm which has an isometric action ρ : Γ ñ X and a point

x P X as its input and terminates if and only if the action ρ is Morse (otherwise, the algorithm
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runs forever).

We begin by describing briefly the Riley’s algorithm (see [Ri]) accomplishing a similar task,

namely, detecting geometrically finite actions on X “ H3. Suppose that we are given a finite

(symmetric) set of generators g1 “ 1, . . . , gm of a subgroup Γ Ă POp3, 1q and a base-point

x P X “ H3. The idea of the algorithm is to construct a finite sided Dirichlet fundamental

domain D for Γ (with the center at x): Every geometrically finite subgroup of POp3, 1q admits

such a domain. (The latter is false for geometrically finite subgroups of POpn, 1q, n ě 4, but is,

nevertheless, true for convex cocompact subgroups.) Given a finite sided convex fundamental

domain, one concludes that Γ is geometrically finite. Here is how the algorithm works: For each

k define the subset Sk Ă Γ represented by words of length ď k in the letters g1, . . . , gm. For

each g P Sk consider the half-space Bispx, gpxqq Ă X bounded by the bisector of the segment

xgpxq and containing the point x. Then compute the intersection

Dk “
č

gPSk

Bispx, gpxqq.

Check if Dk satisfies the conditions of the Poincaré’s Fundamental Domain theorem. If it does,

then D “ Dk is a finite sided fundamental domain of Γ. If not, increase k by 1 and repeat the

process. Clearly, this process terminates if and only if Γ is geometrically finite.

One can enhance the algorithm in order to detect if a geometrically finite group is convex

cocompact. Namely, after a Dirichlet domain D is constructed, one checks for the following:

1. If the ideal boundary of a Dirichlet domain D has isolated ideal points (they would

correspond to rank two cusps which are not allowed in convex cocompact groups).

2. If the ideal boundary of D contains tangent circular arcs with points of tangency fixed

by parabolic elements (coming from the “ideal vertex cycles”). Such points correspond to rank

1 cusps, which again are not allowed in convex cocompact groups.

Checking 1 and 2 is a finite process; after its completion, one concludes that Γ is convex

cocompact.

We refer the reader to [Gi1, Gi2, GiM, K2] and [KL2, sect. 1.8] for more details concerning

discreteness algorithms for groups acting on hyperbolic planes and hyperbolic 3-spaces.

We now consider group actions on general symmetric spaces. Let Γ be a hyperbolic group

with a fixed finite (symmetric) generating set; we equip the group Γ with the word metric

determined by this generating set.

For each n, let Ln denote the set of maps q : r0, 3ns X Z Ñ Γ which are restrictions of

geodesics q̃ : Z Ñ Γ, such that qp0q “ 1 P Γ. In view of the geodesic automatic structure on Γ

(see e.g. [Ep, Theorem 3.4.5]), the set Ln can be described via a finite state automaton.

Suppose that ρ : Γ ñ X is an isometric action on a symmetric space X; we fix a base-point

x P X and the corresponding orbit map f : Γ Ñ Γx Ă X. We also fix an ι-invariant face τmod

of the model spherical simplex σmod of X. The algorithm that we are about to describe will

detect that the action ρ is τmod-Morse.
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Remark 4.16. If the face τmod is not fixed in advance, we would run algorithms for each face

τmod in parallel.

For the algorithm we will be using a special (countable) increasing family of Weyl convex

compact subsets Θ “ Θi Ă ostpτmodq Ă σmod which exhausts ostpτmodq; in particular, every

compact ι-invariant convex subset of ostpτmodq Ă σmod is contained in some Θi:

Θi :“ tv P σ : min
αPΦτmod

αpvq ě
1

i
u, (4.17)

where Φτmod
is the subset of the set of simple roots Φ (with respect to σmod) which vanish on

the face τmod. Clearly, the sets Θi satisfy the required properties. Furthermore, we consider

only those L and D which are natural numbers.

Next, consider the sequence

pLi,Θi, Diq “ pi,Θi, Diq, i P N.

In order to detect τmod-Morse actions we will use the local characterization of Morse quasi-

geodesics given by Theorem 3.18 and Proposition 3.32. Due to the discrete nature of quasi-

geodesics that we will be considering, it suffices to assume that the additive quasi-isometry

constant A is zero.

Consider the functions

lpΘ,Θ1, δq, ϵpΘ,Θ1, δq

as in Theorem 3.18. Using these functions, for the sets Θ “ Θi,Θ
1 “ Θi`1 and the constant

δ “ 1 we define the numbers

li “ lpΘ,Θ1, δq, ϵi “ ϵpΘ,Θ1, δq.

Next, for the numbers L “ Li, D “ Di and the sets Θ “ Θi,Θ
1 “ Θi`1, consider the

numbers

si “ spLi, 0,Θi,Θi`1, Di, ϵi`1, li`1q

as in Proposition 3.32. According to this proposition, every pLi, 0,Θi, Diq-Morse quasigeodesic

satisfies the pΘi`1, ϵi`1, li`1, sq-quadruple condition for all s ě si. We note that, a priori, the

sequence si need not be increasing. We set S1 “ s1 and define a monotonic sequence Si

recursively by

Si`1 “ maxpSi, si`1q.

Then every pΘi, Di, Li, 0q-Morse quasigeodesic also satisfies the pΘi`1, ϵi`1, li`1, Si`1q-quadruple

condition.

We are now ready to describe the algorithm. For each i P N we compute the numbers

li, ϵi and, then, Si, as above. We then consider finite discrete paths in Γ, q P LSi
, and the

corresponding discrete paths in X, pptq “ qptqx, t P r0, 3Sis X Z. The number of paths q (and,

hence, p) for each i is finite, bounded by the growth function of the group Γ.
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For each discrete path p we check the pΘi, ϵi, li, Siq-quadruple condition. If for some i “ i˚,

all paths p satisfy this condition, the algorithm terminates: It follows from Theorem 3.18 that

the map f sends all normalized discrete biinfinite geodesics in Γ to Morse quasigeodesics in

X. Hence, the action Γ ñ X is Morse in this case. Conversely, suppose that the action of Γ

is pΘ, D, L, 0q-Morse. Then f sends all isomeric embeddings q̃ : Z Ñ Γ to pΘ, D, L, 0q-Morse

quasigeodesics p̃ in X. In view of the properties of the sequence

pLi,Θi, Diq,

it follows that for some i,

pL,Θ, Dq ď pLi,Θi, Diq,

i.e., L ď Li,Θ Ă Θi, D ď Di; hence, all the biinfinite discrete paths p̃ are pΘi, Di, Li, 0q-

Morse quasigeodesic. By the definition of the numbers li, ϵi, Si, it then follows that all the

discrete paths p “ f ˝ q, q P LSi
satisfy the pΘi`1, ϵi`1, li`1, Si`1q-quadruple condition. Thus,

the algorithm will terminate at the step i ` 1 in this case.

Therefore, the algorithm terminates if and only if the action is Morse (for some parameters).

If the action is not Morse, the algorithm will run forever.

Remark 4.18. Applied to a rank one symmetric space X and a hyperbolic group Γ without

a nontrivial normal finite subgroup, the above algorithm verifies if the given representation

ρ : Γ Ñ IsompXq is faithful with convex-cocompact image. We could not find this result in the

existing literature; cf. however [GK].

5 Appendix: Further properties of Morse quasigeodesics

This is the only part of the paper not contained in [KLP1]. Here we collect various properties

of Morse quasigeodesics that we found to be useful elsewhere in our work.

5.1 Finsler geometry of symmetric spaces

In [KL1], see also [KLP5], we considered a certain class of G-invariant “polyhedral” Finsler

metrics on X. Their geometric and asymptotic properties turned out to be well adapted to

the study of geometric and dynamical properties of regular subgroups. They provide a Finsler

geodesic combing of X which is, in many ways, more suitable for analyzing the asymptotic

geometry of X than the geodesic combing given by the standard Riemannian metric on X.

These Finsler metrics also play a basic role in the present paper. We briefly recall their definition

and some basic properties, and refer to [KL1, §5.1] for more details.

Let θ̄ P intpτmodq be a type spanning the face type τmod. The θ̄-Finsler distance dθ̄ on X is

the G-invariant pseudo-metric defined by

dθ̄px, yq :“ max
θpξq“θ̄

`

bξpxq ´ bξpyq
˘
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for x, y P X, where the maximum is taken over all ideal points ξ P B8X with type θpξq “ θ̄.

It is positive, i.e. a (non-symmetric) metric, if and only if the radius of σmod with respect to θ̄

is ă π
2
. This is in turn equivalent to θ̄ not being contained in a factor of a nontrivial spherical

join decomposition of σmod, and is always satisfied e.g. if X is irreducible.

If dθ̄ is positive, it is equivalent to the Riemannian metric. In general, if it is only a pseudo-

metric, it is still equivalent to the Riemannian metric d on uniformly regular pairs of points.

More precisely, if the pair of points x, y is Θ-regular, then

L´1dpx, yq ď dθ̄px, yq ď Ldpx, yq

with a constant L “ LpΘq ě 1.

Regarding symmetry of the Finsler distance, one has the identity

dιθ̄py, xq “ dθ̄px, yq

and hence dθ̄ is symmetric if and only if ιθ̄ “ θ̄. We refer to dθ̄ as a Finsler metric of type τmod.

The dθ̄-balls in X are convex but not strictly convex. (Their intersections with flats through

their centers are polyhedra.) Accordingly, dθ̄-geodesics connecting two given points x, y are not

unique. To simplify notation, xy will stand for some dθ̄-geodesic connecting x and y. The union

of all dθ̄-geodesic xy equals the τmod-diamond ♢τmod
px, yq, that is, a point lies on a dθ̄-geodesic

xy if and only if it is contained in ♢τmod
px, yq, see [KLP5]. Finsler geometry thus provides an

alternative description of diamonds. Note that with this description, the diamond ♢τmod
px, yq

is also defined when the segment xy is not τmod-regular. Such a degenerate τmod-diamond is

contained in a smaller totally-geodesic subspace, namely in the intersection of all τmod-parallel

sets containing the points x, y. The description of geodesics and diamonds also implies that the

unparameterized dθ̄-geodesics depend only on the face type τmod, and not on θ̄. We will refer to

dθ̄-geodesics as τmod-Finsler geodesics. Note that Riemannian geodesics are Finsler geodesics.

We will call a Θ-regular τmod-Finsler geodesic a Θ-Finsler geodesic. If xy is a Θ-regular (Rie-

mannian) segment, then the union of Θ-Finsler geodesics xy equals the Θ-diamond ♢Θpx, yq.

Every τmod-Finsler ray in X is contained in a τmod-Weyl cone, and we will use the notation

xτ for a τmod-Finsler ray contained V px, stpτqq. Similarly, every τmod-Finsler line is contained

in a τmod-parallel set, and we denote by τ´τ` an oriented τmod-Finsler line forward/backward

asymptotic to two antipodal simplices τ˘ P Flagpτmodq and contained in P pτ´, τ`q.

Examples of Θ-regular Finsler geodesics can be obtained as follows. Let pxiq be a (finite

or infinite) sequence contained in a parallel set P pτ´, τ`q such that each Riemannian segment

xixi`1 is τ`-longitudinal and Θ1-regular. Then the concatenation of these geodesic segments is

Conversely, every Θ-regular Finsler geodesic c : I Ñ X can be approximated by a piecewise-

Riemannian Finsler geodesic c1: Pick a number s ą 0 and consider a maximal s-separated

subset J Ă I. Then take c1 to be the concatenation of Riemannian geodesic segments cpiqcpjq

for consecutive pairs i, j P J . In view of this approximation procedure, the String of Diamonds

Theorem (Theorem 3.30) holds if instead of Riemannian geodesic segments xixi`1 we allow

Θ-regular Finsler segments.
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5.2 Stability of diamonds

Diamonds can be regarded as Finsler-geometric replacements of geodesic segments in nonposi-

tively curved symmetric spaces of higher rank.

Riemannian geodesic segments in Hadamard manifolds (and, more generally, CAT p0q metric

spaces) depend uniformly continuously on their tips: By convexity of the distance function we

have,

dHauspxy, x
1y1

q ď maxpdpx, x1
q, dpy, y1

qq.

In [KLP2, Prop. 3.70] we proved that diamonds ♢τmod
depend continuously on their tips.

Below we establish uniform control on how much sufficiently large Θ-diamonds vary with

their tips.

Lemma 5.1. For d1 ą d ą 0 there exists C “ CpΘ,Θ1, d, d1q such that the following holds:

If a segment x´x` Ă X is Θ-regular with length ě C and y˘ P Bpx˘, dq, then the segment

y´y` is Θ1-regular and ♢Θpx´, x`q Ă Nd1p♢Θ1py´, y`qq.

Proof. The Θ1-regularity of y´y` for sufficiently large C follows from the ∆-triangle inequality.

Suppose that there exists no constant C for which also the second assertion holds. Then

there are sequences of points x˘
n with dpx´

n , x
`
n q Ñ `8, y˘

n with dpx˘
n , y

˘
n q ď d, xn P ♢Θpx´

n , x
`
n q

and yn P ♢Θ1py´
n , y

`
n q with dpxn,♢Θ1py´

n , y
`
n qq “ dpxn, ynq “ d1. We may assume convergence

xn Ñ x8 and yn Ñ y8 in X.

After extraction, at least one of the sequences px˘
n q diverges. There are two cases to consider.

Suppose first that both sequences px˘
n q diverge. Then they are uniformly τmod-regular and,

after extraction, we have τmod-flag convergence x˘
n , y

˘
n Ñ τ˘ P Flagpτmodq. The limit simplices

τ˘ are antipodal (because xn Ñ x8). We observe that

dpxn, B♢Θ1px´
n , x

`
n qq, dpyn, B♢Θ1py´

n , y
`
n qq Ñ `8.

It follows that the sequences of diamonds ♢Θ1px´
n , x

`
n q and ♢Θ1py´

n , y
`
n q both Hausdorff converge

to the τmod-parallel set P “ P pτ´, τ`q. It holds that x8 P P because xn P ♢Θpx´
n , x

`
n q. On the

other hand, dpx8, P q “ d1 because dpxn,♢Θ1py´
n , y

`
n qq “ d1, a contradiction.

Second, suppose that only one of the sequences px˘
n q diverges, say, after extraction, x´

n Ñ x´
8

and y´
n Ñ y´

8 in X to limit points with dpx´
8, y

´
8q ď d, and x`

n Ñ τ` P Flagpτmodq. Now the

distance of xn from the boundary of the Θ1-Weyl cone with tip x`
n and containing xn goes

to infinity and it follows that ♢Θ1px´
n , x

`
n q Ñ V px´

8, stΘ1pτ`qq and, similarly, ♢Θ1py´
n , y

`
n q Ñ

V py´
8, stΘ1pτ`qq. The asymptotic limit Weyl cones have Hausdorff distance dpx´

8, y
´
8q. On the

other hand, x8 P V px´
8, stΘ1pτ`qq and dpx8, V py´

8, stΘ1pτ`qqq “ d1, again a contradiction.

This shows that also (ii) holds for sufficiently large C.

We reformulate this result in terms of Finsler geodesics:

Lemma 5.2. There exists C “ CpΘ,Θ1, d, d1q such that the following holds: If x´x` is a Θ-

Finsler geodesic in X with dpx´, x`q ě C and y˘ are points with dpy˘, x˘q ď d, then every
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point x on x´x` lies within distance d1 of a point y on a Θ1-Finsler geodesic y´y`.

Note that we do not claim here that one can take the same Finsler geodesic y´y` for all

points x on x´x`.

We now apply this stabilty result to Morse quasigeodesics. One, somewhat annoying, feature

of the definition of Θ-Morse quasigeodesics p : I Ñ X is that pprt1, t2sq is not required to be

uniformly close to a Θ-diamond spanned by ppt1q, ppt2q. (One reason is because the segment

ppt1qppt2q need not be Θ-regular.) Nevertheless, Lemma 5.1 implies:

Lemma 5.3. For every Morse datum M “ pΘ, B, L,Aq and Θ1 ą Θ, there exists C “ CpM,Θ1q

and D1 such that whenever dpx1, x2q ě C, the segment x1x2 “ ppt1qppt2q is Θ1-regular and

pprt1, t2sq lies in the D1-neighborhood of the Θ1-diamond ♢Θ1px1, x2q.

5.3 Finsler approximation of Morse quasigeodesics

The next theorem establishes that every (sufficiently long) Morse quasigeodesic is uniformly

close to a Finsler geodesic with the same end-points. In this theorem, for convenience of the

notation, we will be allowing Morse quasigeodesics p to be defined on closed intervals I in the

extended real line; this is just a shorthand for a map I 1 “ IXR Ñ X such that, as I 1 Q t Ñ ˘8,

pptq Ñ pp˘8q P Flagpτmodq. When we say that such maps p, c are within distance D1 from each

other, this simply means that their restrictions to I 1 are within distance ď D1.

Theorem 5.4 (Finsler approximation theorem). For every Morse datum M “ pΘ, D, L,Aq,

Θ1 ą Θ, and a positive number S, there exist C “ CpM,Θ1, Sq, D1 “ D1pM,Θ1, Sq satisfying

the following.

Let p : I “ rt´, t`s Ñ X Y Flagpτmodq be a M-Morse quasigeodesic between the points

x˘ “ ppt˘q P X Y Flagpτmodq such that dpx´, x`q ě C. Then there exists a Θ1-Finsler geodesic

x´x` equipped with a monotonic parameterization c : I Ñ x´x` such that:

(a) The maps p, c : I Ñ X are within distance ď D1 from each other.

(b) x´x` is an S-spaced piecewise-Riemannian geodesic, i.e. the Riemannian length of each

Riemannian segments of x´x` is ě S.

Proof. We will prove this in the case when both x˘ are in X since the proofs when one or both

points x˘ are in Flagpτmodq are similar: One replaces diamonds with Weyl cones or parallel

sets.

By the definition of an M -Morse quasigeodesic, for all subintervals rs´, s`s Ă rt´, t`s, there

exists a Θ-diamond

♢Θpy1
´, y

1
`q

whose D-neighborhood contains pprs´, s`sq, and for y˘ “ pps˘q, we have

dpy˘, y
1
˘q ď D.
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Therefore, applying the first part of Lemma 5.1, we conclude that the Riemannian segment

y´y` is Θ1-regular provided that dpy´, y`q ě C1 “ C1pM,Θ1q. In view of the quasigeodesic

property of p, the last inequality follows from the separation condition

s` ´ s´ ě s “ spM,Θ1
q.

This, of course, also applies to rs´, s`s “ rt´, t`s and, hence, using the second part of Lemma

5.1, we obtain

ppIq Ă ND

`

♢Θpx1
´, x

1
`q

˘

Ă ND`D1 p♢Θ1px´, x`qq ,

where D1 “ D1pM,Θ1q. We let

ȳ˘ P ♢1 :“ ♢Θ1px´, x`q “ V px´, stΘ1pτ`qq X V px`, stΘ1pτ´qq

denote the nearest-point projections of y˘ “ pps˘q. As long as s` ´ s´ ě s1pM,Θ1q, the

Riemannian segments ȳ´ȳ` are also Θ1-regular and have length ě S. Furthermore, as in the

proof of Proposition 3.32, we can choose s1 such that each segment ȳ´ȳ` is τ`-longitudinal.

We assume, from now on, that t` ´ t´ ě s2pM,Θ1q, which is achieved by assuming that

L´1
pdpx´, x`q ´ Aq ě s1

pM,Θ1
q.

Take a maximal s1-separated subset J Ă I containing t˘. For each j P J define the point

zj :“ ppjq P ♢1.

Then for all consecutive i, j P J , s1 ď |j ´ i| ď 2s1 we have

L´1s1
´ pA ` 2D ` 2D1q ď dpzi, zjq ď 2Ls1

` pA ` 2D ` 2D1q. (5.5)

We then let c denote the concatenation of Riemannian segments zizj for consecutive i, j P J ,

where we use the affine parameterization of ri, js Ñ zizj. Thus, c is a Θ1-Finsler geodesic. We

now take the smallest s2 ě s1pM,Θ1q satisfying

S ď L´1s2
´ pA ` 2D ` 2D1q,

the inequalities (5.5) imply that c satisfies both requirements of the approximation theorem

with

D1
“ 2Ls2

` pA ` 2D ` 2D1q ` pD ` D1q ` p2Ls2
` Aq.

Remark 5.6. In the case when the domain of p is unbounded, one can prove a bit sharper

result, namely, one can take Θ1 “ Θ. Compare [KL3, sect. 6].

5.4 Altering Morse quasigeodesics

Below we consider certain modifications of M -Morse quasigeodesics p in X represented as

concatenations p “ p´ ‹ p0 ‹ p`, where x˘ are the end-points of p0, and y˘, x˘ are the end-

points of p˘. (As in the previous section, we will be allowing y˘ to be in X Y Flagpτmodq.)
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These modifications will have the form p1 “ p1
´ ‹ p1

0 ‹ p1
`, where p1

˘ and p1
0 are all Morse. We

will see that, under certain assumptions, the entire p1 is again Morse (for suitable Morse datum

M 1).

We begin by analyzing extensions of p to biinfinite paths.

Lemma 5.7 (Extension lemma). Suppose that

p˘ Ă V˘ “ V px˘, stpτ˘qq.

Whenever y˘ is in X, we let c˘ be Θ-regular Finsler rays contained in V˘ and connecting y˘

to τ˘. Then, for every Θ1 ą Θ, there exists a Morse datum M 1 containing Θ1 such that the

concatenation

p̂ “ c´ ‹ p ‹ c`

is M 1-Morse, provided that dpx˘, y˘q ě C “ CpM,Θ1q.

Proof. We fix an auxiliary subset Θ1 satisfying Θ ă Θ1 ă Θ1. We let S “ SpΘ1,Θ
1, 1q, ϵ “

ϵpΘ1,Θ
1, 1q be constants as in the string of diamonds theorem (Theorem 3.30).

According to Theorem 5.4, there exists a Θ1-regular Finsler geodesic

c̄ “ y´x̄´ ‹ x̄´x̄` ‹ x̄`y`

within distanceD1 “ D1pM,Θ1, Sq from the path p, such that c̄ is the concatenation of segments

of length ě S and dpx˘, x̄˘q ď D1. We let z˘y˘ denote the subsegments of x̄˘y˘ containing

y˘.

Since dpx˘, x̄˘q ď D1, for each ϵ ą 0 and a sufficiently large C1 “ C1pD1,Θ
1q, the inequality

dpx˘, y˘q ě C1 implies

=ζ
y˘

px˘, x̄˘q ď ϵ.

Therefore,

=ζ
y˘

pz˘, τ˘q ě π ´ ϵ

and, hence, the piecewise-geodesic path

ĉ “ c´ ‹ c̄ ‹ c`

is pΘ1, ϵq-straight and S-spaced. Hence, by Theorem 3.30, the concatenation ĉ is M 1-Morse,

where M1 “ pΘ1, 1, L, Aq. Since the path p̂ is within distance D1 from ĉ, it is M 1-Morse, where

M 1 “ M1 ` D1.

The next lemma was proven in [DKL, Thm. 4.11] in the case when p, p1 are finite paths.

The proof in the case of (bi)infinite paths is the same and we omit it.

Lemma 5.8 (Replacement lemma). Suppose that p1 “ p1
´ ‹p1

0 ‹p1
` is a concatenation of M-

Morse quasigeodesics in X, such that the end-points of p˘, p
1
˘ and p0, p

1
0 are the same. Then for

every Θ1 ą Θ there exists a Morse datum M 1 containing Θ1 such that the path p1 is M 1-Morse.
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In the following lemmata we will modify the path p by altering p˘ and keeping p0 unchanged

or moving it by a small amount (“wiggling the head and the tail of p”).

Lemma 5.9 (Wiggle lemma, I). Suppose that the paths p˘, p
1
˘ are both infinite. We let p1

˘

be M-Morse quasigeodesics with finite terminal points x˘ and set p1 :“ p1
´ ‹ p0 ‹ p1

`. Given

Θ1 ą Θ there exists ϵ “ ϵpM,Θ1q ą 0 and a Morse datum M 1 containing Θ1 such that if

µ :“ maxp=ζ
x˘

pp1
˘p˘8q, p˘p˘8qqq ă ϵ,

then p1 is M 1-Morse.

Proof. We fix an auxiliary compact Weyl-convex subset Θ1 Ă ostpτmodq such that Θ ă Θ1 ă Θ1.

Set τ˘ “ p˘p˘8q, τ 1
˘ “ p1

˘p˘8q.

According to Lemma 5.8, there exists a Morse datum M1 containing Θ1 such that for any

Θ1-regular Finsler geodesic rays c˘ :“ x˘τ˘, the concatenation c´ ‹ p0 ‹ c` is M1-Morse.

Let M2 ą M1 ` 1 be a Morse datum containing Θ1 and let S ą 0 be such that if a path

q in X is S-locally M1 ` 1-Morse then q is M2-Morse (see Theorem 3.34). Let ϵ be such that

for x P X, τ, τ 1 P Flagpτmodq, if =ζ
xpτ, τ 1q ă ϵ then each Θ1-regular Finsler segment of length

ď S in V px, stpτ 1qq is within unit distance from a Θ1-regular Finsler segment of length ď S in

V px, stpτqq. We assume now that µ ă ϵ.

Since p1
˘ are M -Morse rays, they are within distance D1 “ D1pM,Θ1q from Θ1-regular

Finsler rays c1
˘ “ x˘τ

1
˘ connecting x˘ and τ 1

˘. Define a new path c1 :“ c1
´ ‹ p0 ‹ c1

`.

By our choice of ϵ, the Θ1-regular Finsler subsegment s1
˘ “ x˘y

1
˘ of c1

˘ of length S is

within unit distance from a Θ1-regular Finsler subsegment s˘ “ x˘y˘ of c˘ of length S, where

c˘ “ x˘τ˘ is a Θ1-Finsler geodesic connecting x˘ to τ˘.

The concatenation

s´ ‹ p0 ‹ s`

is M1-Morse, and, since c1
˘ are Θ1-Finsler geodesic, the path c1 is S-locally M1 ` 1-Morse. By

our choice of S, the path c1 is M2-Morse. Since c1 is within distance D1 from p1, the path p1 is

M2 ` D1-Morse. Lastly, we set M 1 :“ M2 ` D1.

We generalize this lemma by allowing finite Morse quasigeodesics. We continue with the

setting of Lemma 5.9; we now allow paths p˘ and p1
˘ to be finite, connecting y˘, x˘ and y1

˘, x˘

respectively. (Some of y˘, y
1
˘ might be in Flagpτmodq.) However, we will assume that the

distances dpx˘, y˘q, dpx1
˘, y˘q are sufficiently large, ě C.

Lemma 5.10 (Wiggle lemma, II). Given Θ1 ą Θ there exist C ě 0, ϵ ą 0 and a Morse

datum M 1 containing Θ1 such that if

µ :“ maxp=ζ
x˘

py1
˘, y˘qq ă ϵ,

and

ν :“ minpdpx˘, y˘q, dpx˘, y
1
˘qq ě C

then p1 is M 1-Morse.
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Proof. Pick an auxiliary compact Weyl-convex subset Θ2, Θ ă Θ2 ă Θ1.

We define biinfinite geodesic extensions p̂, p̂1 as in Lemma 5.7, by extending (if necessary)

the paths p˘, p
1
˘ via Θ-Finsler geodesics y˘τ˘ and y1

˘τ
1
˘. According to Lemma 5.7, there exists

C ą 0and a Morse datumM2 (containing Θ2), both depending onM and Θ2, such that the path

p̂ is M2-Morse. The same lemma applied to the paths p̂1
˘ implies that they are also M2-Morse.

By the construction,

µ :“ =ζ
x˘

py1
˘, y˘q “ =ζ

x˘
pτ 1

˘, τ˘q.

Now, claim follows from Lemma 5.9.

Lastly, we prove a general Wiggle Lemma where we allow to perturb the entire path p. We

consider concatenations

p “ p´ ‹ p0 ‹ p`, p1
“ p1

´ ‹ p1
0 ‹ p1

`

of M -Morse quasigeodesics, where we assume that p0, p
1
0 are within distance D0 from each

other. The paths p˘ connect y˘, x˘ and p1
˘ connect y1

˘, x
1
˘.

Lemma 5.11 (Wiggle lemma, III). Given Θ1 ą Θ there exist C ě 0, ϵ ą 0 and a Morse

datum M 1 containing Θ1 such that if

µ :“ maxp=ζ
x˘

py1
˘, y˘qq ă ϵ,

and

ν :“ minpdpx˘, y˘q, dpx1
˘, y

1
˘qq ě C

then p1 is M 1-Morse.

Proof. As before, we fix an auxiliary compact Weyl-convex subset Θ3, Θ ă Θ3 ă Θ1. Then p1
˘

are within distance D3 “ D3pM,Θ3q from Θ3-regular Finsler geodesics c˘ :“ y1
˘x˘. We apply

Lemma 5.10 to the pair of paths

p, p2 :“ c´ ‹ p0 ‹ c`.

It follows that p2 is M3-Morse for some Morse datum M3 containing Θ1 provided that µ ď

ϵ “ ϵpM,Θ3,Θ
1q and ν ě C “ CpM,Θ3,Θ

1q. Since the paths p2 and p1 are wihin distance

D1 :“ maxpD0, D3q from each other, the path p1 is M 1 :“ M3 ` D1-Morse.
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Universitat Autònoma de Barcelona,

08193 Bellaterra, Spain

email: porti@mat.uab.cat

38


