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Abstract

Our main result is a local-to-global principle for Morse quasigeodesics, maps and actions.
As an application of our techniques we show algorithmic recognizability of Morse actions
and construct Morse “Schottky subgroups” of higher rank semisimple Lie groups via
arguments not based on Tits’ ping-pong. Our argument is purely geometric and proceeds
by constructing equivariant Morse quasiisometric embeddings of trees into higher rank

symmetric spaces.
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1 Introduction

This is a sequel to our paper [KLP5] and mostly consists of the material of section 7 of our ear-
lier paper [KLP1]| (the only additional material appears in Theorem 4.8 and the appendix
to the paper). We recall that quasigeodesics in Gromov hyperbolic spaces can be recog-
nized locally by looking at sufficiently large finite pieces, see [CDP]. In our earlier papers
[KLP4, KLP5, KLP2, KL1, KL2], for higher rank symmetric spaces X (of noncompact type)
we introduced an analogue of hyperbolic quasigeodesics, which we call Morse quasigeodesics.
Morse quasigeodesics are defined relatively to a certain face 7,,,4 of the model spherical face
Omoa Of X. In addition to the quasiisometry constants L, A, 7,,,q-Morse quasigeodesics come
equipped with two other parameters, a positive number D and a Weyl-convex subset © of the
open star of T,,,q in the modal spherical chamber ,,,4. In [KLP1, KLP5, KLP2] we also defined
Tmod-Morse maps Y — X from Gromov-hyperbolic spaces to symmetric spaces. These maps
are defined by the property that they send geodesics to uniformly 7,.q-Morse quasigeodesics,
i.e. Tmog-Morse quasigeodesics with a fixed set of parameters, (©, D, L, A).

The main result of this paper is a local characterization of Morse quasigeodesics in X:

Theorem 1.1 (Local-to-global principle for Morse quasigeodesics). For L, A,0,0", D
there exist S, L', A', D' such that every S-local (©, D, L, A)-local Morse quasigeodesic in X is a
(©, D' L', A")-Morse quasigeodesic.

Here S-locality of a certain property of a map means that this property is satisfied for
restrictions of this map to subintervals of length S. We refer to Definition 3.34 and Theorem
3.34 for the details. Based on this principle, we prove in Section 3.7 a local-to-global principle
for Morse maps from hyperbolic metric spaces to symmetric spaces.

We prove several consequences of these local-to-global principles:

1. The structural stability of Morse subgroups of G, generalizing Sullivan’s Structural Sta-
bility Theorem in rank one [Su] (see also [KKL] for a detailed proof); see Theorems 4.4 and 4.6.



While structural stability for Anosov subgroups was known earlier (Labourie, Guichard-Wienhard),
our method is more general and applies to a wider class of discrete subgroups, see [KL4].

Theorem 1.2 (Openness of the space of Morse actions). For a word hyperbolic group
[, the subset of Tmea-Morse actions is open in Hom(T', G).

Theorem 1.3 (Structural stability). Let T be word hyperbolic. Then for Tyeq-Morse actions
p: ' —~ X, the boundary embedding o, : 0,I' — Flag(T0a) depends continuously on the action

pP-

In particular, actions sufficiently close to a faithful Morse action are again discrete and
faithful. We supplement this structural stability theorem with a stability theorem on domains
of proper discontinuity, Theorem 4.8.

2. The locality of the Morse property implies that Morse subgroups are algorithmically
recognizable; Section 4.3:

Theorem 1.4 (Semidecidability of Morse property of group actions). Let I' be word
hyperbolic. Then there exists an algorithm whose inputs are homomorphisms p : I' — G (defined
on generators of I') and which terminates if and only if p defines a Tpoq-Morse action I' —~ X.

If the action is not Morse, the algorithm runs forever. Note that in view of [K2], there are
no algorithms (in the sense of BSS computability) which would recognize if a representation
I' — Isom(H?) is not geometrically finite.

3. We illustrate our techniques by constructing Morse-Schottky actions of free groups on
higher rank symmetric spaces; Section 4.2. Unlike all previously known constructions, our proof
does not rely on ping-pong arguments, but is purely geometric and proceeds by constructing
equivariant quasi-isometric embeddings of trees. The key step is the observation that a certain
local straightness property for sufficiently spaced sequences of points in the symmetric space
implies the global Morse property. This observation is also at the heart of the proof of the
local-to-global principle for Morse actions.

Since [KLP1] was originally posted in 2014, several improvements on the material of section
7 of [KLP1] and, hence, of the present paper were made:

(a) Different forms of Combination Theorems for Anosov subgroups were proven in [DKL,
DK1, DK2| in the papers by the 1st and the 2nd author and, subsequently, by the 1st author
and Subhadip Dey. The first one was a generalization of the technique in section 4.2 the present
paper, but the other two generalizations are based on a form of the ping-pong argument.

(b) Explicit estimates in the local-to-global principle for Morse quasigeodesics and, hence,
Morse embeddings, were obtained by Max Riestenberg in [1]. Riestenberg’s estimates are based
on replacing certain limiting arguments used in the present paper with differential-geometric
and Lie-theoretic arguments.



Organization of the paper.

The notions of Morse quasigeodesics and actions are discussed in detail in section 3. In that
section, among other things, we establish local-to-global principles for Morse quasigeodesics.

In section 4 we apply local-to-global principles to discrete subgroups of Lie groups: We show
that Morse actions are structurally stable and algorithmically recognizable. We also construct
Morse-Schottky actions of free groups on symmetric spaces. In section 5 (the appendix to the
paper) we prove further properties of Morse quasigeodesics that we found to be useful in our
work.
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2 Preliminaries

2.1 Basic notions of geometry of symmetric spaces

Throughout the paper we will be using definitions, notations and results of our earlier work.

We refer the reader to our earlier papers, e.g. [KLP4, KLP5, KLP2, KL1, KL2] for the vari-
ous notions related to symmetric spaces, such as polyhedral Finsler metrics on symmetric spaces
([KL1]), the opposition involution v of 6,04, model faces Tpoq Of Trmoq and the associated T,,04-flag
manifolds Flag(7,,0q) (sections 2.2.2 and 2.2.3 of [KLP5]), type map 0 : 0,X — 0ymoa, 0pen Schu-
bert cells C(7) < Flag(7imoa) (section 2.4 of [KLP5]), A-valued distances da on X (section 2.6
of [KLP5]), ©-regular geodesic segments (see §2.5.3 of [KLP5|), parallel sets, stars, open stars
and O-stars, st(7), ost(7), and ste(7), Weyl sectors V (x,T) (section 2.4 of [KLP5]), Weyl cones
V(z,st(7)) and ©-cones V (x,sto(7)), diamonds -, ,(x,y) and ©-diamonds $e(x,y) (section
2.5 of [KLP5]), Tiea-regular sequences and groups (section 4.2 of [KLP5]), T,.q-convergence
subgroups, flag-convergence, the Finsler interpretation of flag-convergence (see [KL1, §4.5 and
5.2] and [KLP5]), Tyea-limit sets A, (I') < Flag(T,0a) (section 4.5 of [KLP5]), visual limit set
(page 4 of [KLP5]), uniformly 7,,,4-regular sequences and subgroups (section 4.6 of [KLP5]),
Morse subgroups (section 5.4 of [KLP5]) and, more generally, Morse quasigeodesics and Morse
maps (Definitions 5.31, 5.33 of [KLP2]), antipodal limit sets (Definition. 5.1 of [KLP5]) and
antipodal maps to flag-manifolds (Definition 6.11 of [KLP2]).

In the paper we will be frequently using convexity of ©-cones in X:

Proposition 2.1 (Proposition 2.10 in [KLP5]). For every Weyl-convez subset © < st(Tynod),



for every x € X and 7 € Flag(7inoa), the cone V(z,ste(7)) < X is conver.

2.2 Standing notation and conventions

o We will use the notation X for a symmetric space of noncompact type, G for a semisimple
Lie group acting isometrically and transitively on X, and K is a maximal compact sub-
group of G, so that X is diffeomorphic to G/K. We will assume that G is commensurable
with the isometry group Isom(X) in the sense that we allow finite kernel and cokernel for
the natural map G — Isom(X). In particular, the image of G in Isom(X) contains the
identity component Isom(X),.

o We let 700 S Tmoq be a fixed t-invariant face type.

e We will use the notation x,, Jre Flag(7neq) for the flag-convergence of a 7,,,4-regular
sequence z, € X to a simplex 7 € Flag(7,04)-

e We will be using the notation ©, ©’ for an t-invariant, compact, Weyl-convex (see Defini-
tion 2.7 in [KLP5]) subset of the open star ost(Tm0d) S Omod-

e We will always assume that © < ©', meaning that © < int(©’).

e Constants L, A, D,¢€,6,1,a,s,S are meant to be always strictly positive and L > 1.

2.3 (-angles

We fix as auxiliary datum a ¢-invariant type ¢ = (noq € int(Tinoq). (We will omit the subscript
in (oq in order to avoid cumbersome notation for (-angles.) For a simplex 7 < 0, X of type
Tmods 1-6. T € Flag(Toq), we define ((7) € 7 as the ideal point of type (pnoq.- Given two such
simplices 71 € Flag(7,u04) and a point x € X, define the (-angles

LT, Te) = L5(1-,64) 1= La(€,€4), (2.2)

where &4 = ((74).
Similarly, define the (-Tits angle

L (ToTa) = Lo (1, €4) 1= La(€0,€4), (2.3)

where z belongs to a flat F' < X such that 7,7, < dpysF. Then simplices 74 (of the same
type) are antipodal iff
L%its(T_’ T“r) =T

for some, equivalently, every, choice of ( as above.

Remark 2.4. We observe that the ideal points (4 are opposite, Zp;s(¢_, () = 7, if and only
if they can be seen under angle ~ 7 (i.e., close to 7) from some point in X. More precisely,
there exists €((noq) such that:



If £,(C-,C¢y) > — €(Cmoa) for some point x then (4 are opposite.

This follows from the angle comparison Z,(¢_, () < Zras(¢—, ;) and the fact that the Tits
distance between ideal points of the fixed type (.04 takes only finitely many values.

For a 7,,0¢-regular unit tangent vector v € TX we denote by 7(v) € 05X the unique simplex
of type Tmeq such that ray p, with the initial direction v represents an ideal point in ost(7(v)).
We put ((v) = {(7(v)). Note that ((v) depends continuously on v.

For a 7,,,q-regular segment xy in X we let 7(xy) = 7(v), where v is the unit vector tangent
to xy.

Then, for a 7,,,-regular segments zy, zz and T € Flag(7,,04), we define the (-angles
L3y, m) = L8(r(xy),T),  L5(y,2) = L5 (7(xy), 7(x2))

Thus, the (-angle depends not on y, z but rather on the simplices 7(xy), 7(xz). These (-
angles will play the role of angles the between diamonds ¢, (z,y) and ¢, . (z,z), meeting
at x. Note that if X has rank 1, then the (-angles are just the ordinary Riemannian angles.

2.4 Distances to parallel sets versus angles

In this section we collect some geometric facts regarding parallel sets in symmetric spaces,
primarily dealing with estimation of distances from points in X to parallel sets.

Remark 2.5. The constants and functions in this section are not explicit and their existence
is proven by compactness arguments. For explicit computations here and in Theorem 3.18, we
refer the reader to the PhD thesis of ...

We first prove a lemma (Lemma 2.6) which strengthens Corollary 2.46 of [KLP5].

Lemma 2.6. Suppose that 71 are antipodal simplices in OrysX. Then every geodesic ray ~y
asymptotic to a point & € ost(y), is strongly asymptotic to a geodesic ray in P(t_,7,).

Proof. 1t £ belongs to the interior of the simplex 7, then the assertion follows from Corollary
2.46 of [KLP5]:

Weyl sectors V(x1,7) and V(xe,T) are strongly asymptotic if and only if x1 and x5 lie in
the same horocycle at 7.

We now consider the general case. Suppose, that £ belongs to an open simplex int(7’), such
that 7 is a face of 7. Then there exists an apartment a < 0r;sX containing both £ (and,
hence, 7" as well as 7) and the simplex 7_. Let F' < X be the maximal flat with 0,F = a.
Then F' contains a geodesic asymptotic to points in 7 and 7. Therefore, F' is contained in
P(7_,74). On the other hand, by the same Corollary 2.46 of [KLP5], applied to the simplex
7/, we conclude that v is strongly asymptotic to a geodesic ray in F'. ]

The following lemma provides a quantitative strengthening of the conclusion of Lemma 2.6:
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Lemma 2.7. Let © be a compact subset of ost(ty). Then those rays x€ with 0(§) € © are uni-
formly strongly asymptotic to P(t_,7.), i.e. d(-, P(T_, 7)) decays to zero along them uniformly
in terms of d(xz, P(T_,7;)) and ©.

Proof. Suppose that the assertion of lemma is false, i.e., there exists € > 0, a sequence T; € R,
diverging to infinity, and a sequence of rays p; = x;& with & € © and d(z;, P(7_,7.)) < d, so
that

d(y, P(m—,74)) = €, Yy € p([0, T3]). (2.8)

Using the action of the stabilizer of P(7_,7.), we can assume that the points z; belong to a
certain compact subset of X. Therefore, the sequence of rays x;&; subconverges to a ray £ with
d(z, P(t_,7+)) < d and £ € ©. The inequality (2.8) then implies that the entire limit ray z¢ is
contained outside of the open e-neighborhood of the parallel set P(7_, 7, ). However, in view
of Lemma 2.6, the ray x¢ is strongly asymptotic to a geodesic in P(7_, 7, ). Contradiction. [

We next relate distances from points x € X to parallel sets and the (-angles at . Suppose
that the simplices 74, equivalently, the ideal points (+ = ((74+) (see section 2.3), are opposite.
Then

Lg(T—uT-i-) = L$(<—7C+) =m
if and only if z lies in the parallel set P(7_, 7). Furthermore, Z$(7_,7,) ~ 7 if and only if x is
close to P(7_,7.), and both quantities control each other near the parallel set. More precisely:
Lemma 2.9. (i) If d(z, P(t_,7.)) < d, then ZS(7_,74) = 7 — €(d) with e(d) — 0 as d — 0.

(ii) For sufficiently small €, € < € (Cnoa), we have: The inequality /S (17—, 7,) = m— € implies
that d(z, P(t_,74)) < d(e) for some function d(e) which converges to 0 as € — 0.

Proof. The intersection of parabolic subgroups P, n P, preserves the parallel set P(7_, ;)
and acts transitively on it. Compactness and the continuity of Z.(¢_, () therefore imply that
m — Z.(C_,(y) attains on the boundary of the tubular r-neighborhood of P(7_,7,) a strictly
positive maximum and minimum, which we denote by ¢1(r) and ¢,(r). Furthermore, ¢;(r) — 0
as 7 — 0. We have the estimate:

™= ¢1(d(x’ P(T—vT-i-))) < Lm((—’c-i-) ST — gb?(d(l‘? P(T—7T+)))

The functions ¢;(r) are (weakly) monotonically increasing. This follows from the fact that,
along rays asymptotic to (_ or (,, the angle Z.(¢(_,(;) is monotonically increasing and the
distance d(-, P(7_, 7)) is monotonically decreasing. The estimate implies the assertions.  [J

The control of d(-, P(t_,74)) and Z.(C_,(;) “spreads” along the Weyl cone V(z,st(7)),
since the latter is asymptotic to the parallel set P(7_,7,). Moreover, the control improves, if
one enters the cone far into a 7,,,4-regular direction. More precisely:

Lemma 2.10. Let y € V(xz,ste(7y)) be a point with d(z,y) = 1.
(i) If d(x, P(T—,74)) < d, then

d(y, P(r-, 7)) < D'(d,0,1) < d
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with D'(d,0,1) - 0 as | — +0.
(i1) For sufficiently small €, € < € (Cmoa), we have: If £,((_,(y) =7 — €, then

2,61 27— e(e,0,0) > 7 — e(d(e))
with €' (€,0,1) — 0 as | — +o0.

Proof. The distance from P(7_,7,) takes its maximum at the tip x of the cone V' (z,st(7)),
because it is monotonically decreasing along the rays z€ for £ € st(7,). This yields the right-
hand bounds d and, applying Lemma 2.9 twice, €(d(¢)).

Those rays z€ with uniformly 7,,,4-regular type 6(£) € © are uniformly strongly asymptotic
to P(r_,74), i.e. d(-, P(1—, 74 )) decays to zero along them uniformly in terms of d and ©, see
Lemma 2.7. This yields the decay D'(d,0,l) — 0 as [ — +00. The decay of ¢ follows by
applying Lemma 2.9 again. [

3 Morse maps

In this section we investigate the Morse property of sequences and maps. The main aim of
this section is to establish a local criterion for being Morse. To do so we introduce a local
notion of straightness for sequences of points in X. Morse sequences are in general not straight,
but they become straight after suitable modification, namely by sufficiently coarsifying them
and then passing to the sequence of successive midpoints. Conversely, the key result is that
sufficiently spaced straight sequences are Morse. We conclude that there is a local-to-global
characterization of the Morse property.

3.1 Morse quasigeodesics

Definition 3.1 (Morse quasigeodesic). A (0, D, L, A)-Morse quasigeodesic in X is an
(L, A)-quasigeodesic p : I — X (defined on an interval I — R) such that for all ¢1,t5 € [
the subpath p|p, 1,1 is D-close to a ©-diamond $e (21, 22) with d(z;, p(t;)) < D.

We will refer to a quadruple (0, D, L, A) as a Morse datum and abbreviate M = (0, D, L, A).
Set M+D' = (0,D+D' L, A+2D"). We say that M contains © if M has the form (©, D, L, A)
for some D >0,L >1,A > 0.

The following lemma is immediate from the definiton of a M-Morse quasigeodesic.
Lemma 3.2 (Perturbation lemma). If p,p’ are paths in X such that p is M-Morse and
d(p,p’) < D' then p’ is M + D'-Morse.

A Morse quasigeodesic p is called a Morse ray if its domain is a half-line. If / = R then a
Morse quasigeodesic is called a Morse quasiline.



Morse quasirays do in general not converge at infinity (in the visual compactification of X),
but they 7,,,4-converge at infinity. This is a consequence of:

Lemma 3.3 (Conicality). Every Morse quasiray p : [0,0) — X is uniformly Hausdorff close
to a subset of a cone V(p(0),ste(7)) for a unique simplex T of type Tmod.

Proof. The subpaths pljo4,] are uniformly Hausdorff close to ©-diamonds. These subconverge
to a cone V (z,ste(7)) = uniformly close to p(0) and 7 a simplex of type 7,,0,q. This establishes

the existence. Since p(n) S, 7, the uniqueness of 7 follows from the uniqueness of 7,,,4-limits,
see [KLP5, Lemma 4.23]. O

Definition 3.4 (End of Morse quasiray). We call the unique simplex given by the previous
lemma the end of the Morse quasiray p : [0,00) — X and denote it by

p(+0) € Flag(Tmod)-

Hausdorft close Morse quasirays have the same end by Lemma 3.3. In section 3.3 we will
prove uniform continuity of ends of Morse quasirays with respect to the topology of coarse
convergence of quasirays.

3.2 Morse maps

We now turn to Morse maps with more general domains (than just intervals).

Definition 3.5. Let Y be a Gromov-hyperbolic geodesic metric space. A map f:Y — X is
called M-Morse if it sends geodesics in Y to M-Morse quasigeodesics.

Thus, every Morse map is a quasiisometric embedding. While this definition makes sense
for general metric spaces, in [KLP2] we proved that the domain of a Morse map is necessarily
hyperbolic.

More generally, one can define Morse maps on quasigeodesic metric spaces:

Definition 3.6 (Quasigeodesic metric space). A metric space Z is called ({, a)-quasigeodesic
if all pairs of points in Y can be connected by (I, a)-quasigeodesics. A space is called quasi-
geodesic if it is (I, a)-quasigeodesic for some pair of parameters [, a.

Every quasigeodesic space is quasiisometric to a geodesic metric space. Namely, if 7 is (A, a)-
quasigeodesic space then it is quasiisometric to its (A + a)-Rips complex. The quasigeodesic
spaces considered in this paper are discrete groups equipped with word metrics.

Definition 3.7 (Morse embedding). Let (0, D, L, A) be a Morse datum. An (0, D, L, A,l,a)-
Morse embedding (or a map) from an ([, a)-quasigeodesic space Z into X isamap f: Z — X
which sends (I, a)-quasigeodesics in Z to (©, D, L, A)-Morse quasigeodesics in X.

Of course, every (I, a)-quasigeodesic metric space is also (I, a’)-quasigeodesic space for any
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I">1,d’ = a. The next lemma shows that this choice of quasigeodesic constants is essentially
irrelevant.

Lemma 3.8. Let f: Z — X be a map from a Gromov-hyperbolic (I, a)-quasigeodesic space Z .
If fis M = (©,D, L, A,l,a)-Morse then for any (I',a’), it sends (I',a")-quasigeodesics in Z to
M = (©,D' L', A")-Morse quasigeodesics in X. Here the datum M' depends only on M,l',d
and the hyperbolicity constant § of Z.

Proof. This is a consequence of the definition of Morse quasigeodesics, and the Morse Lemma
applied to Z. O

Notice that the parameter © in the Morse datum M’ is the same as in M. Hence, we arrive
to

Definition 3.9. A map f: Z — X of a quasigeodesic hyperbolic space Z is called ©-Morse if
it sends uniform quasigeodesics in Z to ©-Morse uniform quasigeodesics in X.

This notion depends only on the quasi-isometry class of Z, i.e. the precomposition of a
O-Morse embedding with a quasi-isometry is again ©@-Morse. For this to be true we have to
require control on the images of quasigeodesics of arbitrarily bad (but uniform) quality.

Let T" be a hyperbolic group with fixed a finite generating set S, and let Y be the Cayley
graph of I' with respect to S. For x € X, an isometric action I' —~ X determines the orbit
map o, : I' > I'r € X. Every such map extends to the Cayley graph Y of I', sending edges to
geodesics in X.

Definition 3.10. An isometric action I' —~ X or a representation p : I' — G, is called M-Morse
(with respect to a base-point z € X) if the (extended) orbit map o, : ¥ — X is M-Morse.
Similarly, a subgroup I' < G is Morse if the inclusion homomorphism I' < G is Morse.

The Morse property of an action and the parameter ©, of course, does not depend on
the choice of a generating set of I" and a base-point x, but the triple (D, L, A) does. Thus,
it makes sense to talk about a ©-Morse and 7,,,;-Morse actions of hyperbolic groups, where
O < 08t(Timoa). In [KLP5, KLP2, KL1| we gave many alternative definitions of Morse actions,
including the equivalence of this definition to the notion of Anosov subgroups.

3.3 Continuity at infinity

Let X,Y be proper metric spaces. We fix a base point y € Y.

Definition 3.11. A sequence of maps f, : ¥ — X is said to coarsely converge to a map
f Y — X if there exists C' < 0 such that for every R there exists N = N(C, R) for which

d(fuls, flB) < C,

where B = B(y, R).
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Note the difference of this definition with the notion of uniform convergence on compacts:
Since we are working in the coarse setting, requiring the distance between maps to be less than
€ close to zero is pointless.

In view of the Arzela—Ascoli theorem, the space of (L, A)-coarse Lipschitz maps ¥ — X
sending y to a fixed bounded subset of X, is coarsely sequentially compact: Every sequence
contains a coarsely converging subsequence.

In the next lemma we assume that Y is a geodesic 6-hyperbolic space and X is a symmetric
space of noncompact type. The lemma itself is an immediate consequence of the perturbation
lemma, Lemma 3.2.

Lemma 3.12. Suppose that p, : R, — X 1is a sequence of M-Morse rays which coarsely
converges to a map p : Ry, — X. Then p is M'-Morse, where M' = M + C' and the constant C
is the one appearing in the definition of coarse convergence.

In particular, a coarse limit of a sequence of (uniformly) Morse quasigeodesics is again
Morse.

For the next lemma, we equip the flag manifold F = Flag(7,,,4) with some background
metric dp.

Lemma 3.13. Suppose that p, : R, — X s a sequence of M-Morse rays coarsely converging
to a M-Morse ray p : Ry — X. Then the sequence 1, := p,(0) of ends of the quasirays p,
converges to T = p(o0). Moreover, the latter convergence is uniform in the following sense. For
every € > 0 there exists ng depending only on M and C' and N(R,C) (appearing in Definition
3.11) such that for all n = ng, dp(7,,7) < €.

Proof. Suppose that the claim is false. Then in view of coarse compactness of the space of
M-Morse maps sending y to a fixed compact subset of X, there exists a sequence (p,) as
in the lemma, coarsely converging to p, such that the sequence p,(o0) = 7, converges to
7' # p(oo) = 7. By the coarse convergence p, — p, there exists C' < oo and a sequence
t, — o0 such that d(p,(t,), p(t,)) < C. By the definition of Morse quasigeodesics, there exists
a sequence of cones V(z,,st(7,)) (with z,, in a bounded subset B < X) such that the image
of p, is contained in the D-neighborhood of V(z,,st(7,)). Thus, the sequence (p,(t,)) flag-
converges to 7', while (p(t,)) flag-converges to 7. According to [KLP5, Lemma 4.23], altering
a sequence by a uniformly bounded amount, does not change the flag-limit. Therefore, the
sequence (p(t,)) also flag-converges to 7. Hence, 7 = 7/. A contradiction. O

3.4 A Morse Lemma for straight sequences

In order to motivate the results of this section we recall the following sufficient condition for a
piecewise-geodesic path in a Hadamard manifold YV of curvature < —1 to be quasigeodesic (see
e.g. [Kali)):

11



Proposition 3.14. Suppose that ¢ is a piecewise-geodesic path in'Y whose angles at the vertices
are = o > 0 and whose edges are longer than L, where o and L satisfy

cosh(L/2)sin(a/2) = v > 1. (3.15)

Then ¢ is an (L(v), A(v))-quasigeodesic.

By considering ¢ with vertices on a horocycle in the hyperbolic plane, one see that the
inequality in this proposition is sharp.

Corollary 3.16. If L is sufficiently large and « is sufficiently close to 7 then c is (uniformly)
quasigeodesic.

In higher rank, we do not have an analogue of the inequality (3.15), instead, we will be
generalizing the corollary. However, angles in the corollary will be replaced with (-angles. We
will show (in a String of Diamonds Theorem, theorem 3.30) that if a piecewise-geodesic path
¢ in X has sufficiently long edges and (-angles between consecutive segments sufficiently close
to m, then ¢ is M-Morse for a suitable Morse datum.

In the following, we consider finite or infinite sequences (z,,) of points in X.

Definition 3.17 (Straight and spaced sequence). We call a sequence (x,,) (©, €)-straight
if the segments x,x, 1 are ©-regular and

25 (Tn1,Tni1) 2T —€

Tn

for all n. We call it [-spaced if the segments z,x, 1 have length > [.

Note that every straight sequence can be extended to a biinfinite straight sequence.

Straightness is a local condition. The goal of this section is to prove the following local-
to-global result asserting that sufficiently straight and spaced sequences satisfy a higher rank
version of the Morse Lemma (for quasigeodesics in hyperbolic space).

Theorem 3.18 (Morse Lemma for straight spaced sequences). For ©,0’, 0 there exist
l,e such that:

Every (O, €)-straight l-spaced sequence (x,,) is 0-close to a parallel set P(1_,T,) with sim-
plices T+ of type Timoa, and it moves from 7_ to T, in the sense that its nearest point projection
T, to P(T_,T}) satisfies

Tntm € V([fn, St@/<7'i)) (319)

for alln and m > 1.

Remark 3.20 (Global spacing). 1. As a corollary of this theorem, we will show that straight
spaced sequences are quasigeodesic:

d(Tp, Tpgm) = clm — 20

with a constant ¢ = ¢(0’) > 0. See Corollary 3.29. In particular, by interpolating the sequence
(z,) via geodesic segments we obtain a Morse quasigeodesic in X.
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2. Theorem 3.18 is a higher-rank generalization of two familiar facts from geometry of
Gromov-hyperbolic geodesic metric spaces: The fact that local quasigeodesics (with suitable
parameters) are global quasigeodesics and the Morse lemma stating that quasigeodesics stay
uniformly close to geodesics. In the higher rank, quasigeodesics, of course, need not be close
to geodesics, but, instead (under the straightness assumption), are close to diamonds/Weyl
cones/parallel sets.

3. One can obviously strengthen the Corollary 3.16 by stating that for each € < 7 there
exists Lo(€) such that if &« > 7 — e and L = Ly(¢) then ¢ is a uniform quasigeodesic in X. A
similar strengthening is false for symmetric spaces of rank > 2. For instance, when W = S3 and
e = 27/3, then no matter what ©,0’ and [ are, the conclusion of Theorem 3.18 fails already
for sequences contained in a single flat.

In order to prove the theorem, we start by considering half-infinite sequences and prove that
they keep moving away from an ideal simplex of type 7,,,4 if they do so initially.

Definition 3.21 (Moving away from an ideal simplex). Given a face 7 < dp;s X of type
Tmod and distinct points z,y € X, define the angle

450(7—7 y) = Lx(za y)

where z is a point (distinct from x) on the geodesic ray z&, where £ € 7 is the point of type (.

We say that a sequence (x,,) moves e-away from a simplex 7 of type T,0q if
LS (To@pg1) =T —€
for all n.

Lemma 3.22 (Moving away from ideal simplices). For small € and large |, € < €y and
[ = 1(e,0), the following holds:

If the sequence (x,)n=0 is (O, €)-straight l-spaced and if

LS (T,21) =7 — 2,

o

then (x,) moves e-away from T.

Proof. By Lemma 2.10(ii), the unit speed geodesic segment ¢ : [0,t;] — X from p(0) to p(1)
moves €(d(2¢))-away from 7 at all times, and €'(2¢, ©,)-away at times > [, which includes the
final time ¢;. For I(¢, ®) sufficiently large, we have € (2¢,0,1) < e. Then ¢ moves e-away from
7 at time ¢;, which means that /¢ (7,m0) < e. Straightness at r; and the triangle inequality
yield that again Z§ (7,z5) = m — 2e. One proceeds by induction. ]

Note that there do exist simplices 7 satisfying the hypothesis of the previous lemma. For
instance, one can extend the initial segment zoz; backwards to infinity and choose 7 = 7(x;10).

Now we look at biinfinite sequences.

13



We assume in the following that (z,)nez is (O, €)-straight [-spaced for small € and large I. As
a first step, we study the asymptotics of such sequences and use the argument for Lemma 3.22
to find a pair of opposite ideal simplices 74 such that (z,) moves from 7_ towards 7.

Lemma 3.23 (Moving towards ideal simplices). For small € and large |, € < ¢ and
[ = 1(e,0), the following holds:

There exists a pair of opposite simplices T+ of type Tmoqa Such that the inequality
25 (75, Tnz1) 2 7 — 2€ (3.24)

holds for all n.

Proof. 1. For every n define a compact set C;F < Flag(7oa)
Cf = {1+ LS (T4, Tn71) = 7 — 2€}.

As in the proof of Lemma 3.22, straightness at x,,4, implies that C,; < C, ;. Hence the family
{C }nez form a nested sequence of nonempty compact subsets and therefore have nonempty

intersection containing a simplex 7_. Analogously, there exists a simplex 7, which belongs to
C¥ for all n.

2. It remains to show that the simplices 7_, 7, are antipodal. Using straightness and the
triangle inequality, we see that
LS (T_,7y) = — 5e

Tn

for all n. Hence, if 5e < €({), then the simplices 7_, 7, are antipodal in view of Remark 2.4. [J

The pair of opposite simplices (7_, 7, ) which we found determines a parallel set in X. The
second step is to show that (z,) is uniformly close to it.

Lemma 3.25 (Close to parallel set). For small € and large I, € < €(0) and | = 1(©,9), the
sequence (x,,) is 6-close to P(1_,74).

Proof. The statement follows from the combination of the inequality (3.4) (in the second part
of the proof of Lemma 3.23) and Lemma 2.9. O

The third and final step of the proof is to show that the nearest point projection (z,) of
() to P(1_,74) moves from 7_ towards 7.

Lemma 3.26 (Projection moves towards ideal simplices). For small e and large [, € < €y
and 1 = l(e,0,0’), the segments T,T,+1 are © -reqular and

Lgn(7—7jn+l) =7
for all n.

Proof. By the previous lemma, (x,,) is do-close to P(7_,7.) if €y is sufficiently small and [ is
sufficiently large. Since x,x,.1 is ©O-regular, the triangle inequality for A-lengths yields that
the segment 7,7, is ©'-regular, again if [ is sufficiently large.
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Let &, denote the ideal endpoint of the ray extending this segment, i.e. Z,,1 € £,&,. Then
Tpi1 is 20g-close to the ray x,&,. We obtain that

Lg"its<7-*7£+) = Agn(7*7£+> = Lg«n (T,, xn+1> =T

where the last step follows from inequality (3.24). The discreteness of Tits distances between
ideal points of fixed type ¢ implies that in fact

L%its(T—’ §y) =,

i.e. the ideal points ((7_) and ((&,) are antipodal. But the only simplex opposite to 7_ in
O P(7_,74) is 74, so T(§;) = 74 and

L8 (T ) = 45, (1-,&) =,
as claimed. O

Proof of Theorem 3.18. It suffices to consider biinfinite sequences.

The conclusion of Lemma 3.26 is equivalent to Z,.1 € V(Z,,ste/(74)). Combining Lem-
mas 3.25 and 3.26, we thus obtain the theorem for m = 1.

The convexity of ©’-cones, cf. Proposition 2.1, implies that
V(Zpi1,ste(14)) € V(Z, ste (14)),
and the assertion follows for all m > 1 by induction. [

Remark 3.27. The conclusion of the theorem implies flag-convergence x4, — 74 as n — +0o0.
However, the sequences (z,)nc+n do in general not converge at infinity, but accumulate at
compact subsets of ste/ (7).

3.5 Lipschitz retractions to straight paths

Consider a (possibly infinite) closed interval J in R; we will assume that J has integer or infinite
bounds. Suppose that p: J nZ — P = P(r_,7,) < X is an [-separated, \-Lipschitz, (©,0)-
straight coarse sequence pointing away from 7_ and towards 7,. We extend p to a piecewise-
geodesic map p : J — P by sending intervals [n,n + 1] to geodesic segments p(n)p(n + 1) via
affine maps. We retain the name p for the extension.

Lemma 3.28. There exists L = L(I,\,©) and an L-Lipschitz retraction of X to p, i.e., an
L-Lipschitz map r : X — J so that r op = Id. In particular, p : J nZ — X is a (L, A)-
quasigeodesic, where L, A depend only on I, \, ©.

Proof. Tt suffices to prove existence of a retraction. Since P is convex in X, it suffices to
construct a map P — J. Pick a generic point { = £, € 7 and let b : P — R denote the
Busemann function normalized so that b¢(p(z)) = 0 for some z € J N Z. Then the O-regularity
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assumption on p implies that the slope of the piecewise-linear function b¢ op : J — R is strictly
positive, bounded away from 0. The assumption that p is [-separated A-Lipschitz implies that

L< P )] <A

for each ¢ (where the derivative exists). The straightness assumption on p implies that the
function A := bs op : J — R is strictly increasing. By combining these observations, we
conclude that h is an L-biLipschitz homeomorphism for some L = L(I, A\, ©). Lastly, we define

r:P—J rzhflobg.
Since bg is 1-Lipschitz, the map r is L-Lipschitz. By the construction, r o p = Id. O]
Corollary 3.29. Suppose thatp : JNZ — X is al-spaced, \-Lipschitz, (O, €)-straight sequence.

Pick some ©' such that © < int(©') and let 6 = 6(1,0,0',¢) be the constant as in Theorem
3.18. Then for L = L(l — 2, X\ + 26,0’) we have:

1. There exists an (L, 26)-coarse Lipschitz retraction X — J.

2. The map pis a (0, D', L', A’)-quasigeodesic with D', L', A’ depending only onl, \,0,0' €.
Proof. The statement immediately follows the above lemma combined with Theorem 3.18. [J

Reformulating in terms of piecewise-geodesic paths, we obtain

Theorem 3.30 (String of diamonds theorem). For any pair of Weyl convex subsets © < ©’
and a number D = 0 there exist positive numbers e, S, L, A depending on the datum (©,0’, D)
such that the following holds.

Suppose that ¢ is an arc-length parameterized piecewise-geodesic path (finite or infinite) in
X obtained by concatenating geodesic segments x;x;.1 satisfying for all i:

1. Each segment x;x;,1 is O-reqular and has length = S.
2.
Lgi(fﬁi_l, ZL’Z‘_H) =T — €.

Then the path c is (6', D, L, A)-Morse.

3.6 Local Morse quasigeodesics

According to Theorem 3.30, sufficiently straight and spaced straight piecewise-geodesic paths
are Morse. In this section we will now prove that, conversely, the Morse property implies
straightness in a suitable sense, namely that for sufficiently spaced quadruples the associated
midpoint triples are arbitrarily straight. (For the quadruples themselves this is in general not
true.)

Definition 3.31 (Quadruple condition). For points z,y € X we let mid(z,y) denote the
midpoint of the geodesic segment zy. A map p : I — X satisfies the (0, ¢, 1, s)-quadruple
condition if for all t1,ts9,t3,t4 € I with ty — t1,t3 — t9,t4, — t3 = s the triple of midpoints

(mid(tl, tg), mid(tg, tg), mid(tg, t4))
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is (O, ¢)-straight and [-spaced.

Proposition 3.32 (Morse implies quadruple condition). For L, A,0,0' D el exists a
scale s = s(L,A,0,0', D e l) such that every (©,D, L, A)-Morse quasigeodesic satisfies the
(©',¢,1,8")-quadruple condition for every s’ = s.

Proof. Let p: I — X be an (L, A, 0, D)-Morse quasigeodesic, and let ¢y, ...,ts € I such that
tg — tl,tg — tz,t4 - t3 >s. We abbreviate pi = p(tz> and m; = mld(pz,plﬂ)

Regarding straightness, it suffices to show that the segment mym; is ©'-regular and that
Lfm (p2,m1) < § provided that s is sufficiently large in terms of the given data.

By the Morse property, there exists a diamond {$g(x1, 23) such that d(x1,p;), d(z3,p3) < D
and py € Np(Qe(z1,x3)). The diamond spans a unique parallel set P(7_,7;). (Necessarily,
xg € V(xq,ste(ry)) and 21 € V (z3,ste(7-)).)

We denote by p; and m; the projections of p; and m; to the parallel set.

We first observe that msy (and mg) is arbitrarily close to the parallel set if s is large enough.
If this were not true, a limiting argument would produce a geodesic line at strictly positive
finite Hausdorff distance € (0, D] from P(7_,7,) and asymptotic to ideal points in stg(74).
However, all lines asymptotic to ideal points in stg(74) are contained in P(7_, 7).

Next, we look at the directions of the segments mom; and msps and show that they
have the same 7-direction. Since po is 2D-close to V(py,ste(7;)), we have that the point
p1 is 2D-close to V(pa,ste(7-)), and hence also m; is 2D-close to V (ps,ste(7—)). There-
fore, p1,my € V(pa,ste (7)) if s is large enough. Similarly, my € V (P, ste/(74)) and hence
Do € V(mg,ste(7-)). The convexity of ©'-cones, see Proposition 2.1, implies that also m; €
V (g, ster(1_)). In particular, Z%, (7, 7m1) = 0 if s is sufficiently large.

Since my is arbitrarily close to the parallel set if s is sufficiently large, it follows by another
limiting argument that Lfm (p2,m1) < § if s is sufficiently large.

Regarding the spacing, we use that m; € V(pa, ste/(7-)) and ma € V(pa, ster(71)). It follows
that
d(mi,mg) = c- (d(m1, p2) + d(pa, m2))

with a constant ¢ = ¢(©') > 0, and hence that d(my, my) = [ if s is sufficiently large. O
Theorem 3.18 and Proposition 3.32 tell that the Morse property for quasigeodesics is equiv-
alent to straightness (of associated spaced sequences of points). Since straightness is a local

condition, this leads to a local to global result for Morse quasigeodesics, namely that the Morse
property holds globally if it holds locally up to a sufficiently large scale.

Definition 3.33 (Local Morse quasigeodesic). An S-local (0, D, L, A)-Morse quasigeode-
sicin X is a map p : I — X such that for all ¢, the subpath p|p, 4457 is a (©, D, L, A)-Morse
quasigeodesic.

Note that local Morse quasigeodesics are uniformly coarse Lipschitz.
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Theorem 3.34 (Local-to-global principle for Morse quasigeodesics). For L, A,0,0', D
exist S, L', A', D" such that every S-local (0, D, L, A)-local Morse quasigeodesic in X is an
(0, D' L', A")-Morse quasigeodesic.

Proof. We choose an auxiliary Weyl convex subset ©” such that © < ©” < ©'.

Let p: I — X be an S-local (O, D, L, A)-local Morse quasigeodesic. We consider its coarsi-

fication on a (large) scale s and the associated midpoint sequence, i.e. we put p? = p(ns) and

s

my,

= mid(p;, p;,,1). Whereas the coarsification itself does in general not become arbitrarily
straight as the scale s increases, this is true for its midpoint sequence due to Proposition 3.32.
We want it to be sufficiently straight and spaced so that we can apply to it the Morse Lemma
from Theorem 3.18. Therefore we first fix an auxiliary constant §, and further auxiliary con-
stants [, e as determined by Theorem 3.18 in terms of ©',©” and §. Then Proposition 3.32
applied to the (©, D, L, A)-Morse quasigeodesics pl, +s] yields that (m?) is (©”, €)-straight
and [-spaced if S > 3s and the scale s is large enough depending on L, A,0,0" D, e l.

Now we can apply Theorem 3.18 to (m$). It yields a nearby sequence (m?), d(m?,ms) < 6,

with the following property: For all n; < ny < nj the segments m; m;_ are uniformly regular

s

and the points m;, are d-close to the diamonds {e/(m5 ,

ms.).

Since the subpaths p|pns m+1)s) filling in (p})) are (L, A)-quasigeodesics (because S > s),
and it follows that for all ¢1,¢, € I the subpaths ply, +, are D'-close to ©’-diamonds with D’
depending on L, A, s.

The conclusion of Theorem 3.18 also implies a global spacing for the sequence (m$), compare
i

Remark 3.20, i.e. d(m$,m$,) = c¢-|n —n'| with a positive constant ¢ depending on ©’,[. Hence

p is a global (L', A’)-quasigeodesic with L', A" depending on L, A, s, c.

Combining this information, we obtain that p is an (0’, D', L', A’)-Morse quasigeodesic for
certain constants L', A" and D’ depending on L, A,©,0’ and D, provided that the scale S is
sufficiently large in terms of the same data. ]

3.7 Local-to-global principle for Morse maps

We now deduce from our local-to-global result for Morse quasigeodesics, Theorem 3.34, a local-
to-global result for Morse embeddings.

We restrict to the setting of maps of Gromov-hyperbolic (I, a)-quasigeodesic metric spaces
Z to symmetric spaces X.

Definition 3.35 (Local Morse embedding). We call a map f : Z — X an S-local
(©,D, L, A)-Morse map if for any (I, a)-quasigeodesic q : I — Z defined on an interval
of length < S the image path foqisa (©,D, L, A)-Morse quasigeodesic in X.

Theorem 3.36 (Local-to-global principle for Morse embeddings of Gromov hyper-
bolic spaces). Forl,a,L, A 0,0 D ezists a scale S and a datum (D', L', A") such that every
S-local (©, D, L, A)-Morse embedding from an (I, a)-quasigeodesic Gromouv hyperbolic space into
X is a (©,D, L', A)-Morse embedding.
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Proof. Let f : Z — X denote the local Morse embedding. It sends every (I, a)-quasigeodesic
q: I — Z toan S-local (©,D, L, A)-Morse quasigeodesic p = f oq in X. By Theorem 3.34,
pis (L', A", 0 D')-Morse if S > S(l,a,L,A,0,0' D), where L', A’, D' depend on the given
data. ]

Below is a reformulation of this theorem in the case of geodesic Gromov-hyperbolic spaces.

Let Z be a d-hyperbolic geodesic space. An R-ball B(z, R) in Z need not be convex, but
it is d-quasiconvex. In particular, the restriction of the metric from Z to B(z, R) results in a
(1, 9)-quasigeodesic metric space.

Theorem 3.37 (Local-to-global principle for Morse embeddings of geodesic spaces).
For L, A,0,0', D, exists a scale R and a datum (D', L', A") such that if Z is a §-hyperbolic
geodesic metric space and the restriction of f to any R-ball is (©,D,L,A,1,0)-Morse, then
f:Z—->Xis(©®,D L A)-Morse.

4 Group-theoretic applications

As a consequence of the local-to-global criterion for Morse maps, in this section we establish
that the Morse property for isometric group actions is an open condition. Furthermore, for
two nearby Morse actions, the actions on their 7,,,4-limit sets are also close, i.e. conjugate by
an equivariant homeomorphism close to identity. In view of the equivalence of Morse property
with the asymptotic properties discussed earlier, this implies structural stability for asymp-
totically embedded groups. Another corollary of the local-to-global result is the algorithmic
recognizability of Morse actions.

We conclude the section by illustrating our technique by constructing Morse-Schottky ac-
tions of free groups on higher rank symmetric spaces.

4.1 Stability of Morse actions

We consider isometric actions I' —~ X of finitely generated groups.

Definition 4.1 (Morse action). We call an action I' —~ X ©-Morse if one (any) orbit map
[' - I'r < X is a ©-Morse embedding with respect to a(ny) word metric on I'. We call an action
[~ X T0a-Morse if it is ©-Morse for some 7,,,4-Weyl convex compact subset © < 0st(T,n04)-

Remark 4.2 (Morse actions are 7,,,,-regular and undistorted). (i) It follows immedi-
ately from the definition of Morse quasigeodesics that ©-Morse actions are 7,,,4-regular for the
simplex type T,,0,4 determined by ©.

(ii) Morse subgroups of G are undistorted in the sense that the orbit maps are quasi-isometric
embeddings. In [KL1] we prove that Morse subgroups of G satisfy a stronger property: They
are coarse Lipschitz retracts of G. This retraction property is stronger than nondistortion:
Every finitely generated subgroup which is a coarse retract of GG is undistorted in GG, but there
are examples of undistorted subgroups which are not coarse retracts. For instance, the group
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® := F, x Fy admits an undistorted embedding in the isometry group of X = H? x H?. On the
other hand, pick an epimorphism ¢ : Iy, — Z and define the subgroup I' < ® as the kernel of
the homomorphism

(71:72) = (1) — d(72)-
Then I is a finitely generated undistorted subgroup of ® (see e.g. [OS, Theorem 2]), but is not
finitely presented (see e.g. [BR]). Hence, I' < G = Isom(H?) x Isom(H?) is undistorted but is
not a coarse Lipschitz retract.

We denote by Hom,  (I',G) < Hom(I', G) the subset of 7,,,4-Morse actions I' —~ X.

By analogy with local Morse quasigeodesics, we define local Morse group actions p: I' ~ X
of a hyperbolic group (with a fixed finite generating set):

Definition 4.3. An action p is called S-locally (0, D, L, A)-locally Morse, or (0, D, L, A)-
locally Morse on the scale S, with respect to a base-point z € X, if the orbit map ' - I''xz < X
induces an S-local (0, D, L, A)-local Morse embedding of the Cayley graph of I

According to our local-to-global result for Morse embeddings, see Theorem 3.37, an action
of a word hyperbolic group is Morse if and only if it is local Morse on a sufficiently large scale.
Since this is a finite condition, it follows that the Morse property is stable under perturbation
of the action:

Theorem 4.4 (Morse is open for word hyperbolic groups). For any word hyperbolic
group I the subset Hom, (I, G) is open in Hom(I', G). More precisely, if p € Hom, (I, G) is
M -Morse with respect to a base-point x € X then there exists a neighborhood of p in Hom(I', G)
consisting entirely of M'-Morse representations with respect to x, where M’ depends only on
M.

Proof. Let p: ' —~ X be a Morse action. We fix a word metric on I' and a base point z € X.
Then there exist data M = (L, A,©, D) such that the orbit map I' - I'z < X extends to a
(©, D, L, A)-Morse map of the Cayley graph Y on T

We relax the Morse parameters slightly, i.e. we consider (L, A, ©, D)-Morse quasigeodesics
as (L,A+ 1,0,D + 1)-Morse quasigeodesics satisfying strict inequalities. For every scale .S,
the orbit map I' - I'z < X, defines an (L, A+ 1,0, D + 1, S)-local Morse embedding Y — X.
Due to I'-equivariance, this is a finite condition in the sense that it is equivalent to a condition
involving only finitely many orbit points. Since we relaxed the Morse parameters, the same
condition is satisfied by all actions sufficiently close to p.

Theorem 3.37 provides a scale S such that all S-local (©, D+1, L, A+ 1)-Morse embeddings
Y — X are M’-Morse for some Morse datum M’ depending only on (L, A+1,0,D + 1,5). It
follows that actions sufficiently close to p are 7,,,q-Morse. O

Corollary 4.5. For every hyperbolic group I' the space of faithful Morse representations
Hominjomod (F7 G)

is open in Hom, (I, G).

20



Proof. Every hyperbolic group I" has the unique maximal finite normal subgroup ® < T" (if I’
is nonelementary then ® is the kernel of the action of I" on d,I'). Since Morse actions are
properly discontinuous, the kernel of every Morse representation I' — G is contained in ®.
Since Hom(®, G)/G is finite, it follows that the set of faithful Morse representations is open in
Hom, (I',G). O

The result on the openness of the Morse condition for actions of word hyperbolic groups,
cf. Theorem 4.4, can be strengthened in the sense that the asymptotics of Morse actions vary
continuously:

Theorem 4.6 (Morse actions are structurally stable). The boundary map at infinity of
a Morse action depends continuously on the action.

Proof. According to Theorem 4.4 nearby actions are uniformly Morse. The assertion there-
fore follows from the fact that the ends of Morse quasirays vary uniformly continuously, cf.
Lemma 3.13. [

Remark 4.7. (i) Note that since the boundary maps at infinity are embeddings, the I'-actions
on the 7,,,¢-limit sets are topologically conjugate to each other and, for nearby actions, by a
homeomorphism close to the identity.

(ii) In rank one, our argument yields a different proof for Sullivan’s Structural Stability
Theorem [Su| for convex cocompact group actions on rank one symmetric spaces. Other proofs
can be found in [La, GW] (for Anosov subgroups in higher rank), [Co, Iz, Bo] for rank one
symmetric spaces.

Our next goal is to extend the topological conjugation from the limit set to the domains
of proper discontinuity. Recall that in [KLP4] we constructed domains of proper discontinuity
and cocompactness for 7,,,4-Morse group actions on flag-manifolds Flag(vy,.q) = G/P,,,,. Such
domains depend on a certain auxiliary datum, a balanced thickening Th < W, whichisa W, -
left invariant subset satisfying certain conditions; see [KLP4, sect. 3.4]. Let Vpoq © 0pmoq be an
t-invariant face such that Th is invariant under the action of W, _,
(this is automatic if Vpeq = Omoq since W, = {e}). The thickening Th < W defines a
thickening Th(A, (') < Flag(#meq). One of the main results of [KLP4] (Theorem 1.7) is

that each 7,,,q-Morse subgroup I' < GG acts properly discontinuously and cocompactly on

via the right multiplication

QTh(F) = Flag<l/mod) - Th(ATmod (F))

Theorem 4.8 (Stability of Morse quotient spaces). Suppose that p, : T' — p,(I') =T, <
G is a sequence of faithful T,.q-Morse representations converging to a Tpyeq-Morse embedding
p:I'— G. Then:

1. The sequence of thickenings Th(A,, _,(I',)) Hausdorff-converges to Th(A, ., (I")).

2. If v, € T is a divergent sequence, then, after extraction, the sequence (p,(vn)) flag-
converges to a point in A, (T').
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3. There is a sequence of equivariant diffeomorphisms hy, : Qqp (L) — Qpp(T) converging
to the identity map uniformly on compacts.

4. In particular, the quotient-orbifolds Qy(I',)/T'y, are diffeomorphic to Qpy,(T)/T" for all
sufficiently large n.

Proof. 1. First of all, suppose that a sequence 7,, € Flag(T,,0q) converges to 7 € Flag(70a)-
Then, since Flag(vmoq) = G/P,
Since

there is a sequence g, € G, g, — e, such that g,(7) = 7,.

'mod’

9n(Th(7)) = Th(g,7) = Th(7,),

it follows that we have Hausdorff-convergence of subsets Th(7,) — Th(r). Moreover, this
convergence of subsets is uniform: There exists ny = n(d) such that if d(7,,7) < ¢ for all
n = ng then d(Th(7,), Th(7)) < € = €(§) for all n = ny. Here ¢ — 0 as § — 0. Since the
sequence of limit sets A, _ (I',) Hausdorff-converges to A, ('), it follows that the sequence
of thickenings Th(A,, ,(I',)) Hausdorff-converges to Th(A,, ,(I')). This proves (1).

2. Consider a sequence of geodesic rays e, in the Cayley graph Y of I' such that ~, lies
in an R-neighborhood of e, for all n. Then, in view of the uniform M’-Morse property for
the representations p,, each point p,(7,)(z) belongs to the D’-neighborhood of the Weyl cone
V(z,st(r,)), where 7, = a,, (&), a2 0’ = A, (T'),) is the asymptotic embedding. Thus, by
the definition of flag-convergence, the sequences (p,(7,)) and (7,,) have the same flag-limit in
Flag(7ym0a). By Part 1, the sequence (7,,) subconverges to a point in A, (I'). Hence, the same
holds for (p,(yn))-

3. The proof of this part is mostly standard, see [Iz] in the case when X is a hyperbolic space.
The quotient orbifold O = Qpp(I')/I" has a natural (F, G)-structure where F = Flag(vmoa).
The orbifold O has finitely many components, let Z be one of them and let Z < Q7 (') be a
component projecting to Z. It suffices to construct maps h,, on each component Z and then
extend these maps to maps h,, of Qy,(I') by p,-equivariance.

The covering map Z — Z induces an epimorphism ¢ : m(Z) — 'z, where 'y is the I'-
stabilizer of Z. Let dev : Z — Z < Qpp () be the developing map, where Z — Z is the
universal covering. By Ehresmann-Thurston holonomy theorem (see [Lo], [CEG], [Go], [K1
sect. 7.1]), for all sufficiently large n, the homomorphism ¢, := p, o ¢ is the holonomy of
an (F,G)-structure on Z. Moreover, the developing maps dev, : Z — F converge to dev
uniformly on compacts in the C'°-topology. Since 7'('1(2 ) is contained 1n the kernel of ¢, it
is also in the kernel of ¢,,. Hence, the maps dev, descend to maps devn Z — F. The
sequence @n still converges to the identity embedding Z > F uniformly on compacts. Pick
a compact fundamental set C' < Z for the I'z-action, i.e. a compact subset whose I'-orbit
equals Z. In view of Part 1 of the theorem, @n(C) < Qpy,(Ty) for all sufficiently large n.
Therefore, we can assume that @n(z ) is contained in a component Z, of Qpp(Tn). By the
compactness of the quotlent -orbifolds, de’un prOJects to a finite-to-one (smooth) orbi- coverlng
map ¢, : 2 — Zy, n/pn(FZ) Hence, devn 7 — Z.is a covering map as well. If Z.
were simply—connected, it would follow that devn is a diffeomorphism as required (and this is
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how Izeki concludes his proof in [Iz]). We will prove that je\vn is a diffeomorphism by a direct
argument.

Suppose that each @n is not injective. Then, by the equivariance of these maps, after
extraction, there exist convergent sequences z, — 2,2/ — 2’ in Z and a sequence 7y, € I' such
that

pu(n)devn(z) = deva(z)). u(zn) # 2,
If the sequence (7, ) were contained in a finite subset of I' we would obtain a contradiction with
the uniform convergence on compacts @n —idon Z. Hence, after extraction, we may assume
that (7,) is a divergent sequence. We, therefore, obtain a dynamical relation between the points
z, 2’ via the sequence (p,(7,)). According to Part 2, the sequence (p,(7,)) flag-accumulates to
A, (). The dynamical relation then contradicts fatness of the balanced thickening Th, see
[KLP4, sect. 5.2] and the proof of Theorem 6.8 in [KLP4].

We conclude that the maps

e~ N A

dev, : Z — Z,

are diffeomorphisms for all sufficiently large n. Since p, : I' — I, are isomorphisms, equivari-
ance of the developing maps implies that the maps A, : Qpp(I') — Qpy () are diffeomor-
phisms for sufficiently large n.

4. This part is an immediate corollary of Part 3. [

Remark 4.9. (i) In the case when X is a hyperbolic space, the equivariant diffeomorphism h,, :
Q(T') - Q(T',,) combined with the equivariant homeomorphism of the limit sets A(I") — A(T,,)
yield an equivariant homeomorphism 0,X — 05X, see [Tu, Iz]. Such an extension does not
exist in higher rank since, in general, there is no equivariant homeomorphism of thickened limit
sets Th(A,, ,(I')) — Th(A, _,(I';)). This can be already seen for group actions on products of
hyperbolic planes.

(ii) An analogue of Theorem 4.8 holds when we replace the group actions on flag-manifolds
with actions on Finsler compactifications of the symmetric space and replace flag-manifold
thickenings Th(A

extending Ehresmann—Thurston holonomy theorem to the category of smooth manifolds with

) with Finsler thickenings Thps(A, ) < dpgX. Proving this requires

Tmod

corners and we will not pursue it here.

4.2 Schottky actions

In this section we apply our local-to-global result for straight sequences (Theorem 3.18) to con-
struct Morse actions of free groups, generalizing and sharpening! Tits’s ping-pong construction.

We consider two oriented 7,,0,4-regular geodesic lines a,b in X. Let 744, 7, € Flag(Timoa)
denote the simplices which they are T-asymptotic to, and let 04,, 044 € 0,04 denote the types
of their forward/backward ideal endpoints in d,X. (Note that 6_, = ¢(6,) and 6_, = ¢(6s).)

Let © be a compact convex subset of 0St(7,,04) © Timoa, Which is invariant under .

'In the sense that we obtain free subgroups which are not only embedded, but also asymptotically embedded
in G.
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Definition 4.10 (Generic pair of geodesics). We call the pair of geodesics (a,b) generic if
the four simplices 71, 74, are pairwise opposite.

Let «, B € G be axial isometries with axes a and b respectively and translating in the positive
direction along these geodesics. Then 74, and 74} are the attractive/repulsive fixed points of
a and § on Flag(7,0q)-

For every pair of numbers m,n € N we consider the representation of the free group in two
generators

n:F2:<A,B>—>G
sending the generator A to o™ and B to 3". We regard it as an isometric action p,, , : F» —~ X.

Definition 4.11 (Schottky subgroup). A 7,,,q4-Schottky subgroup of G is a free 7,,,q-asymp-
totically embedded subgroup of G.

If G has rank one, this definition amounts to the requirement that I" is convex cocompact
and free. Equivalently, this is a discrete finitely generated subgroup of G which contains no
nontrivial elliptic and parabolic elements and has totally disconnected limit set (see see [K1]).
We note that this definition essentially agrees with the standard definition of Schottky groups
in rank 1 Lie groups, provided one allows fundamental domains at infinity for such groups to
be bounded by pairwise disjoint compact submanifolds which need not be topological spheres,
see [K1] for the detailed discussion.

Theorem 4.12 (Morse Schottky actions). If the pair of geodesics (a,b) is generic and if
014,01 € Int(O), then the action py,, is ©-Morse for sufficiently large m,n. Thus, such pm, .
15 injective and its image 1S a Tpoq-Schottky subgroup of G.

Remark 4.13. In particular, these actions are faithful and undistorted, compare Remark 4.2.

Proof. Let S = {A*! B*!} be the standard generating set. We consider the sequences ()
in F» with the property that v, 'y41 € S and Y41 # _1 for all k. They correspond to the
geodesic segments in the Cayley tree of Fy associated to S which connect vertices.

Let x € X be a base point. In view of Lemma 3.8 we must show that the corresponding
sequences (v,x) in the orbit Fy -z are uniformly ©-Morse. (Meaning e.g. that the maps R — X
sending the intervals [k, k + 1) to the points 7,z are uniform ©O-Morse quasigeodesics.) As
in the proof of Theorem 3.34 we will obtain this by applying our local to global result for
straight spaced sequences (Theorem 3.18) to the associated midpoint sequences. Note that the
sequences (y,x) themselves cannot expected to be straight.

Taking into account the I'-action, the uniform straightness of all midpoint sequences depends
on the geometry of a finite configuration in the orbit. It is a consequence of the following fact.
Consider the midpoints ¥4, of the segments za*™(z) and 2, of the segments z3%"(x).

Lemma 4.14. For sufficiently large m,n the quadruple {ym, z24n} s arbitrarily separated and
O-regular. Moreover, for any of the four points, the segments connecting it to the other three
points have arbitrarily small (-angles with the segment connecting it to x.
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Proof. The four points are arbitrarily separated from each other and from x because the axes
a and b diverge from each other due to our genericity assumption.

By symmetry, it suffices to verify the rest of the assertion for the point y,,, i.e. we show that
the segments v,,y_,, and y,,z, are O-regular for large m,n and that lim,, Lgm (,y_m) =0

and limy, e Z8 (2, 2,) = 0.

(
Ym

The orbit points «*™x and the midpoints ¥4,, are contained in a tubular neighborhood of the
axis a. Therefore, the segments y,,x and y,,y_,, are O-regular for large m and 2, (z,y_,,) — 0.
This implies that also £ (z,y_m) — 0.

To verify the assertion for (y,,,z,) we use that, due to genericity, the simplices 7, and 7,
are opposite and we consider the parallel set P = P(7,,7,). Since the geodesics a and b are
forward asymptotic to P, it follows that the points x, y,,, 2z, have uniformly bounded distance
from P. We denote their projections to P by Z, Y, Zn.

Let ©” < int(©) be an auxiliary Weyl convex subset such that 0,, 04, € int(©”). We have
that g, € V(&,ster(7,)) for large m because the points y,, lie in a tubular neighborhood of
the ray with initial point & and asymptotic to a. Similarly, z, € V (&, stgr (7)) for large n. It
follows that = € V(ym,ster(m)) and, using the convexity of ©-cones (Proposition 2.1), that
Zn € V(Um., ster(13)).

The cone V (ym,ster (7)) is uniformly Hausdorff close to the cone V (4, ste (7)) because
the Hausdorff distance of the cones is bounded by the distance d(y,, ¥m) of their tips. Hence
there exist points @', 2/, € V(ym, ster (7)) uniformly close to z, z,. Since d(ym, z'), d(Ym, z,,) —
o as m,n — oo, it follows that the segments y,,z and y,,z, are O-regular for large m,n.
Furthermore, since Z§ (2/,2)) = 0 and Z,, (z,2') — 0 as well as Z,, (z,,2,) — 0, it follows
that Z§ (x,2,) — 0. O

Proof of Theorem concluded. The lemma implies that for any given [, ¢ the midpoint triples
of the four point sequences (yxz) are (O, €)-straight and l-spaced if m,n are sufficiently large,
compare the quadruple condition (Definition 3.31). This means that the midpoint sequences of
all sequences (v,x) are (O, ¢)-straight and Il-spaced for large m,n. Theorem 3.18 then implies
that the sequences (yz) are uniformly ©-Morse. O

Remark 4.15. 1. Generalizing the above argument to free groups with finitely many gener-
ators, one can construct Morse Schottky subgroups for which the set 6(A) < 0,04 Of types of
limit points is arbitrarily Hausdorff close to a given t-invariant Weyl convex subset ©. This
provides an alternative approach to the second main theorem in [Be] using coarse geometric
arguments.

2. In [DKL] Theorem 4.12 was generalized (by arguments similar to the its proof) to free
products of Morse subgroups of G.
4.3 Algorithmic recognition of Morse actions

In this section, we describe an algorithm which has an isometric action p : I' —~ X and a point
x € X as its input and terminates if and only if the action p is Morse (otherwise, the algorithm
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runs forever).

We begin by describing briefly the Riley’s algorithm (see [Ri]) accomplishing a similar task,
namely, detecting geometrically finite actions on X = H?3. Suppose that we are given a finite
(symmetric) set of generators ¢; = 1,..., ¢, of a subgroup I' © PO(3,1) and a base-point
x € X = H?. The idea of the algorithm is to construct a finite sided Dirichlet fundamental
domain D for I" (with the center at z): Every geometrically finite subgroup of PO(3,1) admits
such a domain. (The latter is false for geometrically finite subgroups of PO(n, 1), n = 4, but is,
nevertheless, true for convex cocompact subgroups.) Given a finite sided convex fundamental
domain, one concludes that I' is geometrically finite. Here is how the algorithm works: For each
k define the subset S, < I' represented by words of length < k in the letters g¢q,...,¢,. For
each g € Sy consider the half-space Bis(x, g(x)) < X bounded by the bisector of the segment
zg(z) and containing the point x. Then compute the intersection

Dy = ﬂ Bis(z, g(z)).

9E€Sk

Check if D,, satisfies the conditions of the Poincaré’s Fundamental Domain theorem. If it does,
then D = Dy, is a finite sided fundamental domain of I'. If not, increase k by 1 and repeat the
process. Clearly, this process terminates if and only if I" is geometrically finite.

One can enhance the algorithm in order to detect if a geometrically finite group is convex
cocompact. Namely, after a Dirichlet domain D is constructed, one checks for the following:

1. If the ideal boundary of a Dirichlet domain D has isolated ideal points (they would
correspond to rank two cusps which are not allowed in convex cocompact groups).

2. If the ideal boundary of D contains tangent circular arcs with points of tangency fixed
by parabolic elements (coming from the “ideal vertex cycles”). Such points correspond to rank
1 cusps, which again are not allowed in convex cocompact groups.

Checking 1 and 2 is a finite process; after its completion, one concludes that I' is convex
cocompact.

We refer the reader to [Gil, Gi2, GiM, K2] and [KL2, sect. 1.8] for more details concerning
discreteness algorithms for groups acting on hyperbolic planes and hyperbolic 3-spaces.

We now consider group actions on general symmetric spaces. Let I' be a hyperbolic group
with a fixed finite (symmetric) generating set; we equip the group I' with the word metric
determined by this generating set.

For each n, let £, denote the set of maps ¢ : [0,3n] n Z — T which are restrictions of
geodesics ¢ : Z — T, such that ¢(0) = 1 € T'. In view of the geodesic automatic structure on I’
(see e.g. [Ep, Theorem 3.4.5]), the set £,, can be described via a finite state automaton.

Suppose that p : [' ~ X is an isometric action on a symmetric space X; we fix a base-point
x € X and the corresponding orbit map f : ' - ' € X. We also fix an t-invariant face 7,04
of the model spherical simplex 0,,,q of X. The algorithm that we are about to describe will
detect that the action p is 7,,,q-Morse.
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Remark 4.16. If the face 7,,,4 is not fixed in advance, we would run algorithms for each face
Timod 1N parallel.

For the algorithm we will be using a special (countable) increasing family of Weyl convex
compact subsets © = ©; < 0st(Tnod) S Tmoa Which exhausts ost(T,,04); in particular, every
compact (-invariant convex subset of 08t(T04) © Tmoa 1S contained in some O;:

©,:={veo: min av)= -}, (4.17)

aeq)Tmod

S| =

where @, is the subset of the set of simple roots ® (with respect to ¢,,,4) which vanish on
the face 7,,04. Clearly, the sets ©; satisfy the required properties. Furthermore, we consider
only those L and D which are natural numbers.

Next, consider the sequence
(Lia ®i7 Dl) = (Za @iv Dl)vl e N.

In order to detect 7,,,4-Morse actions we will use the local characterization of Morse quasi-
geodesics given by Theorem 3.18 and Proposition 3.32. Due to the discrete nature of quasi-
geodesics that we will be considering, it suffices to assume that the additive quasi-isometry
constant A is zero.

Consider the functions

1(0,0,5),¢(0,0,5)

as in Theorem 3.18. Using these functions, for the sets © = 0;,0' = 0,,; and the constant
0 = 1 we define the numbers

I, =1(0,0,8),c = €(0,0,).

Next, for the numbers L = L;;D = D; and the sets © = 0,;,0" = 0,,, consider the
numbers
S; = S(Li7 07 ®i7 @i-i-ly Dia €i+1, li+1)

as in Proposition 3.32. According to this proposition, every (L;, 0, ©;, D;)-Morse quasigeodesic
satisfies the (0,41, €41, i1, $)-quadruple condition for all s > s;. We note that, a priori, the
sequence s; need not be increasing. We set S; = s; and define a monotonic sequence S;
recursively by
Sit1 = maX(Sz', 3¢+1)-

Then every (0;, D;, L;,0)-Morse quasigeodesic also satisfies the (0,41, €;41, li+1, Si+1)-quadruple
condition.

We are now ready to describe the algorithm. For each ¢ € N we compute the numbers
l;,e; and, then, S;, as above. We then consider finite discrete paths in I', ¢ € Lg,, and the

corresponding discrete paths in X, p(t) = q(t)z, t € [0,35;] N Z. The number of paths ¢ (and,
hence, p) for each i is finite, bounded by the growth function of the group I'.
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For each discrete path p we check the (©;, €;,(;, S;)-quadruple condition. If for some i = i,,
all paths p satisfy this condition, the algorithm terminates: It follows from Theorem 3.18 that
the map f sends all normalized discrete biinfinite geodesics in I' to Morse quasigeodesics in
X. Hence, the action I' —~ X is Morse in this case. Conversely, suppose that the action of I"
is (©, D, L,0)-Morse. Then f sends all isomeric embeddings ¢ : Z — I' to (0, D, L,0)-Morse
quasigeodesics p in X. In view of the properties of the sequence

(Li> 62'7 Dl)a

it follows that for some ¢,
(L7 97 D) < (Lly ®i7 D2>7

ie, L < L;,;0 c O;,D < D;; hence, all the biinfinite discrete paths p are (©;, D;, L;,0)-
Morse quasigeodesic. By the definition of the numbers I;, ¢;, S;, it then follows that all the
discrete paths p = f oq,q € Lg, satisfy the (0,11, €41, 11, Si+1)-quadruple condition. Thus,
the algorithm will terminate at the step 2 + 1 in this case.

Therefore, the algorithm terminates if and only if the action is Morse (for some parameters).
If the action is not Morse, the algorithm will run forever. [

Remark 4.18. Applied to a rank one symmetric space X and a hyperbolic group I' without
a nontrivial normal finite subgroup, the above algorithm verifies if the given representation
p: ' — Isom(X) is faithful with convex-cocompact image. We could not find this result in the
existing literature; cf. however [GK].

5 Appendix: Further properties of Morse quasigeodesics

This is the only part of the paper not contained in [KLP1]. Here we collect various properties
of Morse quasigeodesics that we found to be useful elsewhere in our work.

5.1 Finsler geometry of symmetric spaces

In [KL1], see also [KLP5], we considered a certain class of G-invariant “polyhedral” Finsler
metrics on X. Their geometric and asymptotic properties turned out to be well adapted to
the study of geometric and dynamical properties of regular subgroups. They provide a Finsler
geodesic combing of X which is, in many ways, more suitable for analyzing the asymptotic
geometry of X than the geodesic combing given by the standard Riemannian metric on X.
These Finsler metrics also play a basic role in the present paper. We briefly recall their definition
and some basic properties, and refer to [KL1, §5.1] for more details.

Let 6 € int(7,n04) be a type spanning the face type 7,04. The O-Finsler distance d° on X is
the G-invariant pseudo-metric defined by

d‘g_(:c,y) = er(Igl:Xé(bg(J?) - b&(ﬂ))
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for 2,y € X, where the maximum is taken over all ideal points £ € 0,X with type 6(¢) = 0.
It is positive, i.e. a (non-symmetric) metric, if and only if the radius of o,,,q with respect to @
is < 5. This is in turn equivalent to 6 not being contained in a factor of a nontrivial spherical
join decomposition of ¢,,,q, and is always satisfied e.g. if X is irreducible.

If & is positive, it is equivalent to the Riemannian metric. In general, if it is only a pseudo-
metric, it is still equivalent to the Riemannian metric d on uniformly regular pairs of points.
More precisely, if the pair of points z,y is ©-regular, then

L7d(x,y) < d’(z,y) < Ld(z,y)

with a constant L = L(©) > 1.
Regarding symmetry of the Finsler distance, one has the identity

d(y, z) = d (2, y)

and hence d? is symmetric if and only if (8 = 6. We refer to d° as a Finsler metric of type Timoa.

The d’-balls in X are convex but not strictly convex. (Their intersections with flats through
their centers are polyhedra.) Accordingly, dé—geodesics connecting two given points x, y are not
unique. To simplify notation, zy will stand for some dé—geodesic connecting x and y. The union
of all d°-geodesic zy equals the Tpe-diamond Or o (x,y), that is, a point lies on a d’-geodesic
xy if and only if it is contained in . (x,y), see [KLP5]. Finsler geometry thus provides an
alternative description of diamonds. Note that with this description, the diamond ¢, (z,y)
is also defined when the segment xy is not 7,,.-regular. Such a degenerate T,,,4-diamond is
contained in a smaller totally-geodesic subspace, namely in the intersection of all 7,,,4-parallel
sets containing the points x,y. The description of geodesics and diamonds also implies that the
unparameterized dé—geodesics depend only on the face type Timoq, and not on §. We will refer to
dé—geodesics as Tmoq-Finsler geodesics. Note that Riemannian geodesics are Finsler geodesics.

We will call a ©-regular 7,,,,4-Finsler geodesic a ©-Finsler geodesic. If xy is a ©-regular (Rie-
mannian) segment, then the union of O-Finsler geodesics zy equals the ©-diamond $g(z,y).

Every 7,,0¢-Finsler ray in X is contained in a 7,,,g-Weyl cone, and we will use the notation
a1 for a T,.¢-Finsler ray contained V(x,st(7)). Similarly, every 7,,,4-Finsler line is contained
in a 7,.-parallel set, and we denote by 7_7, an oriented 7,,,4-Finsler line forward/backward
asymptotic to two antipodal simplices 74 € Flag(7,,04) and contained in P(7_, 7).

Examples of ©-regular Finsler geodesics can be obtained as follows. Let (z;) be a (finite
or infinite) sequence contained in a parallel set P(7_, 7, ) such that each Riemannian segment
;i1 18 To-longitudinal and ©’-regular. Then the concatenation of these geodesic segments is

Conversely, every O-regular Finsler geodesic ¢ : I — X can be approzrimated by a piecewise-
Riemannian Finsler geodesic ¢: Pick a number s > 0 and consider a maximal s-separated
subset J < I. Then take ¢’ to be the concatenation of Riemannian geodesic segments c(i)c(j)
for consecutive pairs i, j € J. In view of this approximation procedure, the String of Diamonds
Theorem (Theorem 3.30) holds if instead of Riemannian geodesic segments z;z;,1 we allow
O-regular Finsler segments.
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5.2 Stability of diamonds

Diamonds can be regarded as Finsler-geometric replacements of geodesic segments in nonposi-
tively curved symmetric spaces of higher rank.

Riemannian geodesic segments in Hadamard manifolds (and, more generally, C'AT'(0) metric
spaces) depend uniformly continuously on their tips: By convexity of the distance function we
have,

daus(zy, 2'y') < max(d(z,2'), d(y,y)).
In [KLP2, Prop. 3.70] we proved that diamonds <, _, depend continuously on their tips.

Below we establish uniform control on how much sufficiently large ©-diamonds vary with
their tips.

Lemma 5.1. Ford > d > 0 there ezists C = C(0,0',d,d") such that the following holds:

If a segment x_x, < X is O-regqular with length = C and y+ € B(x,d), then the segment
y_yy is O -reqgular and $o(r_, x4 ) < No(Qor (Y-, y1)).

Proof. The ©-regularity of y_y, for sufficiently large C' follows from the A-triangle inequality.

Suppose that there exists no constant C' for which also the second assertion holds. Then
there are sequences of points x with d(x,,, z}) — +oo, y* with d(xf, yF) < d, z, € Qo , 7))

and y, € Qo (y,,y") with d(z,, Ce (v, ,y})) = d(x,,y,) = d. We may assume convergence
Tpn — Top and Y, — Yoo in X.

After extraction, at least one of the sequences (z;) diverges. There are two cases to consider.

Suppose first that both sequences (z) diverge. Then they are uniformly 7,,,4-regular and,
after extraction, we have 7,,.,q-flag convergence ¥, y= — 71 € Flag(Tnoa). The limit simplices
7, are antipodal (because x, — z,). We observe that

d(xm 5<>@/ (SE;, $;)), d(ym a<>9’ (yﬁy y:)) — +00.

It follows that the sequences of diamonds $e(x,, z)}) and $e(y,, , y) both Hausdorff converge
to the 7,,0q-parallel set P = P(7_,7.). It holds that z,, € P because x,, € {g(z, ,z}). On the

other hand, d(z, P) = d' because d(z,, Qe (v, ,y)) = d’, a contradiction.

Second, suppose that only one of the sequences (x-) diverges, say, after extraction, z, —
and y, — y, in X to limit points with d(z,y,) < d, and z;} — 7, € Flag(7104). Now the
distance of x, from the boundary of the ©-Weyl cone with tip x;} and containing z,, goes
to infinity and it follows that $e(z,,x}) — V(z,ste(74)) and, similarly, e (y,,yt) —

V(y,,ste(74)). The asymptotic limit Weyl cones have Hausdorff distance d(z_,y). On the
other hand, zo, € V(z,ste(74)) and d(zo, V (Y, ste(74))) = d', again a contradiction.

This shows that also (ii) holds for sufficiently large C'. O
We reformulate this result in terms of Finsler geodesics:

Lemma 5.2. There erxists C = C(0,0',d,d") such that the following holds: If x_x, is a O-
Finsler geodesic in X with d(x_,z,) = C and y+ are points with d(y+,r+) < d, then every
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point x on x_x, lies within distance d' of a point y on a ©'-Finsler geodesic y_v. .

Note that we do not claim here that one can take the same Finsler geodesic y_y, for all
points x on x_x, .

We now apply this stabilty result to Morse quasigeodesics. One, somewhat annoying, feature
of the definition of ©-Morse quasigeodesics p : I — X is that p([t1,12]) is not required to be
uniformly close to a ©-diamond spanned by p(t1),p(t2). (One reason is because the segment
p(t1)p(t2) need not be O-regular.) Nevertheless, Lemma 5.1 implies:

Lemma 5.3. For every Morse datum M = (0, B, L, A) and ©' > O, there exists C = C(M,0'")
and D" such that whenever d(zy,x2) = C, the segment x1x9 = p(t1)p(ta) is O -regular and
p([t1,t2]) lies in the D’-neighborhood of the ©'-diamond $er(x1, x2).

5.3 Finsler approximation of Morse quasigeodesics

The next theorem establishes that every (sufficiently long) Morse quasigeodesic is uniformly
close to a Finsler geodesic with the same end-points. In this theorem, for convenience of the
notation, we will be allowing Morse quasigeodesics p to be defined on closed intervals I in the
extended real line; this is just a shorthand for a map I’ = InR — X such that, as I’ 3¢ — o0,
p(t) — p(+o0) € Flag(Timod). When we say that such maps p, ¢ are within distance D’ from each
other, this simply means that their restrictions to I’ are within distance < D’.

Theorem 5.4 (Finsler approximation theorem). For every Morse datum M = (©, D, L, A),
© > O, and a positive number S, there exist C = C(M,0’,S), D" = D'(M,0',S) satisfying
the following.

Let p : I = [t_,t.] > X U Flag(Tmea) be a M-Morse quasigeodesic between the points
x4 = p(ty) € X U Flag(Tmed) such that d(x_,x.) = C. Then there exists a ©'-Finsler geodesic
r_xy equipped with a monotonic parameterization ¢ : I — x_x, such that:

(a) The maps p,c: 1 — X are within distance < D' from each other.

(b) x_x is an S-spaced piecewise-Riemannian geodesic, i.e. the Riemannian length of each
Riemannian segments of x_x, is = S.

Proof. We will prove this in the case when both x4 are in X since the proofs when one or both
points x4 are in Flag(7,,,q) are similar: One replaces diamonds with Weyl cones or parallel
sets.

By the definition of an M-Morse quasigeodesic, for all subintervals [s_,s,] < [t_, ], there
exists a ©-diamond

Qo(y,y,)

whose D-neighborhood contains p([s_, s, ]), and for y. = p(s4), we have

d(y+,v4) < D.
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Therefore, applying the first part of Lemma 5.1, we conclude that the Riemannian segment
y_yy is ©'-regular provided that d(y_,y,) = C; = C1(M,0’). In view of the quasigeodesic
property of p, the last inequality follows from the separation condition

sp—s_=s=s(M0".

This, of course, also applies to [s_, s, ] = [t_,t,] and, hence, using the second part of Lemma
5.1, we obtain
p([) < Np (O@(JZ/_,J}:_)) . ND+D1 (Q@/(ZL‘_,:E_F)),

where Dy = D1(M,0"). We let

g+ € Q' i=Qo(w_,xy) = V(r_,ste(r)) n V(zy,ste (7))

denote the nearest-point projections of y; = p(s4+). As long as s, — s_ > §(M,0’), the
Riemannian segments y_¢, are also ©’-regular and have length > S. Furthermore, as in the
proof of Proposition 3.32, we can choose s’ such that each segment §_7, is 7,-longitudinal.

We assume, from now on, that t,. —t_ > s"(M,©’), which is achieved by assuming that
L Md(z_,zy) — A) = s'(M, ).

Take a maximal s’-separated subset J < I containing t.. For each j € J define the point

Zj = p(j) S <>/.
Then for all consecutive i, € J, s’ < |7 — i| < 25" we have
LY — (A+2D +2D)) < d(z,2) < 2Ls' + (A + 2D + 2D,). (5.5)

We then let ¢ denote the concatenation of Riemannian segments z;z; for consecutive ¢,j € J,
where we use the affine parameterization of [i, j| — 2;z;. Thus, ¢ is a ©’-Finsler geodesic. We
now take the smallest s” > s'(M, ©') satisfying

S< L'~ (A+2D+2Dy),

the inequalities (5.5) imply that ¢ satisfies both requirements of the approximation theorem
with
D' =2Ls"+(A+2D +2D;)+ (D + Dy) + (2Ls" + A). O

Remark 5.6. In the case when the domain of p is unbounded, one can prove a bit sharper
result, namely, one can take ©' = ©. Compare [KL3, sect. 6].

5.4 Altering Morse quasigeodesics

Below we consider certain modifications of M-Morse quasigeodesics p in X represented as
concatenations p = p_ x pg x py, where x4 are the end-points of pg, and y4,z4 are the end-
points of p4. (As in the previous section, we will be allowing y+ to be in X U Flag(7,04)-)
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These modifications will have the form p’ = p’ * py * p/,, where p/. and pj are all Morse. We
will see that, under certain assumptions, the entire p’ is again Morse (for suitable Morse datum

M').
We begin by analyzing extensions of p to biinfinite paths.

Lemma 5.7 (Extension lemma). Suppose that
p+ © Vi = V(xy,st(7s)).

Whenever y4 is in X, we let ¢4+ be ©-regular Finsler rays contained in Vi and connecting y+
to 7+. Then, for every © > ©, there exists a Morse datum M’ containing ©" such that the
concatenation

p=c_xpxcy

is M'-Morse, provided that d(z4,y+) = C = C(M,0").

Proof. We fix an auxiliary subset ©; satisfying © < ©; < ©'. We let S = 5(0,,0',1),¢ =
€(©1,0’,1) be constants as in the string of diamonds theorem (Theorem 3.30).

According to Theorem 5.4, there exists a ©'-regular Finsler geodesic

C=Y-T_*T_Ty*xT Yy

within distance D; = Dy (M, ©’, S) from the path p, such that ¢ is the concatenation of segments
of length > S and d(z4,7+) < D;. We let z,y4+ denote the subsegments of T4y containing
Ye-
Since d(z4+,Z+) < Dy, for each € > 0 and a sufficiently large C; = C1(Dy, ©’), the inequality
d(z4,y+) = Cy implies
L5 (24,T4) < e

Therefore,

Lgi(zi,ﬂ) >7T—e€

and, hence, the piecewise-geodesic path
C=C_*CxcCy

is (O, €)-straight and S-spaced. Hence, by Theorem 3.30, the concatenation ¢ is M’-Morse,
where M; = (0,1, L, A). Since the path p is within distance D; from ¢, it is M’'-Morse, where
M' = My + D;. ]

The next lemma was proven in [DKL, Thm. 4.11] in the case when p,p’ are finite paths.
The proof in the case of (bi)infinite paths is the same and we omit it.

Lemma 5.8 (Replacement lemma). Suppose that p' = p’_ *p*p', is a concatenation of M-
Morse quasigeodesics in X, such that the end-points of p+,p’y and po,py are the same. Then for
every © > © there exists a Morse datum M’ containing ©" such that the path p’ is M'-Morse.
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In the following lemmata we will modify the path p by altering p+ and keeping py unchanged
or moving it by a small amount (“wiggling the head and the tail of p”).

Lemma 5.9 (Wiggle lemma, I). Suppose that the paths p,p'. are both infinite. We let p',
be M-Morse quasigeodesics with finite terminal points x4 and set p’' := p' x py * p'.. Given
©' > © there exists € = ¢(M,0") > 0 and a Morse datum M’ containing ©" such that if

pi=max(£5 (py(+o0), pi(+00))) <,

then p’ is M'-Morse.

Proof. We fix an auxiliary compact Weyl-convex subset ©1 < 0st(7;,04) such that © < ©; < ©'.
Set 74 = py(F00), 74 = P (£0).

According to Lemma 5.8, there exists a Morse datum M, containing ©; such that for any
©;-regular Finsler geodesic rays c4 := x4 74, the concatenation c_ * py * ¢, is M;-Morse.

Let My > M; + 1 be a Morse datum containing ©" and let S > 0 be such that if a path
¢ in X is S-locally M; + 1-Morse then ¢ is Msy-Morse (see Theorem 3.34). Let € be such that
for x € X, 7,7 € Flag(Timea), if Z5(7,7") < € then each ©;-regular Finsler segment of length
< S in V(z,st(7’)) is within unit distance from a ©;-regular Finsler segment of length < S in
V(z,st(7)). We assume now that p < e.

Since p, are M-Morse rays, they are within distance D; = D;(M,0,) from ©;-regular
Finsler rays ¢, = x4 7} connecting x+ and 7}. Define a new path ¢ := ¢_ x py * ..

By our choice of ¢, the ©;-regular Finsler subsegment s’ = w1y} of ¢ of length S is
within unit distance from a ©;-regular Finsler subsegment s, = zyy4+ of ¢4 of length S, where
cy = 474 is a O1-Finsler geodesic connecting x4 to 74.

The concatenation

S—*Po * S+

is M;-Morse, and, since ¢, are ©,-Finsler geodesic, the path ¢’ is S-locally M; + 1-Morse. By
our choice of S, the path ¢ is Ms-Morse. Since ¢ is within distance D; from p’, the path p’ is
My + Dy-Morse. Lastly, we set M’ := M, + Dy. O

We generalize this lemma by allowing finite Morse quasigeodesics. We continue with the
setting of Lemma 5.9; we now allow paths p; and p/; to be finite, connecting y+, x4 and v/, 4
respectively. (Some of y.,y} might be in Flag(7m.qa).) However, we will assume that the
distances d(z,y+), d(2',, y4+) are sufficiently large, > C.

Lemma 5.10 (Wiggle lemma, II). Given © > O there exist C = 0, € > 0 and a Morse
datum M' containing ©' such that if

poi=max(£S, (v, y+)) <€

and
V.= min(d<xi7yi)7d(xi7yi_r>> =C

then p' is M'-Morse.
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Proof. Pick an auxiliary compact Weyl-convex subset ©,, © < 0, < ©'.

We define biinfinite geodesic extensions p,p’ as in Lemma 5.7, by extending (if necessary)
the paths p4,p/; via ©-Finsler geodesics y, 7+ and ¢, 7). According to Lemma 5.7, there exists
C' > 0and a Morse datum M, (containing 65), both depending on M and O, such that the path
p is My-Morse. The same lemma applied to the paths 7/, implies that they are also M,-Morse.

By the construction,

po= L5, (e, ys) = L5, (T, 74).

Now, claim follows from Lemma 5.9. [l

Lastly, we prove a general Wiggle Lemma where we allow to perturb the entire path p. We
consider concatenations

p=p_*po*py, P =p_xpy*pl
of M-Morse quasigeodesics, where we assume that pg,p; are within distance Dy from each

other. The paths p; connect y., 1 and p, connect v/, ;.

Lemma 5.11 (Wiggle lemma, III). Given © > © there exist C = 0, € > 0 and a Morse
datum M' containing ©" such that if

= max(égt(yﬁ_r,yi)) <6
and
v i=min(d(zs, ys), d(], y})) = C
then p' is M'-Morse.

Proof. As before, we fix an auxiliary compact Weyl-convex subset ©3, © < O3 < ©'. Then p/,
are within distance D3 = D3(M, O3) from Oz-regular Finsler geodesics cy := ¢, x4. We apply
Lemma 5.10 to the pair of paths

pp"=coxpoxcy.
It follows that p” is M3z-Morse for some Morse datum M; containing ©" provided that p <
€ = €(M,03,0) and v = C = C(M,03,0). Since the paths p” and p’ are wihin distance
D" := max(Dy, D3) from each other, the path p’ is M’ := M3 + D’-Morse. ]
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