
GEOMETRY OF QUASI-PLANES
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Abstract. In this paper we discuss metric cell complexes satisfying a coarse
form of 2-dimensional Poincaré duality. We prove that such spaces are either
Gromov-hyperbolic or have polynomial growth. As an application we prove that
2-dimensional Poincaré duality groups over commutative rings are commensurable
with surface groups.

1. Introduction

This paper is the second in a sequence of three papers which deal with spaces
satisfying coarse Poincaré duality [14] in conjunction with a coarse generalization of
the Seifert fibered space conjecture [13]. In the present paper we study geometry of
quasi-planes, i.e. simply-connected metric cell complexes satisfying coarse Poincaré
duality (over a commutative ring R) in dimension 2. We refer the reader to section
3 for the precise definition, at the moment we only note that quasi-planes are metric
spaces satisfying a coarse version of the Jordan separation theorem (for curves in R2).
We introduce a surrounding function for quasi-planes and prove

Theorem 1.1. Suppose that Z is a quasi-homogeneous quasi-plane. Then we have
the following dichotomy:

1. Either the surrounding function is super-linear, in which case Z is Gromov-
hyperbolic, with topological circle as the ideal boundary. In this case each cobounded
quasi-action G y Z is quasi-isometrically conjugate to an isometric action G y H2.

2. Or the surrounding function is at most linear, in which case Z has polynomial
growth and, in case Z is quasi-isometric to a finitely generated group Q, the group Q
is virtually abelian of rank 2.

We note that in the case when Z is the zero-skeleton of a 2-dimensional triangulated
planar surface S, such that S is quasi-isometric to a finitely generated group G, the
above theorem was established by G. Mess in [19]. His paper was an inspiration for
our work.

As an application we get the following characterization of 2-dimensional Poincaré
duality groups over commutative rings, originally established in [16] using somewhat
different methods:
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Theorem 1.2. Suppose that R is a commutative ring with a unit, G is a 2-dimen-
sional Poincare duality group over R. Then G is commensurable to a surface group.

This theorem extends earlier results of Eckmann, Müller and Linnel [8, 7], in the
case R = Z, and results of Bowditch [3], in the case when R is a field. Theorem 1.2
was conjectured by Dicks and Dunwoody in [5]. The key to the proof of this theorem
is a construction of an action of G on a quasi-plane Z (over R), which then allows
us to apply Theorem 1.1 to conclude that either G is virtually nilpotent or G acts
discretely cocompactly isometrically on the hyperbolic plane.

In order to prove Theorems 1.1 and 1.2 we establish a local-to-global characteriza-
tion of Gromov-hyperbolic spaces. As an application of this characterization we also
get a theorem of independent interest:

Theorem 1.3. Suppose that G is a finitely presented group such that some1 asymp-
totic cone of G is a metric tree. Then G is Gromov-hyperbolic.

This contrasts with the fact that there are examples [22], [6], of finitely generated
groups G for which some asymptotic cone of G is a metric tree but G is not Gromov-
hyperbolic.

In the forthcoming paper [13] we will apply our results to study coarse fibrations
of manifolds by lines. In particular, we prove a coarse analogue of the Seifert fibered
space conjecture and give an alternative proof of G. Mess’ part of the proof of the
original Seifert fibered space conjecture.

Acknowledgments. During the work on this paper the first author was visiting
the Max Plank Institute (Bonn), he was also supported by the NSF grants DMS-
04-05180 and DMS-02-03045. The second author was supported in part by the NSF
Grant DMS-02-24104.

2. Preliminaries

2.1. Definitions and notation. We let Z+ := {m ∈ Z | m ≥ 0} and R+ := {x ∈
R | x ≥ 0}. We let dH(·, ·) denote the Hausdorff distance between subsets of a metric
space; the usual (infimal) distance will be denoted d(·, ·). All maps between cell
complexes will be continuous unless otherwise specified. Given a map f we let Im(f)
denote the image of f .

Throughout this paper we fix a commutative ring R with a unit and we will be
using singular (co)homology with coefficients in R unless we indicate otherwise. For
each negative integer k we set Hk(·) = 0, Hk

c (·) = 0, etc.

Let ri, Ri be two sequences of positive real numbers. We will use the notation

Ri & ri

1It is easy to see that if all asymptotic cones of a finitely-generated group G are metric trees,
then G is Gromov-hyperbolic.
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if there exist a pair of constants A,B (independent of i) such that for all but finitely
many i ∈ N we have:

Ri ≥ Ari + B.

We will use the notation Ri ' ri if Ri & ri and ri & Ri.

A subset S ⊂ Z of a metric space is called δ-dense if each point z ∈ Z is within
distance ≤ δ from S. A subset in Z which is δ-dense from some δ < ∞, is called a
net in Z.

A metric space Z has bounded geometry if there is a function φ : R+ → R+ such
that for each metric ball B(x, r) ⊂ Z, one has:

V (x, r) := |B(x, r)| ≤ φ(r),

where |S| denotes the cardinality of a set S.

For a subset D ⊂ Z define the c-frontier ∂cD as

∂cD := {x ∈ Z \D : d(x,D) ≤ c}.
For c = 1 we set ∂ := ∂1.

2.2. Maps and actions. A map f : X → X ′ between metric spaces is uniformly
proper if there are constants L, A, and a continuous strictly increasing distortion
function η : R+ → R+ with limt→∞ η(t) = ∞ such that

(2.1) η(d(x1, x2)) ≤ d(f(x1), f(x2)) ≤ Ld(x1, x2) + A

for all x1, x2 ∈ X.

A map f : X → X ′ between metric spaces X and X ′ is an (L,A)-quasi-isometry if
for all x1, x2 ∈ X we have

1

L
d(x1, x2)− A ≤ d(f(x1), f(x2)) ≤ Ld(x1, x2) + A

and Im(f) is A-dense in X ′. Here L ≥ 1 and A ∈ R. We let Q̂I(X,X ′) denote the
collection of all quasi-isometries from X to X ′. Two quasi-isometries f1, f2 : X → X ′

are equivalent if d(f1, f2) < ∞; we let QI(X,X ′) denote the set of equivalent classes of

quasi-isometries, and use QI(X) (resp. Q̂I(X)) in place of QI(X, X) (resp. Q̂I(X, X)).
Composition of quasi-isometries induces a group structure on QI(X).

Remark 2.2. Suppose that fi are (Li, Li − 1)-quasi-isometries, i = 1, 2. Then their
composition f2 ◦ f1 is an (L1L2, L1L2 − 1)-quasi-isometry. Therefore, if L(f) denotes
the logarithm of infimal L ≥ 1 such that the mapping f is an (L,L−1)-quasi-isometry,
then

L(f2 ◦ f1) ≤ L(f1) + L(f2).
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A quasi-action of a group G on a metric space X, denoted G
ρ
y X, is a map

ρ : G → Q̂I(X) such that for suitable constants L, A,

1. ρ(g) is an (L,A)-quasi-isometry for all g ∈ G,

2. d(ρ(1), idX) < A, and

3. d(ρ(g1g2), ρ(g1)ρ(g2)) < A for all g1, g2 ∈ G.

We will usually write g(x) rather than ρ(g)(x), suppressing the name of the quasi-
action when it is understood.

A quasi-action G
ρ
y X is called cobounded if for some (for every) point x ∈ X the

quasi-orbit G · x = {g(x) : g ∈ G} is a net in X. We say that a metric space X is
quasi-homogeneous if there are constants L, A such that for all x, x′ ∈ X there is
an (L,A) quasi-isometry f : X → X ′ with f(x) = x′. Note that if there exists a
cobounded quasi-action G y X then X is quasi-homogeneous.

Lemma 2.3. Suppose that Y is a proper geodesic metric space, H y Y is an (L, A)-
quasi-action. Then there exists ε ¿ L and R0 such that if for R ≥ R0, B(y,R)∩H(y)
is an εR-net in B(y, R), then the quasi-action is cobounded.

Proof. Suppose R < ∞, ε > 0, and H(y) is an εR-net in B(y, R). There is a constant
λ > 0 depending only the geometry of the quasi-action H y Y such that for each y′ ∈
H(y), the quasi-orbit H(y) forms a ε

λ
R net in B(y′, λR). Thus when ε is sufficiently

small and R is sufficiently large, then for all z ∈ Y , if we choose y′ ∈ H(y) such that
d(z, y′) ≤ d(z, H(y)) + 1, then we conclude that d(z, H(y)) is uniformly bounded;
otherwise the geodesic segment y′z would have to pass within distance ε

λ
R of a point

after traveling a distance λ
2
R from y′. ¤

2.3. Gromov hyperbolicity. Let Z be a geodesic metric space. A geodesic triangle
∆ ⊂ Z is called R-thin if every side of ∆ is contained in the R-neighborhoodof the
union of two other sides. An R-fat triangle is a geodesic triangle which is not R-thin.
A geodesic metric space Z is called δ-hyperbolic in the sense of Rips (Rips was the
first to introduce this definition) if each geodesic triangle in Z is δ-thin.

Let X be a metric space (which is no longer required to be geodesic). For each base-
point p ∈ X define a number δp ∈ [0,∞] as follows. For each x ∈ X set |x|p := d(x, p)
and

(x, y)p :=
1

2
(|x|p + |y|p − d(x, y)).

Then
δp := inf

δ∈[0,∞]
{δ|∀x, y, z ∈ X, (x, y)p ≥ min((x, z)p, (y, z)p)− δ}.

We say that X is δ-hyperbolic in the sense of Gromov, if ∞ > δ ≥ δp for some p ∈ X.
We note that if X a geodesic metric space which is δ-hyperbolic in Gromov’s sense
then X is 4δ-hyperbolic in the sense of Rips and vice-versa (see [11, 6.3C]).

A metric space Z is Gromov-hyperbolic if it is δ-hyperbolic for some δ < ∞.
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2.4. Growth of spaces. A bounded geometry metric space Z has polynomial growth
if there is a constant c ∈ R+ such that for each ball B(x, r) ⊂ X one has

|B(x, r)| . rc, r ∈ N.

The optimal constant c is called the degree of the polynomial growth. A space Z has
superpolynomial growth if it does not have polynomial growth for any c.

Similarly, a bounded geometry metric space Z has exponential growth if there is a
constant a > 0 such that for each x ∈ Z one has:

|B(x,R)| & eaR, r ∈ N.

A space has subexponential growth if

|B(x, r)| . eaR, r ∈ N,

for all a > 0.

A metric space Z is N -doubling for a certain N ∈ R if each ball B(x, 2R) ⊂ Z
(where R ≥ 1) is contained in the union of ≤ N balls of radius R. A space is called
doubling if it is N -doubling for some N , we will refer to N as a doubling constant of
X.

Lemma 2.4. Suppose that Z is a bounded geometry doubling metric space. Then Z
has polynomial growth.

Proof. For each r ≥ 1 choose n ∈ Z such that n − 1 ≤ log2(r) ≤ n. Hence for each
metric ball B(x, r) ⊂ X we have:

B(x, r) ⊂
N⋃

i=1

B(xi,
r

2
) ⊂

N2⋃
j

B(xj,
r

4
)... ⊂

Nn−1⋃

`=1

B(x`, r2
−(n−1)).

Let M := supx∈Z |B(x, 2)| and c := 1
logN (2)

. Then

|B(x, r)| ≤ Nn−1M ≤ N c logN (r)M = rcM. ¤

Theorem 2.5 (M. Gromov, [10]). Suppose that G is a finitely-generated group of
polynomial growth. Then G is virtually nilpotent.

An improvement of this theorem was established by L. Van den Dries and A. Wilkie
[23]:

Theorem 2.6. Suppose that G is a finitely-generated group and there is a sequence
of metric balls B(xi, Ri) ⊂ G and constant c ≥ 0 such that |B(xi, Ri)| . Rc

i . Then G
is virtually nilpotent and has polynomial growth of degree ≤ c.
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2.5. Chain recurrence. Suppose that Z is a topological space and we are given a
continuous R-action Z × R → Z. The ω-limit set ω(z) of a point z ∈ Z is defined
as the set of points λ ∈ Z such that there exists a sequence ti ∈ R diverging to +∞
such that

lim
i

ti(z) = λ.

The set Λ is clearly R-invariant. We will also need the following definition:

Definition 2.7. [Chain recurrence] Suppose we have a continuous R-action on a
compact metric space Z. A point z ∈ Z is called chain recurrent if for each ε > 0 and
T < ∞ there exists a finite sequence z = x1, ..., xk = z, where for each i = 2, ..., k,
there exists t > T such that

d(xi, t(xi−1)) < ε.

We recall the following standard lemma from the dynamical system theory:

Lemma 2.8 (See [9], Theorem A). Let R y Z be a continuous R-action on a compact
metric space Z. Then for each z ∈ Z and z′ ∈ ω(z), the point z′ is chain-recurrent
in the restricted dynamical system R y ω(z).

2.6. Gromov-Hausdorff convergence and asymptotic cones. Let X denote the
set of complete pointed metric spaces (X, x). Gromov-Hausdorff topology on X is
defined as follows:

(X, x,H) and (X ′, x′, H ′) are ε-close if there are maps

f : (B(x,
1

ε
), x) → (X ′, x′)

and

f ′ : (B(x′,
1

ε
), x) → (X ′, x′)

which are (eε, ε) quasi-isometric embeddings such that

Axiom 1. d(f ◦ f ′, Id) ≤ ε, d(f ′ ◦ f, Id) ≤ ε.

Define a subset X∆ ⊂ X which consists of ∆-doubling pointed metric spaces. Then
X∆ is compact (see [10]).

A general sequence in X does not contain a convergent subsequence. There is
however a concept which allows one to construct a limit in this case as well, i.e, an
ultralimit of a sequence of pointed metric spaces

limη(Xi, xi) = (Xη, xη),

where η is a nonprincipal ultrafilter on N. We refer the reader to [15, 17] for the
definition and properties of this construction. If (Xi, xi) converges to (X, x) in the
pointed Gromov-Hausdorff topology then for each nonprincipal ultrafilter η

limη(Xi, xi) = (X, x),
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see for instance [15]. Using ultralimits one defines asymptotic cones of a metric space
as follows. Suppose that (X, d) is a metric space, xi ∈ X is a sequence of base-points,
λi is a sequence of positive numbers converging to zero. Pick a nonprincipal ultrafilter
η on N. Given this data the corresponding asymptotic cone of X is the ultralimit:

Coneη(X) := limη(X, λid, xi).

The concept of Gromov-Hausdorff convergence generalizes in the context of quasi-
actions on pointed metric spaces:

Fix a doubling constant ∆ < ∞, and quasi-action constants L,A. Consider the
collection M of triples (X, x, H), where X is a complete ∆-doubling metric space,
x ∈ X, and H ⊂ QI(X) is a collection of (L,A)-quasi-isometries with the property
that:

For every h1, h2 ∈ H, there is an h3 ∈ H such that d(h3, h1 ◦ h2) ≤ A.

Then (X, x, H) and (X ′, x′, H ′) are ε-close if there are maps f, f ′ as in Axiom 1
above so that in addition we have:

Axiom 2. For each h ∈ H there exists h′ ∈ H ′ such that for g′ := f ◦ h ◦ f ′ we
have

d(g′|B(x′,
1

2ε
), h′|Dom(g′) ∩B(x′,

1

2ε
)) ≤ ε.

Axiom 3. For each h′ ∈ H ′ there exists h ∈ H such that for g := f ′ ◦ h′ ◦ f we
have

d(g|B(x,
1

2ε
), h|Dom(g) ∩B(x,

1

2ε
)) ≤ ε.

Lemma 2.9. The space M is compact and metrizable.

Proof. The first assertion follows from compactness of X∆ and the Arzela-Ascoli the-
orem. The second assertion follows from Remark 2.2. ¤

Observe that the group R acts on M by scaling: t ∈ R scales the metric on X by
e−t and does not change the base-point and the collection H of quasi-isometries.

Therefore for each m ∈M, the ω-limit set ω(m) is the collection of all asymptotic
cones of m.

2.7. Metric cell complexes. We will be working with CW complexes endowed
with an extra structure. Let X be a CW complex, and X(m) denote its m-skeleton,
m ∈ Z+. We will not assume that X is finite-dimensional, this degree of generality
will be important for the applications of our results presented in [13]. Recall that a
subcomplex Y of X is a closed subset which is a union of open cells, such that the
boundary of each open cell σ ⊂ Y is contained in Y .

A control map for X is a function p : X → X(0) such that

1. p|
X(0) = idX(0) ,
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2. p is constant on open cells in X,

3. p(x) belongs to the smallest subcomplex containing x, for all x ∈ X.

A morphism (X, p) → (X ′, p′) is a skeleton preserving continuous map so that for
each i ∈ N the diameters of p′(σ) are uniformly bounded, where σ are i-cells in X(i).

A bounded geometry metric cell complex is a CW complex X equipped with a
control map p, whose 1-skeleton X(1) is connected and equipped with a path metric
with respect to which all edges have the same length, subject to the condition that
there exists a function D(m) so that every closed cell σ ⊂ X(m) intersects at most
D(m) closed cells in X(m).

Remark 2.10. Note that for such a complex, the metric space X(0) has bounded
geometry in the sense of Section 2.1.

To simplify the terminology, we will refer to bounded geometry metric cell com-
plexes as simply metric cell complexes: the bounded geometry will be assumed by
default.

We say that a metric cell complex X is Gromov-hyperbolic if its zero-skeleton X(0)

is Gromov-hyperbolic.

Let X be a metric cell complex. If V ⊂ X(0) and R ∈ Z+, we denote the closed
metric R-neighborhood of V in the 0-skeleton by

N
(0)
R (V ) := {x ∈ X(0) | d(x, V ) ≤ R}.

Given m ∈ Z+, R ∈ Z+, and a subcomplex Y ⊂ X, we define the R-neighborhood of

Y in the m-skeleton, N
(m)
R (Y ), to be the largest subcomplex of X(m) whose 0-skeleton

is N
(0)
R (Y (0)). Given x ∈ X(0) we let B(m)(x, r) := N

(m)
R ({x}), be the r-ball in X(m)

with the center at x and radius r. Note that

1. N
(m)
0 (Y ) ⊃ Y ∩X(m),

2. If Y, Y ′ ⊂ X are subcomplexes and R + R′ < d(Y (0), Y ′(0)), then for all m ∈ Z+

we have N
(m)
R (Y ) ∩N

(m)
R′ (Y ′) = ∅.

If X is an m-dimensional metric cell complex then we will use the abbreviation

NR(V ) := N
(m)
R (V ).

We will only use the notation B(x, r) to denote closed metric balls in the 1-skeleton
X(1), i.e. B(x, r) := {y ∈ X(1) | d(x, y) ≤ r}, where x ∈ X(1). If Y is a subset of
X, we define its diameter to be diam(Y ) := diam(p(Y )). Similarly, we define the
distance between two functions f, f ′ : S → X to be the quantity d(p ◦ f, p ◦ f ′).

A metric cell complex X is called uniformly k-acyclic if there is a function ψk(R) =
ψ(R) such that for each subcomplex K ⊂ X(k) of diameter ≤ R the maps

H̃i(K) → H̃i(N
(k+1)
ψ(R) K), i = 0, ..., k,
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are trivial. A complex X is called uniformly acyclic if it is uniformly k-acyclic for
each k = 0, 1, .... One defines uniform contractibility in the similar fashion using
homotopy groups instead of the homology groups.

An important class of metric cell complexes is given by Rips complexes of metric
spaces. Let Z be a metric space and D ∈ R+. The D-Rips complex RipsD(Z) is
defined to be the simplicial complex whose vertex set is Z, where distinct points
x0, ..., xn ∈ Z span an n-simplex in RipsD(Z) iff d(xi, xj) ≤ D for all 0 ≤ i, j ≤ n.
Thus we get a direct system of Rips complexes RipsD(Z) with the inclusion morphisms
RipsD(Z) → RipsD′(Z) for D ≤ D′.

We metrize R-Rips complexes by taking the largest metric for which all simplicial
embeddings σ → RipsR(Z) are 1-Lipschitz, where σ is a regular Euclidean simplex
with side length R. We define the control map c : RipsR(Z) → Z by sending each
simplex to one of its vertices.

If Z has bounded geometry, so does RipsR(Z) for each R < ∞. If Z is δ-hyperbolic
then for each R ≥ 10δ, the complex RipsR(Z) is uniformly contractible, see [11,
Lemma 17.A].

Definition 2.11. A metric space Z is said to be coarsely connected if there exists
R < ∞ such that the Rips complex RipsR(Z) is connected. Equivalently, Z is coarsely
connected if it is quasi-isometric to a geodesic metric space.

Suppose that M is a Riemannian n-manifold whose injectivity radius is bounded
from below. Let ε > 0 is such that each ε-ball in M is convex. Triangulate M so
that each simplex is contained in an ε-ball in M . Let X denote the Rips complex
RipsR(M (0)) for 0 < R < ε.

Proposition 2.12. Under the above assumptions the manifold M is a deformation
retract of X.

Proof. There is a natural simplicial map

ι : M → X

which sends each vertex of M to itself. We construct the retraction ρ : X → M
by the induction on skeleta of X. Each vertex x in X maps to the corresponding
point x ∈ M (0). Suppose that for an i-skeleton X(i) we have constructed a map
ρ : X(i) → M such that the image of each i-simplex [x0, ..., xi] is contained in the
convex hull of {x0, ..., xi}, which is in turn contained in an ε-ball containing {x0, ..., xi}.
Then the image of the boundary of each i + 1-simplex ∆ := [x0, ..., xi, xi+1] is also
contained in the convex hull of {x0, ..., xi, xi+1}. Since the latter is contractible, we
can extend the map ρ : ∂∆ → M to a map ρ : ∆ → M . We thus get a continuous
map ρ : X → M such that d(ρ ◦ ι, Id) ≤ ε. Hence ρ ◦ ι is homotopic to the identity
map. ¤
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Proposition 2.13. Suppose that Y is a metric cell complex such that Y (2) is simply-
connected. Then Ripsd(Y

(0)) is 1-connected provided that d is sufficiently large.

Proof. Let di denote the supremum of the diameters of the sets p(σi), where the
supremum is taken over all i-cells σi ⊂ Y (i). Since Y is connected, it is clear that
Ripsd(Y

(0)) is connected for each d ≥ d1.

Let d ≥ d1. Consider a loop γ : S1 → Rips
(1)
d (Y (0)). After homotoping γ if

necessary, we may assume that it is a simplicial map with respect to some trian-
gulation T of S1. Define a map γ1 : S1 → Y (1) as follows. For each vertex v of

T , let γ1(v) ∈ Y (0) ≡ Rips
(0)
d (Y (0)) be equal to γ(v). For each edge e = [v1v2]

of T , let γ1|e be a geodesic in Y (1) between γ1(v1) and γ1(v2). There is a natural

map Y (1) i1→ Rips
(1)
d (Y (0)) which takes each v ∈ Y (0) to the corresponding vertex of

Rips
(0)
d (Y (0)) and maps each edge of Y (1) at constant speed to the corresponding edge

of Rips
(1)
d (Y (0)). Let γ2 := i1 ◦ γ1.

If d ≥ d2 then i1 can be extended to a map Y (2) i2→ Rips
(2)
d (Y (0)). This implies that

γ2 is null-homotopic in Rips
(2)
d (Y (0)).

On the other hand, we claim that γ2 is homotopic to γ in Rips
(2)
d (Y (0)). To see this,

for each edge e = [v1v2] of T , let y0 = γ(v), y1, ..., ym = γ(w) be the vertices of Y (1)

on γ1(e) so that γ2(e) is the concatenation of the edges

[y0y1], ..., [ym−1ym] ⊂ Rips
(2)
d (Y (0)).

Since γ1(e) is a geodesic between y0, ym and dY (1)(y0, ym) ≤ d, we get:

dY (1)(y0, yi) ≤ d, i = 1, ..., m− 1.

Hence each triple of vertices y0, yi, ym spans a 2-simplex ∆i in Rips
(2)
d (Y (0)). Together

these simplices define a homotopy between γ(e) and γ2(e) (rel. the end-points). Thus
the loops γ and γ2 are homotopic. ¤

2.8. Finiteness properties of groups. We recall that a group G is said to have type
Fn (n = 1, 2, ...,∞) if there exists an (n − 1)-connected n-dimensional cell complex
X and a properly discontinuous free action G y X such that X(i)/G is compact for
each i < ∞.

This notion of finiteness has the following homological generalization (see [4]): A
group G is said to be of type FPn (over a commutative ring R) if there exists a partial
resolution of R by finitely generated projective RG-modules:

Pn → ... → P0 → R→ 0.

The group G is of type FP if there exists a finite resolution

0 → Pn → ... → P0 → R→ 0.
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of R by finitely generated projective RG-modules.

Proposition 2.14. Suppose that there exists an (n−1)-connected n-dimensional cell
complex Y and a discrete (i.e. properly discontinuous) action G y Y such that
Y (i)/G is compact for each i < ∞. Then G is of type Fn.

Proof. We note that if the action G y Y were free, then this action would satisfy
the properties stated in the definition of a group of type Fn and there would be
nothing to prove. Our goal is to modify Y to make the action free. We do this by
induction on skeleta. Let i = 1. Since G y Y (1) is cocompact and Y is connected, we
conclude that G is finitely-generated. Hence we take X(1) to be a Cayley graph of G.
Suppose that 2 ≤ i ≤ n and an (i − 1)-connected complex X(i) together with a free
discrete cocompact action G y X(i) was constructed. We convert X into a metric
cell complex by taking a G-equivariant control map p : X → X(0). Let x0 ∈ X(0) be
a base-point.

Lemma 2.15. There are finitely many spherical i-cycles σ1, ..., σk in X(i) such that
their G-orbits normally generate πi(X

(i), x0), in the sense that the normal closure of
the cycles {σ̂j : j = 1, ..., k} is πi(X

(i), x0), where each σ̂j is obtained from σj by
attaching a “tail” from x0.

Proof. Without loss of generality we can assume that X(i) and Y are simplicial com-
plexes. Let f : X(i) → Y (i) be a G-equivariant continuous map. Consider the
embedding

X(i) ↪→ Cone(f)

where Cone(f) is the mapping cone. Since Cone(f) is i-connected, according to
[12, Proof of Lemma 5.8], there are finitely many spherical i-cycles σ1, ..., σk in X(i)

such that their G-orbits normally generate πi(X
(i)). Here is the brief outline of the

construction of σj’s:

Let τα : Si → Y (i), α ∈ N, denote the attaching maps of the (i + 1)-cells in Y ,
these maps are just simplicial homeomorphic embeddings from the boundary Si of
the standard (i + 1)-simplex into Y (i). Starting with a G-equivariant projection
Y (0) → X(0) one inductively constructs a (non-equivariant) map f̄ : Y (i) → X(i) so
that f ◦f̄ : Y (i) → Y (i+1) is homotopic to the identity inclusion id : Y (i) ↪→ Y (i+1) via a
homotopy H whose tracks have “uniformly bounded complexity”: The compositions

H ◦ (τα × id) : Si × I → Y (i+1)

are simplicial maps with a uniform upper bound on the number of simplices in a
triangulation of Si × I. We let σα denote the composition gα ◦ f̄ ◦ τα where gα ∈
G,α = 1, ..., k are chosen so that the image of σα intersects a fixed fundamental
domain for the action G y X(i). ¤

We now equivariantly attach (i + 1)-cells along G-orbits of the cycles σj: For each
j and g ∈ G we attach an (i + 1)-cell along g(σj). Note that if σj is stabilized by a
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subgroup of order m = m(j) in G, then we attach m copies of the (i+1)-dimensional
cell along σj. We let X(i+1) denote the resulting complex and we extend the G-
action to X(i+1) in obvious fashion. It is clear that G y X(i+1) is free, discrete and
cocompact. ¤
Corollary 2.16. Suppose that G is Gromov-hyperbolic. Then G is of type F∞.

Proof. Use the action of G on its contractible Rips complex Y . ¤

2.9. Gromov’s coarse version of the Cartan-Hadamard theorem.

Theorem 2.17. (Cf. [11], [2, Theorem 8.1.2]) There are constants d0, C1, C2, and
C3 with the following property. Let X be a metric space of bounded geometry. Assume
that for some δ, and d ≥ max(C1δ, d0), every ball of radius C2d in X is δ-hyperbolic,
and Ripsd(X) is 1-connected. Then X is C3d-hyperbolic.

One can give a direct proof of this theorem modeled on the proof of the Cartan-
Hadamard theorem. Instead of doing this, we will use 6.8M and 6.8N from [11].

Remark 2.18. We note that the δ-hyperbolicity in the statements of 6.8M and 6.8N
is to be taken in Gromov’s sense.

To prove the above theorem we will need several auxiliary results, which are essen-
tially contained in [11]. The main point of these results is that a (coarsely simply-
connected) metric space of bounded geometry is Gromov-hyperbolic iff its Rips com-
plexes satisfy a linear isoperimetric inequality.

Taking A′
0 = 500d2 in [11, 6.8M] we get:

Theorem 2.19 (6.8M, adapted version). Suppose that X is a metric space of bounded
geometry, such that for some d ≥ 0 every simplicial circle S ′ in P 1

d (X) with

500d2 ≤ A(S ′) ≤ 64(500d2)

satisfies

(2.20) L(S ′) ≥ d
√

(4000)(64)(500)

and P 2
d (X) is 1-connected. Then P 1

d (X) is (400)
√

500d-hyperbolic in the sense of Rips
(see [11, 6.8.J]) and X is (400)

√
500d-hyperbolic in the sense of Gromov.

Here Pm
d (X) denotes the m-skeleton of the Rips complex Rips

(m)
d (X) (endowed with

a metric for which each simplex is path-isometric to a regular Euclidean simplex of
side length d). The quantities L(S ′) and A(S ′) are the length of S ′ and the minimal
area of a null-homotopy of S ′, where length and area are computed using the metric
on P 2

d (X) rather than the combinatorial length and area.

Theorem 6.8N from [11] states
12



Theorem 2.21 (6.8N). If X is δ-hyperbolic and d ≥ 8δ, then every simplicial circle
S ′ ⊂ P 1

d (X) satisfies L(S ′) ≥ d
4
√

3
A(S ′).

Proof of Theorem 2.17. Choose d0 such that

(2.22)
500d2

0

4
√

3
≥

√
(4000)(64)(500),

and set C1 := 32, C2 := 64 · 500. Let S ′ ⊂ P 1
d (X) be a simplicial circle with

(2.23) 500d2 ≤ A(S ′) ≤ 64(500d2)

and let f : D → P 2
d (X) be a least area simplicial 2-disk filling S ′. There are at most

(64)(500) triangles in the triangulated 2-disk D which are mapped isomorphically by
f , by (2.23). Therefore, if we look at Im(f) ⊂ P 2

d (X), and let W ⊂ Im(f) be the
closure of the union of 2-simplices contained in Im(f), then connected components
Wi of W have diameter ≤ (64)(500)d. This means that we can decompose D along
disjoint arcs as the union of disks Di, i = 1, ..., k + 1 and regions Ej, so that each
f(Ej) is at most 1-dimensional and the diameter of each “minimal 2-disk” f(Di) is
at most (64)(500)d.

By assumption, every ball of radius C2d = 64 · 500d is δ-hyperbolic and d ≥ C1δ =
32δ, so by applying Theorem 2.21 to f(∂D1), . . . f(∂Dk+1) and adding up the results,
we obtain

L(S ′) ≥ d

4
√

3
A(S ′) ≥ d

4
√

3
500d2 ≥ d

4
√

3
500d2

0 ≥ d
√

(4000)(64)(500)

where the last inequality comes from (2.22). By Theorem 2.19 we conclude that X
is C3d-hyperbolic (in Gromov’s sense) where C3 := (400)(

√
500). ¤

As a corollary we get:

Corollary 2.24. There exist a constant 0 < c < ∞ such that for each 1-connected 2-
dimensional metric cell complex Y , there exists a constant ρ = ρ(Y ) with the property:

If for some R ≥ ρ, each ball BR(y) ⊂ Y is cR-hyperbolic (in the sense of Rips),
then Y is Gromov-hyperbolic.

Proof. First of all, since Y is 1-connected, there exists a constant D = D(Y ) such

that Rips
(2)
d (Y (0)) is 1-connected for each d ≥ D, see Proposition 2.13.

Let C1, C2 and d0 be the constants from Theorem 2.17. Choose ρ so that ρ/C2 ≥
max(D, d0). Let c := 1

4C1C2
.

Set d := R/C2 and δ := cR. Then Rips
(2)
d (Y (0)) is 1-connected. If each ball

BR(y) ⊂ Y is δ-hyperbolic (in the sense of Rips) then for each x ∈ Y (0), the ball
13



BR(x) ⊂ Y (0) is 4δ-hyperbolic (in Gromov’s sense). Since (by our choice of the
constant c)

d =
R

C2

≥ 4C1C2cR

(in fact, the equality holds), and

d ≥ ρ

C2

≥ max(D, d0),

Theorem 2.17 implies that Y is Gromov-hyperbolic. ¤
Corollary 2.25. Suppose that G is a finitely-presented group such that some asymp-
totic cone of G is a tree. Then G is Gromov-hyperbolic; in particular, every asymptotic
cone of G is a tree. Thus, under the hypothesis of the corollary, all asymptotic cones
of G are isometric.

Proof. Let ω be a nonprincipal ultrafilter on N, let Rj be a sequence of positive real
numbers such that limω Rj = ∞. Let Y be a (simply-connected) Cayley complex for
G, yj ∈ Y is a sequence of vertices. We give Y structure of a metric cell complex so
that G acts on Y isometrically. By our assumption, limω

1
Rj

(Y, yj) is a tree for some

choice of ω, (Rj) (and the base-points yj). Thus each geodesic triangle in an Rj-ball
B(yj, Rj) ⊂ Y is δj-thin, where

limω
δj

Rj

= 0.

Hence the same is true for each ball B(y, Rj) ⊂ Y , y ∈ Y (0). For sufficiently large j,

Rj ≥ ρ = ρ(Y ) and
δj

Rj
< c, where ρ, c are the constants from the previous corollary.

Hence, by Corollary 2.24, the complex Y is Gromov-hyperbolic and therefore G is
too. ¤

We note that the above corollary is false for finitely-generated groups, as there are
finitely generated groups G so that some asymptotic cones of G are trees and some
are not, see [6], [22]. Under the assumption that the continuum hypothesis (CH)
fails, Kramer, Shelah, Trent and Thomas proved in [18] that there are 22ω

asymptotic
cones of uniform lattices in absolutely simple Lie groups of rank ≥ 2. Here ω is the
cardinality of N.

Question 2.26. Is it true (without any assumptions on CH) that there are finitely
presented groups with non-homeomorphic asymptotic cones?

3. Coarse Poincaré duality

Let Ȟ∗
c (·) denote the compactly supported Čech cohomology with coefficients in a

commutative ring R. The (relative) homology and cohomology in this section are
also taken with coefficients in R. We first recall the usual Poincaré duality:

14



Theorem 3.1. Suppose that X is a metric cell complex homeomorphic to an n-
dimensional manifold. Then for each closed subset W ⊂ X and k ∈ Z there is an
isomorphism

PW,k : Ȟk
c (W ) → Hn−k(X, X \W )

which is local in the following sense: Supp(PW,k(τ)) ⊂ NDX
(Supp(τ)) for each τ ∈

Zk
c (W ). The constant DX does not depend on W and τ . The family {PW,k} is

compatible with homomorphisms induced by inclusions.

The coarse Poincaré duality is a coarse analogue of the above property; we re-
mind the reader that by convention (see section 2) all our metric cell complexes have
bounded geometry. Given a subcomplex K ⊂ Y := X(m) we let NR(K) denote the
R-neighborhood of K in Y and

VR := Y \NR(K).

Definition 3.2. Let X be a uniformly acyclic metric cell complex. We say that X
satisfies coarse n-dimensional Poincaré duality if the following holds. For each m ∈ N
there is a constant2 D = Dm ≥ 0 so that if k ∈ Z and m ≥ 1 + max(k, n − k), then
the metric cell complex Y := X(m) satisfies:

There is a system of homomorphisms {PK}, {P̄K} defined for subcomplexes K ⊂ Y :

PK : Hk
c (ND(K)) → Hn−k(Y, V0), P̄K : Hn−i

c (Y, V0) → Hi(ND(K))

which are compatible with homomorphisms induced by inclusions, and which deter-
mine approximate isomorphisms3 in the sense that the homomorphisms α, ᾱ and β, β̄
in the following commutative diagrams are zero:

ker(PND(K)) → Hk
c (N2D(K))

PND(K)−→ Hn−k(Y, VD(K)) → coker(PND(K))
α ↓ ↓ ↓ β ↓

ker(PK) → Hk
c (ND(K))

PK−→ Hn−k(Y, V0(K)) → coker(PK),

ker(P̄ND(K)) → Hi(ND(K))
P̄ND(K)−→ Hn−i

c (Y, V2D) → coker(P̄ND(K))
ᾱ ↑ ↑ ↑ β̄ ↑

ker(P̄K) → Hi(K)
P̄K−→ Hn−i

c (Y, VD) → coker(P̄K).

The homomorphisms PK (and P̄K) are required to be local in the following sense:
if [σ] ∈ Hk

c (ND(K)) is represented by a cocycle σ ∈ Zk
c (ND(K)), then PK(σ) can be

represented by a relative cycle τ supported in ND(Supp(σ)).

2If X is finite-dimensional, as in Section 3, we can of course take the constant D independent on
m and replace X(m) with X, etc.

3Vanishing of α, ᾱ means the approximate monomorphism and vanishing of β, β̄ means the ap-
proximate epimorphism.
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We say that a metric cell complex X satisfies coarse n-dimensional Poincaré duality
in dimension j, if the constant D = Dm and the family of operators {PK}, {P̄K}, as
above, exists for k = j, and m = 1 + max(j, n − j) (we do not require X to be
uniformly acyclic).

Remark 3.3. For most of this paper and in [14], we only use existence of the approx-
imate isomorphisms PK . The existence of P̄K will be used in section 5.

Definition 3.4. A bounded geometry metric space Z satisfies coarse n-dimensional
Poincaré duality (over R) if there exists a metric cell complex Y whose 0-skeleton is
quasi-isometric to Z, so that Y satisfies coarse n-dimensional Poincaré duality.

Definition 3.5. A 1-connected metric cell complex Y satisfying 2-dimensional coarse
Poincare duality in dimension 1 will be called a quasi-plane (over R).

Lemma 3.6. (See [14].) Suppose that n ≥ 2 and X is a metric cell complex which
satisfies coarse n-dimensional Poincaré duality over R in dimension 1. Then X(1) is
1-ended.

We note that in [12] we have proven a number of coarse versions of Jordan separation
theorem for complexes satisfying coarse Poincaré duality. In particular:

Proposition 3.7. Suppose that Z is a (finite-dimensional) metric cell complex satis-
fying n-dimensional Poincaré duality, M is a bounded geometry uniformly acyclic cell
complex which is homeomorphic to an n-manifold. Then for each uniformly proper
map f : M → Z, the image f(M (0)) is a net in Z(0).

We next note that (unlike the usual Poincaré duality) coarse Poincaré duality is a
quasi-isometry invariant property:

Proposition 3.8. (See [14].) Suppose X and X ′ are (uniformly acyclic) cell com-
plexes with quasi-isometric 0-skeleta. Then X satisfies coarse n-dimensional Poincaré
duality iff X ′ does.

Remark 3.9. The setting in [12] and [14] is that of (finite-dimensional) metric simpli-
cial complexes. To adopt the results of [12] and [14] to the discussion in the present
paper, one has to (inductively) replace each k-skeleton of a metric cell complex X
with an appropriate metric simplicial complex C(k). Since in the formulation of the
coarse Poincaré duality for metric cell complexes, the constants Dm are allowed to
depend on the dimension, this does not cause problems.

The following theorem is a special case of a more general result proven in [14] for
Gromov-hyperbolic metric cell complexes satisfying coarse Poincaré duality:

Theorem 3.10. (See [14].) 1. Suppose that X is a Gromov-hyperbolic quasi-plane
over R. Then ∂∞X is homeomorphic to the circle S1 and X(1) is quasi-isometric to
H2.
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2. Suppose in addition that G y X is a cobounded quasi-action. Then this quasi-
action is quasi-isometrically conjugate to an isometric action G y H2.

4. The surrounding function

Let Y be a metric cell complex whose 1-skeleton Y (1) is 1-ended, connected, and
equipped with a path metric d where edges have length 1. We suppose further that
Y (0) is quasi-homogeneous, i.e. there are constants L0, A0 ∈ R such that for all
y, y′ ∈ Y (0), there is an (L0, A0)-quasi-isometry Y (0) → Y (0) which maps y to y′.

Definition 4.1. A subgraph Γ ⊂ Y (1) surrounds a subset Σ ⊂ Y (1) if Γ∩Σ = ∅, and
Γ separates Σ from infinity, i.e. any proper path R+ → Y (1) starting at Σ intersects
Γ.

If Γ ⊂ Y (1) is a subgraph, we let |Γ| denote the cardinality of the vertex set of Γ;
we will refer to |Γ| as the size of Γ.

Definition 4.2. Given y ∈ Y (0), R ∈ R+, let Sur(y,R) be the minimum of sizes of
connected subgraphs Γ ⊂ Y (1) which surround B(y,R) ⊂ Y (1). We will refer to a
graph Γ which realizes the minimum as a smallest graph which surrounds B(y,R).

Lemma 4.3. The function Sur(·, ·) is “quasi-invariant”: There are constants C and
R0 such that Sur(y′, R

C
) ≤ C Sur(y,R) for all y, y′ ∈ Y , R > R0.

Proof. Pick y, y′ ∈ Y (0). There are (L,A)-quasi-isometries f : Y (0) → Y (0) and
f ′ : Y (0) → Y (0) such that f(y) = y′, f ′(y′) = y, and d(f ′ ◦ f, idY (0)) < A, d(f ◦
f ′, idY (0)) < A, where L, A are independent of y, y′.

Choose a smallest connected subgraph Γ ⊂ Y (0) which surrounds B(y, R). Then
d(y′, f(Γ(0))) ≥ 1

L
R−A. If x′ ∈ Y (0) and Ld(y′, x′)+A ≤ R, then f ′(x′) ∈ B(y, R), and

consequently if ρ : R+ → Y (1) is any proper path with ρ(0) = x′, then by the uniform
connectedness of Y (0), the set f ′((Im(ρ) ∩ Y (0)) must pass within distance D1 =
D1(L,A, Y ) of Γ, which means that ρ must pass within distance D2 = D2(L,A, Y ) of
f(Γ(0)). Applying the uniform connectedness of Y (1) again, we can find a connected
subgraph Γ′ ⊂ Y (1) such that

ND2(f(Γ(0))) ⊂ Γ′ ⊂ ND3(f(Γ′))

for D3 = D3(L,A, Y ). If R′ satisfies R′ + D3 < 1
L
R−A, then B(y′, R′) ∩ Γ′ = ∅, and

hence Γ′ surrounds B(y′, R). Since Y (1) has bounded geometry, there is a constant c =
c(Y ) such that |Γ′| ≤ c|f(Γ(0))| ≤ c|Γ|. Taking C = max(c, 2L), and R0 sufficiently
large, the lemma follows. ¤

Observe that the quantity Sur(y, R) is finite since the space Y (1) is 1-ended. Note
also that, since Y is quasi-homogeneous, there are constants L,A such that for each
point y ∈ Y (0) there exists a 1-Lipschitz (L,A) quasi-geodesic γ through y (with
L ≥ 1, A ≥ 0).
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Lemma 4.4. 1. For each R ≥ R0 := 2AL2 and each connected subgraph Γ which
surrounds B(y,R) we have: diam(Γ) ≥ 1

L2 R.

2. For the constant C0 = 1/L2 and all R ≥ R0, we have: Sur(y,R) ≥ C0R.

3. Suppose that Γ is a graph which surrounds a ball B(y, R), R ≥ R0. Then for
r < R/L2 and each z ∈ Γ the size of Γ ∩B(z, r) is at least r.

4. There is a constant C1 = C1 ≥ 1 such that any connected subgraph Γ which
surrounds an R-ball B(y, R) must lie in B(y, C1|Γ|).

Set C2 = max(2C1, 1/C0).

5. If Γ surrounds B(y, R) ⊂ Y (1), then the connected component of y in Y (1) \ Γ is
contained in B(y, C2|Γ|).

Proof. 1. Let Γ ⊂ Y (1) be a connected graph which surrounds the ball B(y, R).
Consider an (L,A) quasi-geodesic γ : R→ Y (1) as above, γ(0) = y. Since Γ surrounds
B(y, R) there are two points y± ∈ Γ such that γ(T±) = y±, with T− < 0 < T+. Thus

diam(Γ) ≥ d(y−, y+) ≥ 1

L
(T+ − T−)− A ≥ 1

L
(
2

L
R− 2A)− A ≥ 1

L2
R,

for R ≥ 2AL2. This proves (1).

2. Let Γ be a smallest connected graph surrounding B(y, R), where R ≥ R0. Then,
since Γ is connected, part (1) implies that

Sur(y, R) = |Γ| ≥ diam(Γ) ≥ 1

L2
R.

3. Recall that, according to (1), diam(Γ) ≥ 1
L2 R. Hence for each R ≥ R0 and

r < R/L2 and z ∈ Γ, the metric sphere S(z, r) ⊂ Y (1) has nonempty intersection
with Γ. Thus, since Γ is connected, the intersection Γ ∩ B(z, r) contains at least r
points, vertices of a path in Γ ∩B(z, r) connecting z to S(z, r).

4. Set C1 := 2L2(A + 1). Let γ be a quasi-geodesic as in (1). Let’s estimate the
distance d(y±, y). We have:

d(y±, y) ≤ L|T±|+ A, |T+ − T−| ≤ L(d(y+, y−) + A).

Hence

d(y±, y) ≤ L(L(d(y+, y−) + A)) + A = L2d(y+, y−) + (L2 + 1)A.

However, since Γ is connected, d(y+, y−) ≤ |Γ|, and therefore

d(y±, y) ≤ L2|Γ|+ (L2 + 1)A.

If z ∈ Γ, then d(z, y+) ≤ |Γ|, which implies that

d(z, y) ≤ 2L2|Γ|+ (L2 + 1)A ≤ 2L2(A + 1)|Γ|,
because |Γ| ≥ 1. Thus Γ ⊂ B(C1|Γ|, y).
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5. Consider a point z ∈ Y (1) \ Γ which lies in the same component of Y (1) \ Γ as
y. Suppose that z /∈ NR(Γ). Then Γ surrounds both B(y,R), B(z, R) and hence, by
(4),

Γ ⊂ B(y, C1|Γ|), Γ ⊂ B(z, C1|Γ|).
By the triangle inequality we conclude that d(y, z) ≤ 2C1|Γ|. If d(z, Γ) ≤ R then (by
(2)) d(z, y) ≤ R ≤ |Γ|/C0. Therefore z ∈ B(y, C2|Γ|) in this case as well. ¤

Lemma 4.5. Suppose there is a constant C ≥ 2 such that Sur(y,R) < CR for all
y ∈ Y (0), and all R ≥ 1. Then Y (0) is doubling (see section 2), and hence has
polynomial growth.

Proof. In the proof we will be using the constants Ci and R0 from the previous lemma.

Without loss of generality we may assume that C, C2 ∈ N. Recall that (according
to Lemma 4.4, Part 5), if Γ surrounds B(y,R) ⊂ Y (1) and has size ≤ CR, then the
connected component of y in Y (1) \ Γ is contained in B(y, C2CR).

Pick y ∈ Y (0), R ≥ 1. Choose a connected graph Γ1 ⊂ Y (1) with size at most CR
which surrounds B(y,R), and set L1 = {Γ1}. Let N1 be an R

2L2 -separated R
2
-net in

Γ1. Then, by Lemma 4.4 (Part 3), the cardinality of N1 is at most

|Γ1|
R/(4L2)

≤ c := 4L2C.

Let L2 be a collection of connected subgraphs (each having size at most CR) of
Y (1) surrounding the R-balls centered at points in N1. Proceed inductively in this
fashion, building up k layers of surrounding connected subgraphs of Y (1). The union
Vk := N0 ∪ . . . ∪Nk has cardinality at most

ck+1 = (4L2C)k+1.

We claim that the collection of C2CR-balls centered at points in Vk covers B(y, kR
2

).

To see this, consider a path σ of length at most kR
2

starting at y. We inductively

break σ into a concatenation of at most k subpaths of length at least R
2

as follows.
Let σ1 be the initial segment of σ until it arrives at Γ1. The path σ1 terminates within
distance R

2
of a point y1 ∈ N1. Let σ2 be the initial segment of σ \ σ1 until it arrives

at the connected subgraph Γ2 ∈ L2 surrounding B(y1, R). Et cetera. At each step,
the segment σi has length at least R

2
, and (by Lemma 4.4, Part 5) all of them are

contained in ∪q∈Vk
B(q, C2CR).

Thus

B(y,
kR

2
) ⊂

ck+1⋃
i=1

B(yi, C2CR),
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for each R ≥ R0, and each y ∈ Y (0). Choosing k such that [k
2
] = 2C2C, and setting

ρ = C2CR we see that

B(y, 2ρ) ⊂
N⋃

i=1

B(yi, ρ),

where N = c4C2C+2 is independent of ρ. Hence Y (0) is doubling and thus has polyno-
mial growth. ¤

Below is an alternative argument for the polynomial growth of Y (0) in the case when
it is quasi-isometric to a (finitely generated) group. Let V (y, r) denote the number
of points in B(y, r) ∩ Y (0) for y ∈ Y (0).

Proposition 4.6. Suppose there is a constant C and a sequence Rj ∈ R+ diverging
to ∞, such that Sur(y, Rj) < CRj for all y ∈ Y (0), and each j. Assume in addition
that Y (1) is the Cayley graph of a finitely generated group Q. Then Q is virtually
nilpotent and has at most quadratic growth.

Proof. We recall (N. Varopoulos, [24]) that if there are constants C0, a ∈ R so that

(4.7) V (y, r) ≥ C0r
a, ∀r ≥ 1, ∀y ∈ Y (0),

then there is C1 ∈ R so that

|∂D| ≥ C1|D|(a−1)/a

for all finite subsets D ⊂ Y (0). (Here ∂D = ∂1D is the “boundary” of D, see section
2.) Let Inrad(D) denote the radius of the largest metric ball B(z, r) ⊂ Y (1) such that
in B(z, r) ∩ Y (0) is contained in D. Hence

|∂D| ≥ C ′|D|(a−1)/a ≥ C1[C0 · Inrad(D)a](a−1)/a = C2 Inrad(D)a−1.

On the other hand, the hypothesis of the proposition implies that for each y ∈ Y (0)

each ball B(y, Rj) ⊂ Y (1) is surrounded by a connected graph ΓRj
⊂ Y (1) of the size

≤ CR (R ∈ N). Let DR denote the vertex set of the component of y in Y (1) \ ΓR.
Then

|∂DRj
| ≤ C3|DRj

| ≤ C4Rj ≤ C4 Inrad(DRj
)

for all j ∈ N. Thus (4.7) cannot hold in Y (0) for any a > 2. Therefore for each a > 2
there are sequences yj ∈ Y (0), rj ∈ N so that

V (yj, rj) ≤ C0r
a
j .

Hence, by the improvement of Gromov’s theorem on groups of polynomial growth due
to Van den Dries and Wilkie [23], the group Q is virtually nilpotent and moreover its
growth ≤ a for each a > 2. Thus Q has at most quadratic growth. ¤

We now strengthen our assumptions on Y . We assume in addition that Y (2) is
1-acyclic and satisfies 2-dimensional coarse Poincaré duality in dimension 1, i.e. the
statement of Definition 3.2 holds for n = 2 and k = 1 = n− k = m− 1.
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Lemma 4.8. There are constants D and R1 such that when R ≥ R1, the D-neig-
hborhood of each R-fat geodesic triangle ∆ in Y (1) will surround a ball of radius R

10
.

Proof. Let ∆ ⊂ Y (1) be an R-fat geodesic triangle, and let x be a point on one of the
sides γ of ∆ whose distance to the remaining two sides exceeds R. Let α ∈ C1(γ) be
a 1-cocycle supported in B(1)(x, 1)∩ γ, representing the fundamental class of the side

γ relative to its boundary. Construct a map f : Y (2) → γ by letting f|
Y (0) → γ be

a nearest point map, and extending f to Y (2) using the uniform contractibility of γ.
For all y ∈ Y (2) we will have

(4.9) d(p(f(y)), p(y)) ≤ d(p(y), γ(0)) + C1

where p : Y → Y (0) is the control map, and C1 is independent of γ. Using f|
N

(2)
R
3

(γ)
,

pullback α to a 1-cocycle

α̂ :=

(
f|

N
(2)
R
3

(γ)

)∗
(α) ∈ Z1(N

(2)
R
3

(γ)).

Extending α̂ by zero, we get a cochain α′ in C1(N
(2)
R
3

(∆)).

Recall that there is a constant C2 depending only on Y (2) such that if σ is a 2-cell of
Y (2) and τ is a 1-cell appearing in the boundary of σ, then d(p(τ), p(σ)) < C2. Using

this and (4.9), it follows that if R ≥ C3 for C3 = C3(Y
(2)), σ is a 2-cell in N

(2)
R
3

(∆),

τ is a 1-cell in the boundary of σ, and α′(τ) 6= 0, then the whole boundary of σ lies
outside the R

3
-neighborhoods of the other two sides of ∆; therefore the boundary of σ

lies in N
(2)
R
3

(γ), which means that σ itself lies in N
(2)
R
3

(γ), and so α′(∂σ) = α̂(∂σ) = 0.

Thus α′ is a 1-cocycle when R ≥ C3, which we henceforth assume. The restriction of
α′ to ∆ is nontrivial in H1 because of excision and the nontriviality of α.

Applying our coarse Poincaré duality assumption we get that α′ is “dual” to an
element

c := P
N

(2)
R
3

(∆)
(α′) ∈ H1(Y

(2), Y (2) \N
(2)
R
3
−D

(∆))

which maps nontrivially to H1(Y
(2), Y (2) \N

(2)
D (∆)) provided R

3
≥ 2D, where D is the

constant in the statement of coarse Poincaré duality. Since Y is 1-acyclic, this means
that the 0-chain ∂c is a linear combination ∂c =

∑
aiyi with nonzero coefficients,

where the yi’s lie outside N
(2)
R
3
−D

(∆), and some pair yk, yl of the support points cannot

be joined by a curve in Y (2) \N
(2)
D (∆).

Set y′k := p(yk), y′l := p(yl). Then y′k, y′l ∈ Y (2) \ N
(2)
R
3
−r1

(∆) for r1 = r1(Y
(2)),

provided R
3
≥ r1. Also, the points yk and y′k (resp. yl and y′l) lie in the same component

of Y (2) \ N
(2)
R
3
−r2

(∆) for r2 = r2(Y
(2)) > r1, provided R

3
≥ r2. Therefore N

(1)
D (∆)
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separates one of the balls B(y′k,
R
10

), B(y′l,
R
10

) from infinity when R is sufficiently
large. ¤
Proposition 4.10. Suppose in addition that π1(Y ) is trivial. Then there are con-
stants Ch and R2 such that if Sur(p, r) > Chr for some p ∈ Y , r ≥ R2, then Y is
Gromov hyperbolic.

Proof. Here is the intuition behind the proof: If the space Y were not Gromov-
hyperbolic, there would be geodesic triangles ∆ ⊂ Y which surround metric balls of
radius R À 1. Since the surrounding function of Y has sufficiently fast growth, the
perimeter of such triangles ∆ is much larger than the “inradius” R. This however im-
plies, via a corollary of Gromov’s coarse Cartan-Hadamard theorem (Corollary 2.24),
that Y is Gromov-hyperbolic, contradicting our hypothesis. Below is the detailed
argument.

Let ρ = ρ(Y (2)) and c be constants from Corollary 2.24. Let D be the constant
as in Lemma 4.8. Let m denote the maximal cardinality of D + 1-balls in Y (0) (this
number is finite by the bounded geometry assumption).

According to Lemma 4.3, there exist C > 0, R0 > 0 so that

(4.11) Sur(y, r) ≤ C Sur(y′, Cr)

for all y′ ∈ Y (0) provided r > r0 := R0/C, which we will henceforth assume. Pick a
number

Ch ≥ 40mC2

c
.

We assume that r ≥ 4mCρ
Ch

. Suppose Sur(y, r) ≥ Chr for some y ∈ Y (0). Then

(4.12) Chr ≤ Sur(y, r) ≤ C Sur(y′, Cr)

for each y′ ∈ Y (0). Consider a geodesic triangle ∆ ⊂ Y (1) which is 10Cr-fat. By
Lemma 4.8, there exists r1 > 0 so that if r ≥ r1/C, which we will assume from

now on, then N
(1)
D (∆) (the D-neighborhood of ∆ in Y (1)) surrounds some Cr-ball

B(y′, Cr). Therefore

Chr

C
≤ Sur(y′, Cr) ≤ m length(∆).

Thus such a triangle ∆ cannot be contained in a ball of radius R := Chr
4mC

.

Therefore, for δ := 10Cr, every triangle contained in a ball of radius R is δ-thin.
According to our choice of Ch we have:

δ

R
=

10Cr

Chr/(4mC)
=

40mC2

Ch

=
40mC2

Ch

≤ c.

Our assumption that r ≥ 4mCρ
Ch

implies that R ≥ ρ. Hence (since Y is 1-connected)
we are in position to apply Corollary 2.24 and conclude that Y is Gromov-hyperbolic.
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The constant R2 in the Proposition can be defined as

R2 := max(
4mCρ

Ch

,
r1

C
,
R0

C
).

¤
Corollary 4.13. Suppose that Y is a quasi-plane so that Y (0) is quasi-homogeneous.
Then either:

1. The surrounding function of Y is superlinear, i.e. for all Ch there is a constant
R2 such that Sur(y, R) > ChR for some y ∈ Y (0) and all R ≥ R2. In this case Y (1) is
Gromov-hyperbolic.

2. Or the surrounding function of Y is sublinear, i.e. there is a constant C such
that Sur(y, R) < CR for all y ∈ Y (0), R ≥ 1. In this case Y (1) is doubling, and has
polynomial growth.

5. Further properties of 2-dimensional coarse Poincaré duality
spaces

In this section we will establish certain properties of spaces satisfying 2-dimensional
coarse Poincaré duality, which will not be needed in the present paper but will be
used in its sequel [13].

Theorem 5.1. Suppose that X is a metric cell complex satisfying 2-dimensional
coarse Poincaré duality, so that X(0) is quasi-homogeneous. Then X is uniformly
linearly acyclic, i.e. there is a function R′ = R′(i, R) which is linear with respect to
R such that each cycle σ ∈ Zi(X) whose support has diameter ≤ R bounds a chain
β ∈ Ci+1(X) whose support is contained in the R′-neighborhood of the support of σ.
Moreover, for i 6= 1 one can use R′ which is independent of R.

Proof. We first consider the case i ≥ 2. Let K denote the support of σ. Then, since
2− i ≤ 0, we have the maps

Hi(N2D(K)) → 0
γ ↑ ↑

Hi(ND(K)) → H2−i(X, V2D) = 0

which form an approximate monomorphism, i.e. γ = 0. Therefore σ bounds a chain
within 2D-neighborhood of K. Hence for i ≥ 2 we can take R′ = 2D.

For i = 0 the assertion immediately follows from the fact that X(1) is a path metric
space.

Lastly, consider i = 1. We have the approximate isomorphism:

ker(P̄ND(K)) → H1(ND(K))
P̄ND(K)−→ H1

c (X,V2D) → coker(P̄ND(K))
ᾱ ↑ ↑ ↑ β̄ ↑

ker(P̄K) → H1(K)
P̄K−→ H1

c (X, VD) → coker(P̄K),
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i.e. ᾱ = 0, β̄ = 0.

Since X is acyclic, for each R we have an isomorphism

H0
c (VR) ∼= H1

c (X,VR).

Therefore the unbounded components of VR do not contribute to H1
c (X,VR). Consider

a bounded component C0 ⊂ V0. For d = diam(C0) we have

C0 ⊂ Nd(K)

and therefore

H1
c (X, V0) → 0 ∈ H1

c (X, Vd).

Hence we have to estimate d from above. There is a connected subset K ′ ⊂ K which
surrounds C0. Therefore, according to Part 1 of Lemma 4.4,

R + R0 ≥ diam(K) + R0 ≥ diam(K ′) + R0 ≥ diam(C0)/L
2,

where R0 = 2AL2. Thus d = diam(C0) ≤ L2(R + R0) and we can take R′(R, 1) :=
L2(R + R0). ¤

In the rest of this section we assume that X satisfies coarse 2-dimensional Poincaré
duality, the metric space (Y, d) := X(0) is doubling and G y X is a discrete, cocom-
pact quasi-action. Given a subgroup H ⊂ G we let H(y) := {h(y) | h ∈ H} be a
quasi-orbit of H in Y . In what follows we will use the metric on H(y) induced from
Y .

Our main result is:

Theorem 5.2. Then

1. Every asymptotic cone of Y is homeomorphic to R2.

2. For each subgroup H ⊂ G there is an integer k ≤ 2 such that for each y ∈ Y ,
every asymptotic cone of H(y) ⊂ Y is homeomorphic to Rk.

Since Y is doubling, the quasi-orbit H(y) is doubling as well. Therefore, each as-
ymptotic cone of H(y) is a Gromov-Hausdorff limit of a subsequence of (λiH(y), y),
where the sequence of scale factors λi converges to zero.

We now examine the asymptotic cones of the quasi-action G y Y . Recall that if f :
Y → Y is an (L,A)-quasi-isometry then f induces an L-bi-Lipschitz homeomorphism
fη : Yη → Yη of every asymptotic cone Yη of (Y, d). Therefore, every asymptotic cone

Yη = limη(Y, λid, z0
i )

of Y yields a uniformly bi-Lipschitz action Gη y Yη, where Gη consists of maps
Yη → Yη represented by sequences

gi : Y → Y, gi ∈ G, d(gi(z
0
i ), z

0
i ) ≤ C/λi.
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Since G y Y is cocompact, the action Gη y Yη is transitive. Since Y is unbounded,
it contains a quasi-geodesic ray. Thus Yη also contains a quasi-geodesic ray and
therefore is noncompact.

Proposition 5.3. Every asymptotic cone of the quasi-action G y Y is a transitive
action Gη y Yη, where the action is topologically conjugate to an isometric action of
Gη on the Euclidean plane.

Proof. First of all, Y is coarsely connected, therefore Yη is a geodesic metric space.
Since Y is doubling, each asymptotic cone Yη is doubling and therefore locally compact
and finite-dimensional, see section 2.6. Therefore, since Gη y Yη is transitive and
uniformly bi-Lipschitz, it follows from the work of Gleason, Montgomery and Zippin
that this action is topologically conjugate to a smooth action on a smooth manifold,
Gη y M , see [20], Sections 6.3 and 4.6 (the latter is needed to handle Property A).
We refer the reader to [?] for a detailed explanation of how to use the results of [20].

In particular, M ∼= Gη/K, where K is the stabilizer of a point in Yη. If K were
noncompact, the action Gη y Yη could not have been uniformly bi-Lipschitz. Thus
K is compact and therefore M admits a Gη-invariant Riemannian metric which we
fix from now on. Since M is homogeneous, it follows that it has constant scalar
curvature.

Lemma 5.4. Yη is a 2-dimensional R-acyclic manifold.

Proof. Suppose that the asymptotic cone Yη is the ultralimit

(Yη, yη) = limω(Y, λid, y0
i ),

where limω λi = 0.

We first prove acyclicity of Yη. Given r > 0 consider the r-Rips complex Ripsr(Yη).
Since Yη is homeomorphic to a homogeneous Riemannian manifold, in view of Propo-
sition 2.12, for each sufficiently small r there is a deformation retraction

Ripsr((Yη)
(0)) → Yη

where (Yη)
(0) is a certain net in Yη. Thus it suffices to show that there exists a

function r′ = r′(r) ≥ r such that limr→0 r′(r) = 0 and for each sufficiently small r,
the inclusion

Ripsr(Y
(0)
η ) → Ripsr′(Y

(0)
η )

induces zero map on the m-dimensional homology groups, m ≥ 1.

Consider an m-cycle ση in Ripsr(Y
(0)
ω ),

ση =
∑

k

akσkω,
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where ak ∈ R, σkω are simplices in Ripsr(Yω). Each simplex σkω corresponds to a
sequence of simplices σki in Ripsr/λi

(Y ), i ∈ N. We also obtain an m-cycle

σi =
∑

k

akσki

in Ripsr/λi
(Y ). Let Di denote the diameter of the support of σi. Since Y is uniformly

linearly acyclic (see Theorem 5.1, there exists a constant C ∈ R such that each σi

bounds a simplicial m + 1-chain

βi =
∑

l

blτli, bl ∈ R,

in RipsCr/λi
(Y ), so that each vertex of βi is contained within distance CDi from the

support of σi. We now use the fact that the convergence of (Y, λid, y0
i ) to Yη can be

taken in Gromov-Hausdorff topology. This gives us (1− 1
i
, 1

i
)-coarse Lipschitz maps

fi : B(yi, CDi) ⊂ (Y, λid, y0
i ) → (Yη, yη).

Taking images of the vertices of βi under these maps we get chains

fi∗(βi)

in RipsCri
(Yω) where limω ri = r. Without loss of generality we may assume that

fi(σi) = ση. By picking sufficiently large i, we obtain r′ = r′(r) := Cri so that the
cycle ση bounds the chain βη := fi∗(βi) in Ripsr′(Yη). This proves R-acyclicity of Yη.

We now prove that Yη is 2-dimensional. It suffices to show that H̃m(Yη \ {yη}) = 0
for m 6= 1. The proof is the same as the argument presented above since each m-cycle
σ in Y , m 6= 1, bounds an m + 1-chain β such that

Supp(β) ⊂ ND(Supp(σ))

for certain D = D(m), see the proof of Lemma 5.1. ¤
Corollary 5.5. Yη is homeomorphic to R2.

Proof. By the previous lemma, Yη is an R-acyclic noncompact surface; by homogene-
ity it must be oriented (since a curve with nonzero self-intersection number could
not be pulled to infinity), and hence R-acyclicity implies Z-acyclicity. Thus Yη is
homeomorphic to R2. ¤

We now can finish the proof of Proposition 5.3. Since the action Gω on Yη and
on M (which is a 2-dimensional Riemannian manifold) is proper and transitive, it
follows that M and Yη are quasi-isometric. Since Yη is doubling, the manifold M is
doubling as well. Therefore M must have curvature equal to zero. This completes
the proof of the proposition. ¤

Therefore we have proved the first assertion of Theorem 5.2.
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Lemma 5.6. Suppose W ⊂ Isom(R2) is a closed subgroup of isometries with an
unbounded orbit. Then precisely one of the following holds:

1. The action W y R2 is cocompact and the translation subgroup Wtrans ⊂ W has
rank 2.

2. The translation subgroup Wtrans has rank 1 (and therefore is isomorphic to Z
or R), each orbit of Wtrans is contained in a straight line parallel to a 1-dimensional
subspace V ⊂ R2 and the linear part Wlin of W is reducible and preserves V .

Proof. Let W ′ ⊂ W be the orientation preserving subgroup; since [W : W ′] ≤ 2 the
subgroup W ′ also has unbounded orbits.

We claim that the translation subgroup W ′
trans is nontrivial. To see this, pick

g ∈ W ′ \ {e}. We may assume that g is not a translation, so it is a rotation fixing
some point x ∈ R2. Taking h ∈ W ′ such that h(x) 6= x, the elements g, hgh−1 ∈
W ′ are rotations with distinct fixed points, so [g, h] is a nontrivial translation, and
W ′

trans 6= {e} as claimed.

If W ′
trans has rank 1, then it determines a direction in R2 which is preserved by the

linear part of W , and hence W has finite linear part; it follows that [W : W ′
trans] < ∞,

and W does not act cocompactly on R2 and we are in Case 2.

If W ′
trans has rank two, its orbit spans R2, hence R2/W is compact and we are in

Case 1. ¤

Let M be the set of complete ∆-doubling pointed metric spaces together with
(L,A)- quasi-actions as in section 2.6. The space M is compact and we have a
continuous R-action on M given by rescaling the metric (see section 2.6).

Remark 5.7. The subset of M consisting of points ζ = (Z, z,W ) such that Wtrans has
rank 2 is open.

Recall that we have the ∆-doubling metric space Y and an (L, A)-quasi-action of a
group G on Y . The subgroup H ⊂ G determines a collection of quasi-isometries of Y
which we, by abuse of notation, will again denote H. By picking a base-point y ∈ Y
we obtain an element m = (Y, y,H) ∈M.

Suppose that ζ = (Z, z, W ) is a point in ω(m), the ω-limit set of m under the
R-action. Then, according to Lemma 5.3, W y Z is topologically conjugate to a
group acting properly, isometrically on R2.

Lemma 5.8. Suppose that for m = (Y, y,H), the ω-limit set Λ = ω(m) contains a
point ζ = (Z, z,W ), where Wtrans acts transitively on Z. Then H(y) is a net in Y .

Proof. This follows immediately from Lemma 2.3. ¤

Lemma 5.9. Λ is connected.
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Proof. Note that the R-action sends each connected component of Λ to itself. Suppose
that C ⊂ Λ is an open and closed subset; it is then R–invariant. On the other hand,
the R-action on M does not increase the distance. Therefore, if p ∈ R(m) is such
that d(p, C) is strictly less than the distance from C to Λ \ C, then R(p) cannot
accumulate to any point of Λ \ C. ¤

Suppose now on that Wtrans does not act transitively on Z. Then the linear part
of W is a finite group. It follows that either the order of Wlin is at most 12 or
W = Wlin, i.e. W is compact. The latter does not occur for the groups W which
appear in ζ = (Z, z, W ) ∈ Λ unless Wz = z:

Lemma 5.10. Suppose that ζ = (Z, z, W ) ∈ Λ and W is compact. Then Wz = z.

Proof. Assume that W does not fix the point z. Then the diameter of the orbit Wz
is finite. Define the subset Λ′ ⊂ Λ to consist of points ζ ′ = (Z ′, z′,W ′) ∈ Λ for which
diam(W ′(z′)) is finite. On the set Λ′ we define the function d(ζ ′) = diam(W ′(z′)). It
is clear that the set Λ′ is open in Λ and that the function d is continuous on this set.
Moreover, the function d is strictly decreasing under the R-action and

lim
t→∞

d(t(ζ ′)) = 0.

On the other hand, d(ζ) > 0. This however contradicts the chain-recurrence (see
Definition 2.7) of the point ζ under the R-action. ¤

Observe that the subset Λ′ of Λ which consists of ζ for which d(ζ) = 0 is both
closed and open. Therefore, Lemma 5.9 implies that if Λ′ 6= ∅ then Λ′ = Λ. If Λ′ = Λ
then Theorem 5.2 follows: Each asymptotic cone of H(y) is a single point.

Therefore, from now on we shall assume that Λ′ = ∅, i.e. W 6= Wlin for the points
ζ = (Z, z, W ) ∈ Λ.

Lemma 5.11. Suppose that ζi = (Zi, zi,Wi) is a sequence in Λ which converges to
ζ = (Z, z, W ) and the linear part of each Wi is finite. Then the limit of (Zi, zi,Wi,trans)
equals (Z, z, Wtrans).

Proof. Translations in R2 can only be approximated by translations or rotations by
small angle. On the other hand, since the order of the linear part of Wi is at most
12, the rotation angles are bounded away from zero. ¤

Lemma 5.12. Suppose that ζ = (Z, z,W ) ∈ Λ is such that Wtrans has rank 2. Then
W acts transitively on Z.

Proof. Given ζ as above define diam(ζ) to be the diameter of the quotient Z/W , which
is either 1-dimensional or 2-dimensional metric space. Then diam is a continuous
function. This function is strictly decreasing under the action of R:

diam(t(ζ)) = e−tdiam(ζ) < diam(ζ), t > 0.
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Therefore, if there exists ζ ∈ Λ such that 0 < diam(ζ) < ∞ we get a contradiction
with the chain-recurrence of ζ. ¤
Corollary 5.13. The subset Λ′′ of Λ which consists of points ζ = (Z, z, W ) such that
Wtrans has rank 2 is both open and closed.

Proof. By Remark 5.7 the above subset is open. It is closed since limit of a sequence
of transitive actions is again transitive. ¤

Lemma 5.9 shows that if Λ′′ 6= ∅ then Λ′′ = Λ and hence, according to Lemma 5.12,
W acts transitively on Z for each (Z, z,W ) ∈ ω(m). Hence Theorem 5.2 follows in
this case.

Therefore from now on we can assume that Λ consist of points ζ = (Z, z, W ) such
that Wtrans has rank 1.

Lemma 5.14. Define the subset U := {ζ = (Z, z,W )} ⊂ Λ, which consists of ele-
ments ζ for which W y Z has a disconnected orbit. Then U is open.

Proof. We know that for each ζ ∈ Λ, the action is topologically conjugate to an
isometric action corresponding to case 2 of Lemma 5.6, where the translation subgroup
is isomorphic to R or to Z. In the latter case openness is clear. In the former case
either all orbits are lines, or precisely one orbit is a line, and all other orbits are a
disjoint union of two lines. The latter condition is clearly open in Λ. ¤

For each ζ = (Z, z, W ) ∈ Λ′ we define dis(ζ) to be the minimal distance from z
to a connected component of Wtrans(z) which does not pass through z; in particular,
Wtrans is connected iff dis(ζ) = 0. It is then clear that dis is a continuous function
on U ⊂ Λ′.

Lemma 5.15. For each ζ = (Z, z, W ) ∈ ω(m) the orbit W (z) is connected.

Proof. Suppose that there exists ζ = (Z, z, W ) ∈ Λ such that dis(ζ) = ε > 0. Then,
since for each t > 0, dis(t(ζ)) = e−t · dis(ζ) < dis(ζ), we obtain a contradiction with
chain-recurrence analogously to Lemma 5.12. ¤

Thus for each ζ = (Z, z, W ) ∈ Λ, W (z) is homeomorphic to Rk where 0 ≤ k ≤ 2
and k depends only on m. This concludes the proof of Theorem 5.2. ¤

6. PD(2) groups are virtually surface groups

In this section, we show how to apply the surrounding function to prove that PD(2)
groups over arbitrary commutative rings R are virtually surface groups. This was
proven by B. Eckmann, P. Linnel and H. Müller [7, 8] in the case of R = Z and, more
recently, by Brian Bowditch for field coefficients, [3]. Our main result is

Theorem 6.1. Suppose that G is a 2-dimensional Poincaré duality group over a
commutative ring R with a unit. Then G is virtually a surface group.
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6.1. PD(n) groups over a ring. Poincaré duality groups of dimension n over rings
are generalizations of the fundamental groups of closed aspherical n-manifolds. Thus
we begin our discussion with the motivating example of Poincaré duality (over Z) for
manifolds. If M is an oriented triangulated (connected) n-manifold, Poincaré duality
induces a chain homotopy equivalence C∗

c (M) → Cn−∗(M) between the complex
of compactly supported simplicial cochains and the simplicial chain complex. If a
group G acts freely simplicially on M , then Poincaré duality is G-equivariant, up to
twisting by the orientation module. More precisely, let D := Hn

c (M) equipped with
the left G-action g ·α := (g−1)∗α. Then Poincaré duality defines a G-equivariant map
C∗

c (M) → D⊗ZCn−∗(M) where G acts on D⊗ZCn−∗(M) by the diagonal action. The
task of this subsection is to establish a similar statement for Poincaré duality groups
in general, with the chain complexes τ(A∗) and B∗ below replacing D ⊗Z Cn−∗(M)
and C∗

c (M) respectively.

Let R be a commutative ring with unit. Recall [1], that an n-dimensional Poincaré
duality group over R (for short, PD(n) group over R), is an FP -group over R (see
section 2.8) such that H i(G,RG) is isomorphic to R as an R-module when i = n
and is trivial otherwise. This implies that the cohomological dimension of G over R
is equal to n [4, p. 202], and so we may choose a resolution

(6.2) 0 → An → . . . → A0 →R→ 0

of the trivial RG-module R by finitely generated projective RG-modules, [4, p. 199].
Applying the functor HomRG(·,RG) to the resolution A∗, we obtain cochain complex

0 ← Bn ← . . . ← B0 ← 0

where Bi := HomRG(Ai,RG). The complex B∗ computes H∗(G,RG) (recall that
Hn(G,RG) ∼= R and H i(G,RG) = 0 if i 6= r), and hence we can extend B∗ to a
“dual” resolution

(6.3) 0 ← D ← Bn ← . . . ← B0 ← 0

where, following [4, p. 219], we set D := Hn(G,RG). The RG-bimodule structure
on RG induces a right RG-module structure on the resolution (6.3). We will find it
more convenient to convert the right G-action to a left G-action by taking inverses of
group elements; in particular, we will view D as a left RG-module.

For each leftRG-module M , define a new leftRG-module τ(M), by “twisting” with
the G-action on D, i.e. τ(M) is the R-module D ⊗R M equipped with the diagonal
G-action g · (d ⊗ m) = gd ⊗ gm. Consider the chain complex of left RG-modules
obtained by applying the functor τ to the resolution (6.2):

(6.4) 0 → τ(An) → . . . → τ(A0) → τ(R) → 0.
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Lemma 6.5. 1. The RG-chain complex (6.4) is a resolution of τ(R).

2. The left G-modules τ(R) and D are isomorphic.

3. τ(Ai) is a finitely generated projective RG-module for each i.

Proof. The module D is isomorphic to R as an R-module, and hence tensoring with
D over R does nothing to R-module structure. So clearly (6.4) is still a resolution
by R-modules, and therefore a resolution by RG-modules. This proves 1.

For any RG-module M , the R-module M ⊗R R with the diagonal G-action is
RG-isomorphic to M , which proves 2.

Before proving 3, we first make a few observations about modules isomorphic to R
and the operation τ .

Let E be an R-module isomorphic to R, and let R× denote the group of units
in R. Then the map R× → AutR(E) which assigns to r ∈ R× the automorphism
E → E given by e 7→ re, is an isomorphism. Hence if E is an RG-module whose
underlying R-module is isomorphic to R, then we obtain a character χ : G → R×

from the equation

g · e = χ(g)e,

g ∈ G, e ∈ E. When we tensor E over R with an RG-module M and let G act
diagonally, then up to RG-isomorphism, we may think of the resulting RG-module
M ′ = E ⊗R M as having the same underlying R-module as M , where the G-action
is twisted by the character χ:

(g,m) 7→ χ(g)gm,

for g ∈ G, m ∈ M . Keeping the above remarks in mind, it is then clear that when
we apply τ to the group ring RG, we get back an RG-module isomorphic to RG: To
get the isomorphism φ : RG → τ(RG) just set φ(δg) := χ(g)δg for all g ∈ G. Direct
sums are respected by τ , so τ transforms free RG-modules into free RG-modules,
and hence projective modules into projective modules. Obviously τ preserves finite
generation. Combining these statements yields assertion 3. ¤

The lemma implies that the resolution (6.3) and the resolution (6.4) both define
resolutions of D by left RG-modules. Therefore the two resolutions are RG-chain
homotopy equivalent, i.e. there are RG-chain mappings

(6.6) P : B∗ → τ(An−∗), P̄ : τ(A∗) → Bn−∗

and RG-chain homotopy operators

(6.7) P̄ ◦ P
H∼ idB∗ , P ◦ P̄

H̄∼ idτ(A∗) .
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6.2. PD(2) groups and quasiplanes. The goal of this section is to show that for
each PD(2)-group G over R there is a 2-dimensional metric cell complex Y on which
G acts freely properly discontinuously and cocompactly so that Y satisfies coarse
Poincaré duality in dimensions 0 and 1.

Lemma 6.8. Suppose that G is an FP2 group over R. Then there exists a 2-
dimensional cell complex Y which is 1-acyclic over R and a free cocompact cellular
action G y Y .

Proof. First we note that since G is FP1 group over R and the ring R is nontrivial,
the group G is finitely generated (see [4]).

Consider a Cayley graph Γ of G associated with a finite generating set for G. We
let Y (1) := Γ be the 1-skeleton of Y . We then have a natural monomorphism of
RG-modules:

ι : Z1(Γ)⊗R = H1(Γ)⊗R → Z1(Γ,R) = H1(Γ⊗R).

Next observe that Γ is homotopy-equivalent to the bouquet of circles B (of course
the homotopy-equivalence h is not G-invariant), therefore we have the commutative
diagram:

Z1(Γ,Z)⊗R ι−→ Z1(Γ,R)
h∗ ⊗ id ↓ h∗ ↓

Z1(B,Z)⊗R j−→ Z1(B,R).

It is clear however that j is onto, hence ι is onto as well. Since G is of type FP2 over
R, the RG-module H1(Γ,R) is finitely generated, see [4, Proposition 4.3, Chapter
VIII]. Let c1, . . . , ck : S1 → Γ denote loops whose images in H1(G,R) (under the
homomorphism ι) generate H1(Γ,R) as the RG-module. For each g ∈ G we attach,
a 2-disk D2

g,i to Γ along g ◦ ci. It is clear that G acts freely on the resulting 2-complex
Y and that H1(Y,R) = 0. ¤

In what follows we will also need to analyze the case of PD(2)-groups which act
cocompactly on an (n− 1)-acyclic (over R) n-dimensional complex Y , n ≥ 2. Hence-
forth we assume that Y is such a complex. All (co)homology groups through this
section will be with coefficients in R.

It will be convenient to metrize the 1-skeleton of Y so that the edges have unit
length, thus Y has a natural structure of a metric cell complex with a control map Y →
Y (0). All (co)homology in the following computations will be taken with coefficients
in R.

The cellular chain complex of Y determines a partial resolution of R by RG-
modules:

(6.9) Cn(Y ) → ... → C1(Y ) → C0(Y ) →R→ 0.
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The fundamental lemma of homological algebra, applied to the resolution (6.2) and
the partial resolution (6.9), provides chain mappings

(fi : Ai → Ci(Y ))0≤i≤n, and (f̄i : Ci(Y ) → Ai)0≤i≤n

and homotopy operators

(f̄i ◦ fi
Ki∼ idAi

)0≤i≤n, (fi ◦ f̄i
K̄i∼ idCi(Y ))0≤i<n.

Using f∗, f̄∗, K∗, and K̄∗, we can transfer the operators P, P̄ , H, H̄ (see (6.6),
(6.7)) to C∗(Y ) and C∗

c (Y ), as chain mappings

(Pi : Ci
c(Y ) → τ(C2−i(Y ))0≤i≤n, (P̄i : τ(C2−i(Y )) → Ci

c(Y ))0≤i≤n

and chain homotopies

(Hi : Ci
c(Y ) → Ci−1

c (Y ))0<i≤n, (H̄i : τ(Ci(Y )) → τ(Ci+1(Y )))0≤i<n.

Here we have used the natural isomorphisms of RG-modules

HomRG(Ci(Y ),RG) ' Ci
c(Y ),

where as with (6.4), right G-actions are converted to left G-actions. The key fact for
us is that (Hi)0<i≤n gives a chain homotopy

P̄i ◦ Pi ∼ idCi
c(Y ),

and (H̄)0≤i<n gives a chain homotopy

Pi ◦ P̄i ∼ idτ(Ci(Y )) .

As there are only finitely many G-orbits of cells in Y , it follows that if σ is an
oriented i-cell in Y and σ̂ ∈ Ci

c(Y ) is the associated element, then

Pi(σ̂) ∈ τ(C2−i(Y )) = D ⊗R C2−i(Y )

can be expressed as a sum
∑

j dj⊗βj where the βj’s are oriented (2−i)-cells contained
in a D1-neighborhood of σ, where D1 is a universal constant. Similar statements apply
to the operators P̄∗, H∗, and H̄∗. We therefore deduce that when T is one of these
operators and c ∈ Domain(T ), then T (c) is supported in the D0-neighborhood of the
support of c, where D0 is independent of c. We now forget about the G-action on Y ;
henceforth we will identify τ(C∗(Y )) with C∗(Y ) and τ(C∗

c (Y )) with C∗
c (Y ).

Lemma 6.10. Y satisfies coarse 2-dimensional Poincaré duality over R in dimen-
sions 0 ≤ i < n.

Proof. This lemma is a special case of the Coarse Poincaré Duality Theorem 6.7
proven in [12] (for the integer coefficients). For the reader’s convenience we will
outline a proof.
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When K ⊂ Y is a (nonempty) subcomplex we will consider the direct system of
tubular neighborhoods {NR(K)}R≥0 of K and the inverse system of the closures of
their complements

{VR := Y −NR(K)}R≥0.

We get four inverse and four direct systems of (co)homology groups with coefficients
in R:

{H i
c(NR(K))}, {Hi(Y, VR)}, {H i

c(Y, NR(K))}, {Hi(VR)}
{H i

c(VR)}, {Hi(Y,NR(K))}, {H i
c(Y, VR)}, {Hi(NR(K))}

with the usual restriction and projection homomorphisms. Note that by excision, we
have isomorphisms

Hi(Y, VR) ' Hi(NR(K), ∂NR(K)), etc.

Extension by zero defines a group homomorphism Ci
c(NR+D0(K))

ext⊂ C i
c(Y ). When

we compose this with

Ci
c(Y )

P→ C2−i(Y )
proj→ C2−i(Y, VR)

we get a well-defined induced homomorphism

PR+D0 : H i
c(NR+D0(K)) → Hi(Y, VR).

We get, in a similar fashion, homomorphisms

(6.11) H i
c(NR+D0(K))

PR+D0−→ H2−i(Y, VR)
P̄R−→ H i

c(NR−D0(K))

(6.12) H i
c(VR)

PR−→ H2−i(Y, NR+D0(K))
P̄R+D−→ H i

c(YR+2D0)

(6.13) H i
c(Y, NR+D0(K))

PR+D0−→ H2−i(VR)
P̄R−→ H i

c(Y,NR−D0(K))

(6.14) H i
c(Y, VR)

PR−→ H2−i(NR+D0(K))
P̄R+D0−→ H i

c(Y, VR+2D0)

Note that the homomorphisms in (6.11), (6.12), (6.13) and (6.14) inherit the bounded
displacement property of P and P̄ .

We now check that the maps PR satisfy the approximate monomorphism property
stated in Definition 3.2, we leave verification of the rest of the assertions to the reader.
Let

ξ ∈ Zi
c(NR+2D0(K))

be a cocycle representing an element [ξ] ∈ Ker(PR+2D0), and let ξ1 ∈ Ci
c(Y ) be the

extension of ξ by zero. Then we have

P (ξ1) = ∂η + ζ
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where η ∈ C2−i(Y ) and ζ ∈ C2−i(Y −NR+D(K)). Applying P̄ and the chain homo-
topy H, we get

δH(ξ1) + Hδ(ξ1) = P̄ ◦ P (ξ1)− ξ1 = P̄ (∂η + ζ)− ξ1

so

ξ1 = δP̄ (η) + P̄ (ζ)− δH(ξ1)−Hδ(ξ1).

The second and fourth terms on the right hand side vanish upon projection to
H i

c(NR(K)), so [ξ] ∈ Ker(H i
c(NR+2D0(K)) → H i

c(NR(K)). ¤

Remark 6.15. The 2-complex Y is 1-acyclic and satisfies coarse 2-dimensional Poin-
care duality in dimension 1. Hence Y is 1-ended by Lemma 3.6.

6.3. Coarse geometry of quasi-planes. Proof of Theorem 6.1. We prove the theo-
rem by analyzing the coarse geometry of the complex Y along the lines of the sections
4 and 3. The difference however is that (unlike in sections 4 and 3) we do not know
that Y is simply-connected; on the other hand, in our present situation Y is quasi-
isometric to the finitely-generated group G.

Case 1. G is Gromov-hyperbolic. We defined resolutions τ(A∗) and B∗ as in section
6.1. Since G is Gromov-hyperbolic, it admits a free discrete action on a contractible
metric complex Y ′ so that each skeleton of Y ′/G is compact, see Corollary 2.16.
Although the complex Y ′ is not finite-dimensional we get a resolution

... → Cn(Y ′,R) → ... → C0(Y
′,R) →R→ 0

by free RG-modules. Thus we get a chain-homotopy equivalence between the above
resolution and

0 → τ(A2) → τ(A1) → τ(A0) → τ(R) → 0.

Using this chain-homotopy-equivalence we can transfer (as in section 6.2) the Poincaré
duality operators

B∗ → τ(A2−∗), τ(A∗) → B2−∗

defined in section 6.1 to operators

HomRG(Ci(Y
′),RG)

P ′→ C2−i(Y
′,RG), Ci(Y

′,RG)
P̄ ′→ HomRG(C2−i(Y

′),RG)

which are homotopy-inverses of each other. We note that the complex

HomRG(C∗(Y ′),RG)

is nothing but C∗
c (Y ′,R) (after ignoring the RG-module structure). The complex Y ′

is quasi-isometric to the finite-dimensional contractible Rips complex X of G. Hence,
by choosing continuous quasi-isometries we get maps

Y ′ f→ X
f̄→ Y ′
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which are uniformly proper homotopy-inverses. Applying these maps to P ′, P̄ ′ we get
duality operators

P : Ci
c(X,R) → C2−i(X,R), P̄ : Ci(X,R) → C2−i

c (X,R)

so that the compositions P ◦ P̄ and P̄ ◦ P are chain-homotopic to the identity by
homotopies with uniformly bounded tracks.

Applying Lemma 6.10 to X we conclude that X is a quasi-plane over R. Thus we
are in position to apply Theorem 3.10: The complex X is quasi-isometric to H2 and
the discrete cocompact action G y X is quasi-isometrically conjugate to a discrete
cocompact and isometric action of G on H2. Therefore G is virtually a surface group.
This concludes the proof in the Gromov-hyperbolic case.

Case 2. G is not Gromov-hyperbolic. Then, according to Lemma 3.8 in [21], there
exist constants L ≥ 1, c > 0, a sequence Rj ∈ R+ diverging to ∞, such that for each
R = Rj, there exists an L-bilipschitz embedding

f = fR : SR → Y (1).

Here SR is the circle of radius R in R2. Let S ′R denote f(SR).

We recall that Y is a metric cell complex which satisfies coarse 2-dimensional
Poincaré duality in the dimension 1, let D0 be the constant which appears in the
definition of the coarse 2-dimensional Poincaré duality. G y Y is a free discrete
action such that Y (i)/G is compact for each i; in particular, Y (1) is quasi-isometric to
G.

Lemma 6.16. For each R = Rj À 1, the graph N
(1)
D0

(S ′R) surrounds a ball of radius
1
2
LR in Y (1).

Proof. Our proof is analogous to the proof of Lemma 4.8 and of the coarse Jordan
separation theorem [12, Corollary 7.8].

Take 1 < r < 1
2
(
√

3LR − 1). Define a retraction f̄ : Nr(S
′
R) → SR as follows: For

each vertex y in Nr(S
′
R) we let f̄(y) ∈ SR be a point x such that f(x) ∈ S ′R is a

nearest point to y. Extend f linearly to the 1-skeleton of Nr(S
′
R). The inequality

r < 1
2
(
√

3LR − 1) ensures that the map f̄ extends to the 2-skeleton of Nr(S
′
R). The

same inequality ensures that f̄ ◦ f : SR → SR is homotopic to the identity.

Let α ∈ C1(SR,R) be a cocycle whose support set has unit diameter and which
represents the generator of H1(SR,R). Then the homotopy f̄ ◦ f ' id implies that
α′ := f̄ ∗(α) is not null-cohomologous in Nr(S

′
R). We now apply the coarse Poincaré

duality to the cocycle α′ and we get a dual relative 1-cycle

σ := P (α′) ∈ H1(Y, Y \Nr−D0(S
′
R))

which maps nontrivially to H1(Y, Y \ ND0(S
′
R)) provided that r ≥ 2D0. Since Y is

1-acyclic over R, this means that the 0-chain ∂σ is a linear combination ∂σ =
∑

aiyi

with nonzero coefficients ai ∈ R, where the yi’s lie outside Nr−D0(S
′
R), and

∑
aiyi
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represents a nontrivial class in H̃0(Y \ ND0(S
′
R),R). Thus there is a pair of points

yk, yl in the support of
∑

aiyi, which cannot be joined by a curve in Y \ND0(S
′
R).

It follows that the connected graph N
(1)
D0

(S ′R) separates one of the balls B(yk, r −
2D0), B(yl, r − 2D0) from infinity. ¤

Combining the above lemma with Proposition 4.6 we get:

Corollary 6.17. The group G is virtually nilpotent and has at most quadratic growth.

The above corollary together with the fact that G is one-ended implies that G
contains a nilpotent subgroup Γ of finite index so that Γ fits into a short exact
sequence

1 → Z→ Γ → Z→ 1;

since Γ is nilpotent, this sequence splits and hence Γ ∼= Z2. This concludes the proof
of Theorem 6.1. ¤
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