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In this note, an (n-dimensional) manifold is a Hausdorff topological space equipped
with a maximal smooth atlas with values in Rn, no paracompactness is assumed. Recall
that a conformal structure on a manifold M is a reduction of the structure group of TM
from GL(n,R) to CO(n) = R+ ×O(n). Equivalently, a conformal structure is a collection
of locally defined Riemannian metrics on M which are conformal to each other. We will
refer to such locally defined Riemannian metrics as local conformal metrics on M . Once
we know that M is paracompact, the structure group can be further reduced to O(n) and
local conformal metrics can be replaced by a single Riemannian metric on the entire M
inducing the conformal structure. A conformal manifold is a manifold equipped with a
conformal structure. We will suppress the notation for a conformal structure and denote
conformal manifolds by a single letter, e.g., M . We will prove:

Theorem 1. Every conformal manifold M of dimension n ≥ 2 is paracompact.1

This result is known as Rado’s theorem for n = 2 and oriented conformal manifolds,
equivalently, for Riemann surfaces (see e.g. [For81, §23] for a proof using Perron’s method).
It is well-known that paracompactness fails for complex manifolds of complex dimension
≥ 2 (examples are due to Calabi and Rosenlicht, [CR53]). The goal of this note is to show
that Rado’s theorem is actually a theorem of conformal, rather than complex, geometry.

Question 2. What are other differential-geometric structures on manifolds which imply
paracompactness?

For instance, the existence of a symplectic structure is not an obstruction to paracom-
pactness, as one can take, for instance, the canonical symplectic form on the cotangent
bundle of a non-paracompact manifold.

Acknowledgements. This work was motivated by a discussion of Perron’s method
and Rado’s theorem with Bernhard Leeb.

1Note that this result obviously fails for 1-dimensional manifolds.
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1 Topological preliminaries

A collection C of subsets of a topological space X is said to be locally finite if every x ∈ X
has a neighborhood which intersects only finitely many members of C. A topological space
X is called paracompact if every open cover of X admits a locally finite open refinement.
(Unlike in the definition of compactness, a refinement cannot be replaced by a subcover.)
This notion was introduced by Dieudonné in [Die44].

Theorem 3. (See e.g. [Eng89, Theorem 5.1.3].) Every metrizable topological space is
paracompact.

This theorem has a “converse” of sorts:

Theorem 4. (Smirnov’s theorem, see e.g. [Eng89, 5.4.A].) Every locally metrizable para-
compact space is metrizable.

In general, paracompactness is not a hereditary property. However:

Lemma 5. Let X be a locally metrizable space (e.g. a manifold). Then every paracompact
subset Y of X is hereditarily paracompact.

Proof. Since X is locally metrizable, so is Y , hence, by Smirnov’s theorem, Y is metrizable.
This implies that every subset Z ⊂ Y is also metrizable, hence, paracompact.

Theorem 6. (See e.g. [Eng89, Theorem 5.1.34].) Suppose that X is a topological space
which is a union of a locally finite family of closed paracompact subsets. Then X is itself
paracompact.

Corollary 7. If X is a union of finitely many closed paracompact subsets, then X is
paracompact.

Recall that a space is said to be σ-compact if it is a union of countably many compact
subsets. The following theorem was first proven by Dieudonné in [Die44]. For a textbook
reference, see [Bou89, Ch. I.10, Theorem 5].

Theorem 8. Suppose that X is a locally compact Hausdorff σ-compact space. Then X is
paracompact. Conversely, a locally compact Hausdorff space X is paracompact if and only
if it is the coproduct of a family of (pairwise disjoint) subspaces Xi, i ∈ J , each of which is
Hausdorff, locally compact and σ-compact.

Corollary 9. A manifold is paracompact if and only if every connected component is second
countable.

Lemma 10. Every compact subset K of a connected manifold M is contained in an open
(in M) connected relatively compact (hence, paracompact) submanifold N ⊂ M .
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Proof. First, let U be a finite cover of K by open coordinate balls Bi ⊂ M . Let B̄i denote
the corresponding closed balls. Then ⋃

i

B̄i

is a compact subset of M with finitely many connected components. Connecting these
components by finitely many paths we get a compact connected subset L ⊂ M containing
K. Let V be a finite cover of L by open coordinate balls. Then the union N of these balls
is paracompact, connected and contains K.

Even though the manifold N in this lemma is not canonical, we will use the notation
K̂ for N .

Corollary 11. Suppose that M is a connected manifold and Ki ⊂ M, i ∈ N, is a countable
collection of compact subsets. Then

⋃
iKi is contained in an open paracompact connected

subset N ⊂ M .

Proof. Without loss of generality, we may assume that Ki ⊂ Ki+1 for every i. Consider
the family {K̂i : i ∈ N}. The union N of these open connected subsets is again open and
connected. At the same time, it is contained in

Y :=
⋃
i∈N

cl(K̂i),

a σ-compact subset of M . Then Y is paracompact by Proposition 8. Therefore, N ⊂ Y is
paracompact as well.

2 Proof of Theorem 1

In order to prove Theorem 1 it suffices to consider connected conformal manifolds and
prove that they are always metrizable. More precisely, we will check that the complement
to a closed coordinate ball in M admits a conformally-natural metric. The construction of
this metric mostly follows the work of Ferrand, [Fer96]. Hidden behind the construction
is again Perron’s method, but it is used differently from the standard proofs of Rado’s
theorem for Riemann surfaces. We let Lip(M) denote the space of Lipschitz continuous
functions on M . (Ferrand uses a slightly different functional space.) Lipschitz continuous
functions are differentiable a.e. on M and norms of their gradients are locally bounded
and, hence, locally integrable. We let Lipp(M) denote the subspace consisting of functions
in Lip(M) with paracompact support and Lipc(M) the subspace of Lipp(M) consisting of
functions with compact support. We will use the fact that for f1, f2 ∈ Lip(M), max(f1, f2)
is also in Lip(M).
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Recall that our manifold M is n-dimensional. Given a function f ∈ Lip(M) we define
its energy-density ef (x) as

|∇f(x)|ndV, x ∈ M,

where the gradient, its norm and the volume density dV are defined with respect to a local
conformal metric (defined in a neighborhood of x). The definition of ef is independent of
the choice of a local conformal metric and ef is locally integrable. Assuming that f is in
Lipp(M), we have the n-energy integral

IM (f) :=

∫
M

ef ∈ [0,∞].

Note that this integral is well-defined since the support set of ef is paracompact and, hence,
we can use a partition of unity on this support to define the integral.

Let C1, C2 be two closed subsets of M . The capacity of the pair (C1, C2) is defined as

CapM (C1, C2) = inf
f∈A(M,C1,C2)

IM (f),

where A(M,C1, C2), the space of admissible functions with respect to (C1, C2), consist-
ing of functions f ∈ Lipp(M) such that 0 ≤ f ≤ 1, f |C1 ≡ 0, f |C2 ≡ 1. Thus,
0 ≤ CapM (C1, C2) = CapM (C2, C1) ≤ ∞. By the definition, capacity is a conformal
invariant. It is also clear that if N is an open subset of a conformal manifold M (with the
induced conformal structure), then for any pair of closed subsets C1, C2 ⊂ M , we have

CapN (C1, C2) ≤ CapM (C1, C2) (1)

as the restriction map sends A(M,C1, C2) to A(N,C1, C2) and decreases the energy. Recall
that a compact metrizable space is called a continuum if it is connected. A nondegenerate
continuum is one which has cardinality at least two (hence, cardinality of continuum). A
compact subset of a manifold is metrizable, hence, every compact connected subset of a
manifold is a continuum. We will need the following result from [Fer96, (1.3)]:

Lemma 12. Let B = B(0, 1) ⊂ Rn be the open unit ball equipped with some conformal
structure (not necessarily the standard one). Then for every ϵ > 0 and r > 0 there exists
f ∈ Lipc(B) which is identically equal to 1 on the ball B(0, r) and satisfies IB(f) < ϵ.

From now on, we will assume that our manifold M is connected.

Lemma 13. 1. Suppose that C1, C2 are disjoint compact subsets of M . Then Cap(C1, C2) <
∞.

2. Suppose that C1, C2 are nondegenerate continua in M . Then CapM (C1, C2) > 0.

Proof. 1. Take an open paracompact subset U ⊂ M containing C1 ∪ C2 and a compactly
supported smooth function f ∈ A(U,C1, C2). Then extending f by 0 to the rest of M , we
obtain an admissible function of finite energy.
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2. Let N = Ĉ ⊂ M be an open connected paracompact subset containing C =
C1∪C2. Thus, CapN (C1, C2) ≤ CapM (C1, C2). But for connected paracompact conformal
manifolds N positivity of CapN (C1, C2) is proven in [Fer96, (3.6)]. Now the conclusion
follows from the inequality (1).

Following Ferrand, [Fer96], we next define a certain pseudometric on M associated
canonically with the conformal structure of M . For a compact K ⊂ M set

CapM (K) := inf
f

IM (f),

where the infimum is taken over all functions f ∈ Lipc(M) which equal to 1 on K. Such
functions will be called K-admissible. Clearly, if N ⊂ M is an open connected subset, then
for every compact K ⊂ M ,

CapM (K) ≤ CapN (K).

Lemma 14. CapM (K) < ∞ for every compact K ⊂ M .

Proof. Take a relatively compact open subset N ⊂ M containing K. Then pick a function
f ∈ C1

c (N) which is identically 1 on K and extend it by zero to the rest of M . Thus,
CapM (K) ≤ IM (f) < ∞.

Lemma 15. If K1 ⊂ K2 are compacts in M , then
1. CapM (K1) ≤ CapM (K2),
2. CapM (K1 ∪K2) ≤ CapM (K1) + CapM (K2).

Proof. The first part is immediate. To prove the second part, take Ki-admissible functions
fi, i = 1, 2, on M and set f := max(f1, f2). Then f is K-admissible for K = K1 ∪K2. Set

A1 := {x : f1(x) > f2(x)}, A2 := {x : f2(x) > f1(x)}, A0 := {x : f1(x) = f2(x)}.

Thus, M = A1 ⊔A2 ⊔A0. We have

IM (f) = IA1(f1) + IA2(f2) +

∫
A0

ef .

Clearly,

IA1(f1) + IA2(f2) =

∫
A1∪A2

(ef1 + ef2) =

∫
A1∪A2

ef .

It remains to analyze the integrals of energy-densities over A0 (note that A0 can have
positive measure). Take a point x0 ∈ A0, and fix a local conformal metric g on an open
coordinate ball B ⊂ M centered at x0. Then, with respect to this metric,

|∇f(x)| ≤ max(|∇f1(x)|, |∇f2(x)|) ≤ |∇f1(x)|+ |∇f2(x)|, x ∈ B ∩A0.
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Hence (denoting dV the volume density of g),∫
B∩A0

ef ≤
∫
B∩A0

(|∇f1(x)|+ |∇f2(x)|)dV =

∫
B∩A0

(ef1 + ef2).

Therefore, ∫
A0

ef ≤
∫
A0

(ef1 + ef2).

Lemma follows.

Lemma 16. Let N ⊂ M be the complement to a closed coordinate ball B̄ ⊂ M . Then for
every nondegenerate continuum K ⊂ N we have CapN (K) > 0.

Proof. Take a K-admissible function f ∈ Lipc(N) and extend it by 0 to B̄. We get a
function u ∈ A(M, B̄,K) and IN (f) = IM (u). By Lemma 13 (Part 2), there exists r > 0
independent of f , such that IM (u) ≥ r. Hence, IN (f) ≥ r > 0 and lemma follows.

Lemma 17. For every singleton K = {x} ⊂ M , CapM (K) = 0.

Proof. Let B be an open coordinate ball in M centered at x. Then, according to Lemma
12, there exists a sequence of smooth functions fi ∈ Lipc(B) which are all equal to 1 at x
and

lim
i→∞

IB(fi) = 0.

Extending functions fi by 0 to the rest of M , we conclude that CapM (K) = 0.

Definition 18. For points x, y ∈ M define µM (x, y) := infC CapM (C), where the infimum
is taken over all continua C ⊂ M containing {x, y}.

Lemma 19. The function µM is a finite pseudometric on M .

Proof. Symmetry of µM is clear. Since M is a connected manifold, it is path-connected;
hence, every two points x, y ∈ M belong to a continuum C ⊂ M . Lemma 14 then implies
that µM (x, y) ≤ CapM (C) < ∞, hence, µM is finite. The triangle inequality follows from
Lemma 15 (Part 2). Lemma 17 implies that µM (x, x) = 0, since we can take C = {x} as
our continuum containing {x}.

Definition 20. A conformal manifold M is said to be of Class I if the pseudometric µM

is not a metric and is said to be of Class II otherwise.

Proposition 21. The following are equivalent:
1. For some pair of distinct points x, y ∈ M , µM (x, y) = 0, i.e. M is of Class I.
2. For all pairs of points x, y ∈ M , µM (x, y) = 0.
3. For every continuum C ⊂ M , CapM (C) = 0.
4. There exists a nondegenerate continuum C ⊂ M , such that CapM (C) = 0.
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Proof. The only part which is not obvious is the implication (1)⇒(3). This implication
is proven in [Fer96, (6.8)] for paracompact manifolds. One way to argue would be to
adapt her proof to the general case where manifolds are not assumed to be paracompact.
Instead, we reduce the general case to the paracompact one. Since µM (x, y) = 0, there
exists a sequence of nondegenerate continua Ci ⊂ M (containing {x, y}) and Ci-admissible
functions fi ∈ Lipc(M) such that IM (fi) < 1/i. Let Ki denote the (compact) support set
of fi, hence, Ci ⊂ Ki. The union

C ∪
⋃
i

Ki

is contained in a paracompact open connected subset N ⊂ M , see Corollary 11. Thus,
µN (x, y) = 0 (since each fi restricts to a compactly supported function on N). But
this implies that CapN (C) = 0 as proven by Ferrand, [Fer96, (6.8)]. Since CapM (C) ≤
CapN (C) = 0, we conclude that CapM (C) = 0 as well.

Corollary 22. (See [Fer96, Example 6.9(b)].) Let K = B̄ ⊂ M be a closed coordinate
ball. Then the manifold N := M −K is of Class II.

Proof. So far, we have not used the assumption that M has dimension > 1 (except, indi-
rectly, in Lemma 13). We will use it now explicitly and observe that due to this dimension
assumption, the manifold N is connected. Suppose that µN is not a metric. Then, by
Proposition 21, there exists a nondegenerate continuum C ⊂ N such that CapN (C) = 0,
which implies that CapM (C,K) = 0. But this contradicts Part 2 of Lemma 13.

Proposition 23. If M is of Class II, then the metric µM metrizes M as a topological
space.

Proof. 1. We first prove that the function µM : M2 → R is continuous at the diagonal, i.e.
if xi, yi are sequences in M converging to the same point z ∈ M , then µM (xi, yi) → 0. Fix
an open coordinate ball B ⊂ M centered at z. Without loss of generality, xi, yi ∈ B for all
i. Then,

µB(xi, yi) → 0,

see Lemma 12. Since µM (xi, yi) ≤ µB(xi, yi), we get

lim
i→∞

µM (xi, yi) = 0 = µM (z, z).

2. Let us check continuity of µM at general pairs (x, y) ∈ M2. Consider sequences
xi → x, yi → y in M . Then, by the triangle inequality for µM and Part 1 of the proof:

µM (x, y) ≤ lim inf
i→∞

(µM (x, xi) + µM (xi, yi) + µM (yi, y)) ≤ lim inf
i→∞

µM (xi, yi).

Similarly,
lim sup
i→∞

µM (xi, yi) ≤ µM (x, y).
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It follows that µM is continuous at (x, y). Thus, the manifold topology of M is stronger
than the metric topology induced by µM .

3. Let us prove that the metric topology is stronger than the manifold topology. Let
B ⊂ M be an open coordinate ball centered at x ∈ M . We will show that there exists r > 0
such that for every z ∈ M − B, µM (x, z) ≥ r. Indeed, since the function h(y) = µM (x, y)
is continuous and S = ∂B is compact, the function h has positive minimum r > 0 on S.
Take z ∈ M − B and a continuum C ⊂ M connecting x and z. This continuum has to
intersect S at some point y. Therefore, r ≤ µ(x, y) ≤ CapM (C) and, thus, µM (x, z) ≥ r.
Proposition follows.

We can now finish the proof of the theorem. Consider a closed coordinate ball B̄ ⊂ M
which we will identify with the closed unit ball B̄(0, 1) ⊂ Rn. Take two smaller closed
balls,

B̄1 = B̄(0, 1/4) ⊂ B̄2 = B̄(0, 1/2) ⊂ B̄(0, 1) = B̄.

By Corollary 22, the complement N = M − B̄1 is metrizable (by the metric µN ). Let
B2 be the interior of B̄2; it is an open coordinate ball in M . Hence, the closed subset
X = M − B2 ⊂ M is metrizable as well (by the restriction of the metric µN ). Therefore,
M is the union of two closed paracompact subsets: X and B̄ (the latter is even compact).
But a topological space which is the union of finitely many closed paracompact subsets is
itself paracompact. Paracompactness of M follows.
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