Next: About this document ...



SOLUTIONS TO INTEGRATION USING A POWER SUBSTITUTION



SOLUTION 7 : Integrate $ \displaystyle{ \int { \sqrt{x} + 1 \over \sqrt{x} ( \sqrt[3] {x} + 1 ) } \, dx } $ . Because we want to simultaneously eliminate a square root and a cube root, use the power substitution

$ x = u^6 $

so that

$ u = x^{1/6} $ ,

$ \sqrt{x} = x^{1/2} = (u^6)^{1/2} = u^3 $ ,

$ \sqrt[3] {x} = x^{1/3} = (u^6)^{1/3} = u^2 $ ,

and

$ dx = (6u^5) du $ .

Substitute into the original problem, replacing all forms of $ x $, getting

$ \displaystyle{ \int { \sqrt{x} + 1 \over \sqrt{x} ( \sqrt[3] {x} + 1 ) } \, dx } = \displaystyle{ \int { u^3 + 1 \over u^3(u^2+1) } \, (6u^5) du } $

$ = \displaystyle{ 6 \int { u^5(u^3+1) \over u^3(u^2+1) } \, du } $

$ = \displaystyle{ 6 \int { u^2(u^3+1) \over u^2+1 } \, du } $

$ = \displaystyle{ 6 \int { u^5+u^2 \over u^2+1 } \, du } $

(Use polynomial division. PLEASE INSERT A FACTOR OF 6 WHICH WAS ACCIDENTLY LEFT OUT.)

$ = \displaystyle{ \int \Big( u^3-u+1+ {u-1 \over u^2+1 } \Big) \, du } $

$ = \displaystyle{ \int \Big( u^3-u+1+ {u \over u^2+1} - {1 \over u^2+1} \Big) \, du } $

$ = \displaystyle{ {u^4 \over 4} - {u^2 \over 2} + u + {1 \over 2} \ln \vert u^2+1\vert - \arctan u } + C $

$ = \displaystyle{ {(x^{1/6})^4 \over 4} - {(x^{1/6})^2 \over 2} + x^{1/6} + {1 \over 2} \ln \vert(x^{1/6})^2+1\vert - \arctan (x^{1/6}) } + C $

$ = \displaystyle{ {x^{2/3} \over 4} - {x^{1/3} \over 2} + x^{1/6} + {1 \over 2} \ln \vert x^{1/3}+1\vert - \arctan (x^{1/6}) } + C $ .

Click HERE to return to the list of problems.




SOLUTION 8 : Integrate $ \displaystyle{ \int \sqrt{ 5 + \sqrt{x} } \, dx } $ . Remove the ``outside" square root first. Use the power substitution

$ 5 + \sqrt{x} = u^2 $

so that

$ u = \sqrt{ 5 + \sqrt{x} } $ ,

$ \sqrt{x} = u^2-5 $ ,

$ x = (u^2-5)^2 $ ,

and (Use the chain rule.)

$ dx = 2(u^2-5)(2u) du = (4u^3-20u) du $ .

Substitute into the original problem, replacing all forms of $ x $, getting

$ \displaystyle{ \int \sqrt{ 5 + \sqrt{x} } \, dx } = \displaystyle{ \int (u) \, (4u^3-20u) du } $

$ = \displaystyle{ \int (4u^4-20u^2) \, du } $

$ = \displaystyle{ 4{u^5 \over 5}-20{u^3 \over 3} } + C $

$ = \displaystyle{ {4 \over 5}\Big(\sqrt{ 5 + \sqrt{x} }\Big)^5 - {20 \over 3}\Big(\sqrt{ 5 + \sqrt{x} }\Big)^3 } + C $

$ = \displaystyle{ {4 \over 5}\Big(\Big( 5 + \sqrt{x} \Big)^{1/2}\Big)^5 - {20 \over 3}\Big(\Big( 5 + \sqrt{x} \Big)^{1/2} \Big)^3 } + C $

$ = \displaystyle{ {4 \over 5}\Big(5 + \sqrt{x}\Big)^{5/2} - {20 \over 3}\Big(5 + \sqrt{x} \Big)^{3/2} } + C $ .

Click HERE to return to the list of problems.




SOLUTION 9 : Integrate $ \displaystyle{ \int \sqrt[3] { 1 + \sqrt{x-3} } \, dx } $ . Remove the cube root first. Use the power substitution

$ 1 + \sqrt{x-3} = u^3 $

so that

$ u = \sqrt[3] { 1 + \sqrt{x-3} } $ ,

$ \sqrt{x-3} = u^3-1 $ ,

$ x = (u^3-1)^2+3 $ ,

and (Use the chain rule.)

$ dx = 2(u^3-1)(3u^2) du = (6u^5-6u^2) du $ .

Substitute into the original problem, replacing all forms of $ x $, getting

$ \displaystyle{ \int \sqrt[3] { 1 + \sqrt{x-3} } \, dx } = \displaystyle{ \int (u) \, (6u^5-6u^2) du } $

$ = \displaystyle{ \int (6u^6-6u^3) \, du } $

$ = \displaystyle{ 6{u^7 \over 7} - 6{u^4 \over 4} } + C $

$ = \displaystyle{ {6 \over 7}\Big({^3}\sqrt{ 1 + \sqrt{x-3} }\Big)^7 - {3 \over 2}\Big({^3}\sqrt{ 1 + \sqrt{x-3} }\Big)^4 } + C $

$ = \displaystyle{ {6 \over 7}\Big( \Big( 1 + \sqrt{x-3} \Big)^{1/3} \Big)^7 - {3 \over 2}\Big( \Big( 1 + \sqrt{x-3} \Big)^{1/3} \Big)^4 } + C $

$ = \displaystyle{ {6 \over 7}\Big(1 + \sqrt{x-3}\Big)^{7/3} - {3 \over 2}\Big(1 + \sqrt{x-3} \Big)^{4/3} } + C $ .

Click HERE to return to the list of problems.




SOLUTION 10 : Integrate $ \displaystyle{ \int \sqrt{ 2 + \sqrt{ 4 + \sqrt{x} } } \, dx } $ . Remove the ``outside" square root first. Use the power substitution

$ 2 + \sqrt{ 4 + \sqrt{x} } = u^2 $

so that

$ u = \sqrt{ 2 + \sqrt{ 4 + \sqrt{x} } } $

$ \longrightarrow \sqrt{ 4 + \sqrt{x} } = u^2-2 $

$ \longrightarrow \sqrt{x} = (u^2-2)^2-4 $

$ \longrightarrow x = ((u^2-2)^2-4)^2 $ ,

and (Use the chain rule.)

$ dx = 2((u^2-2)^2-4)2(u^2-2)(2u) du = 8u(u^2-2)(u^4-4u^2) du $ ,

or

$ dx = (8u^7-48u^5+64u^3) du $ .

Substitute into the original problem, replacing all forms of $ x $, getting

$ \displaystyle{ \int \sqrt{ 2 + \sqrt{ 4 + \sqrt{x} } } \, dx } = \displaystyle{ \int (u) \, (8u^7-48u^5+64u^3) du } $

$ = \displaystyle{ \int (8u^8-48u^6+64u^4) \, du } $

$ = \displaystyle{ 8{u^9 \over 9} - 48{u^7 \over 7} + 64{u^5 \over 5} } + C $

$ = \displaystyle{ {8 \over 9}\bigg(\sqrt{ 2 + \sqrt{ 4 + \sqrt{x} } }\bigg)^9 -...
...}\bigg)^7 + {64 \over 5}\bigg(\sqrt{ 2 + \sqrt{ 4 + \sqrt{x} } }\bigg)^5 } + C $

$ = \displaystyle{ {8 \over 9}\bigg(\bigg( 2 + \sqrt{ 4 + \sqrt{x} } \bigg)^{1/2...
... {64 \over 5}\bigg(\bigg( 2 + \sqrt{ 4 + \sqrt{x} } \bigg)^{1/2}\bigg)^5 } + C $

$ = \displaystyle{ {8 \over 9}\bigg( 2 + \sqrt{ 4 + \sqrt{x} } \bigg)^{9/2} - {4...
...\bigg)^{7/2} + {64 \over 5}\bigg( 2 + \sqrt{ 4 + \sqrt{x} } \bigg)^{5/2} } + C $ .

Click HERE to return to the list of problems.







Duane Kouba 2000-05-09