ESP

Kouba

Worksheet 6

- 1.) Assume that $\mathbf{w} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ and $\mathbf{f}(\mathbf{u} \mathbf{t}, \mathbf{t}, \mathbf{u}) = 0$. Show that $\mathbf{f}_{\mathbf{y}} + \mathbf{f}_{\mathbf{z}} = 0$.
- 2.) Evaluate the following double integrals.

a.)
$$\int_0^{\frac{\pi}{4}} \int_0^{\cos \theta} 3r^2 \sec \theta dr d\theta$$

b.)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} e^{x^2+y^2} dy dx$$

c).
$$\int_0^1 \int_{\frac{x}{\sqrt{3}}}^x \sqrt{x^2 + y^2} \, dy \, dx$$

3.) Assume that region R is described in polar coordinates by $\alpha \le \theta \le \beta$ and $0 \le r \le f(\theta)$. Show that the area of region R is

Area =
$$\frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta$$
.

- 4.) Consider the cylinder above the circle $(x-\frac{1}{2})^2+y^2=\frac{1}{4}$ in the xy plane and below the plane z=x+1. Compute its volume.
- 5.) Determine an equation for the plane tangent to the surface $z = x^2 + y^4$ at the point (1, -1, 2).

6.) A thin lamina lies in the triangular region with vertices (0,0), (0,2), and (3,2). Density at point (x,y) is $f(x,y) = x^2 + y$.

Set up but do not evaluate the integrals which represent

- a.) its centroid.
- b.) its center of mass.
- c.) the moment about
 - i.) the line x=1.
 - ii.) the line y=2.
- d.) the moment of inertia about
 - i.) the origin
 - ii.) the line x = 4.
- 7.) Draw the solids described below.

a.)
$$-2 \le x \le 0, -\sqrt{4-x^2} \le y \le \sqrt{4-x^2}, 0 \le z \le \sqrt{x^2 + y^2}$$

b.)
$$\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$$
, $0 \le r \le 2$, $r^2 \le z \le 4$

- 8.) Use rectangular coordinates to describe the tetrahedron with corners (2,0,2), (1,0,2), (1,1,2), and (1,1,1).
 - a.) First project it onto the xy plane.
 - b.) First project it onto the xz plane.
- 9.) Let R be the solid prism with vertices (0,0,0), (0,0,1), (0,2,0), (0,2,1), (3,0,0), and (3,0,1). Evaluate $\int_{\mathbb{R}} 1 \, dv$. What does your answer represent?
- 10.) Compute $\int_{R} z \, dv$, where R is the region above the rectangle whose vertices are (0,0,0), (2,0,0), (2,3,0), and (0,3,0) and below the plane z=x+2y.