Math 16 B
Section 4.6
Exponential Lrowth/Decay
RECALL:

Problem: assume that the rate at which quantity $A=A(t)$ changes with respect to time t is directly proportional to the quantity itself, then:

RECALL: I.) B is directly proportional to C means:

$$
\begin{gathered}
B=k C \\
\text { II.) } D \ln f(x)=\frac{1}{f(x)} f^{\prime}(x)
\end{gathered}
$$

GIVEN: $\frac{d A}{d t}=k A \rightarrow$

$$
\frac{1}{A} A^{\prime}=k \rightarrow
$$

(derivative "backwards")

$$
\begin{aligned}
\ln (A) & =k t+c \rightarrow \\
A & =e^{k t+c} \rightarrow \\
A & =e^{k t} e^{c} \rightarrow \\
A & =c e^{k t}
\end{aligned}
$$

This i it he Exponential Srowth/Decay Equation
NOTE: \&f $t=0$, then

$$
A=C e^{k(0)}=C e^{0}=C(1)=C \text {, so }
$$

C is the initial amount.

Example: A deer population initially has 100 deer. In 5 years there will be 165 deer. assuming exponential growth
1.) how many deer will there be in 10 years?
2.) how long will it take for there to be 500 deer?
assume $A=C e^{k t}$ jinitial amount $C=100$, so

$$
\begin{gathered}
A=100 e^{k t} ; \\
\text { if } t=5 \text {, then } A=165 \rightarrow \\
165=100 e^{k(5)} \rightarrow \frac{165}{100}=e^{5 k} \rightarrow \\
\ln 1.65=\ln e^{5 k} \rightarrow \\
\ln 1.65=5 k \rightarrow k=\frac{1}{5} \ln 1.65 \rightarrow \\
A=100 e^{\left(\frac{1}{5} \ln 1.65\right) t} ;
\end{gathered}
$$

1.)

$$
\begin{aligned}
& \text { If } t=10 \text {, then } \\
& A=100 e^{\left(\frac{1}{5} \ln 1.65\right)(10)} \approx 272 \text { deer }
\end{aligned}
$$

2.) If $A=500$, then

$$
\begin{aligned}
500 & =100 e^{\left(\frac{1}{5} \ln 1.65\right) t} \rightarrow \\
5 & =e^{\left(\frac{1}{5} \ln 1.65\right) t} \rightarrow \\
\ln 5 & =\ln e^{\left(\frac{1}{5} \ln 1.65\right) t} \rightarrow \\
\ln 5 & =\left(\frac{1}{5} \ln 1.65\right) t \rightarrow \\
t & =\frac{5 \ln 5}{\ln 1.65} \approx 16.1 \text { years }
\end{aligned}
$$

Example: The \# of students enrolled at UC Davis was 16,432 in Fall 1975 and had grown to 20,147 in Fall 1986. assuming exponential growth, how many students will be enrolled in Fall 2021?
assume $A=C e^{k t}$ and

$$
\begin{aligned}
& t=0(1975), A=16,432 ; \\
& t=11(1986), A=20,147 ;
\end{aligned}
$$

Find: A when $t=46(2021)$; Initial amount $C=16,432 \rightarrow$

$$
\begin{gathered}
A=16,432 e^{k t} j \\
\text { if } t=11, A=20,147 \longrightarrow \\
20,147=16,432 e^{k(11)} \longrightarrow \\
\frac{20,147}{16,432}=e^{11 k} \longrightarrow \\
\ln \left(\frac{20,147}{16,432}\right)=\ln e^{11 k} \longrightarrow \\
\ln \left(\frac{20,147}{16,432}\right)=11 k \rightarrow \\
k=\frac{1}{11} \ln \left(\frac{20,147}{16,432}\right) \longrightarrow
\end{gathered}
$$

$$
A=16,432 e^{\left(\frac{1}{11} \ln \left(\frac{20,147}{16,432}\right)\right) t}
$$

of $t=46$, then

$$
\begin{aligned}
A & =16,432 e^{\left(\frac{1}{11} \ln \left(\frac{20,147}{16,432}\right)\right)(46)} \\
& \approx 38,536 \text { students }
\end{aligned}
$$

Optional Question: Using the previous example, what was the student enrollment in 1970?

1970 is $t=-5(!)$, so

$$
\begin{aligned}
A & =16,432 e^{\left(\frac{1}{11} \ln \left(\frac{20,147}{16,432}\right)\right)(-5)} \\
& \approx 14,978 \text { students }
\end{aligned}
$$

FACT: Assume that the amount of quantity A decreases in such a way that its HALF LIFE is m years. This means that in m years A will lose HALF of its current value. If C is the initial amount of A then

$$
\begin{aligned}
& t=0: A=C \\
& t=m: A=\frac{1}{2} c \\
& t=2 m: A=\frac{1}{2}\left(\frac{1}{2} c\right)=\frac{1}{4} c \\
& t=3 m: A=\frac{1}{2}\left(\frac{1}{4} c\right)=\frac{1}{8} c
\end{aligned}
$$

Example: Assume that the sugar in your bubble gum decays exponentially and the sugars half-life is 1.5 minutes. If you start with 80 grams of sugar
1.) hour much sugar is left after 7 minutes?
2.) how long will it take for the amount of sugar to reduce to 30 grams?
assume $A=C e^{k t}$ initial amount $C=80$, so

$$
A=80 e^{k t} j
$$

if $t=1.5$, then $A=40\left(\frac{1}{2}-\right.$ life $) \rightarrow$

$$
\begin{aligned}
& 40=80 e^{k(1.5)} \rightarrow \\
& \frac{1}{2}=e^{1.5 k} \rightarrow
\end{aligned}
$$

$$
\begin{gathered}
\ln \left(\frac{1}{2}\right)=\ln e^{1.5 k} \rightarrow \\
\ln (1 / 2)=1.5 k \rightarrow \\
k=\frac{\ln (1 / 2)}{1.5} \rightarrow \\
A=80 e^{\frac{\ln (1 / 2)}{1.5} t}
\end{gathered}
$$

1.) If $t=7$, then $A=80 e^{\frac{\ln (1 / 2)}{1.5}(7)}$

$$
\approx 3.15 \text { grame }_{2}
$$

2.) If $A=30$, then

$$
\begin{aligned}
30 & =80 e^{\frac{\ln (1 / 2)}{1.5} t} \rightarrow \\
\frac{3}{8} & =e^{\frac{\ln (1 / 2)}{1.5} t} \rightarrow \\
\ln \left(\frac{3}{8}\right) & =\ln e^{\frac{\ln (1 / 2)}{1.5} t} \rightarrow \\
\ln \left(\frac{3}{8}\right) & =\frac{\ln (1 / 2)}{1.5} t \rightarrow
\end{aligned}
$$

$$
t=\frac{1.5 \ln (3 / 8)}{\ln (1 / 2)} \approx 2.12 \mathrm{~min} .
$$

Carbon Dating,
a Specific Type of $\frac{1}{2}$-Life Problem

Math 16B
Carbon Dating
In 1960 the American scientist W. F. Libby won the Nobel prize for his discovery of carbon
dating, a method for determining the age of certain fossils. Carbon dating is based on the fact that nitrogen is converted to radioactive carbon-14 by cosmic radiation in the upper atmosphere.
This radioactive carbon is absorbed by plant and animal tissue through the life processes (for This radioactive carbon is absorbed by plant and animal tissue through the life processes (for
example, through respiration) while the plant or animal lives. However, when the plant or
animal dies the absorption process stops and the amount of carbon-14 decreases (exponentially) through radioactive decay.
When the object, such as
accumbent the object, such as a piece of wood or bone, was part of a living organism, it
the object was carbon-14. Once the organism dies, it no longer picks up carbon-14 through interaction with its environment. By measuring the proportion of carbon-14 in the fossilized
object, comparing that to the proportion in living material, and using the fact that the half-life of
carbon-14 is about 5730 years, the age of the object can be estimated.

Half-life of C-14 is 5730 years.

Example: If an oak tree dies today, then how much C-14 remains in its fossilized remains after 500 years?
assume $A=C e^{k t}$, where C is the initial amount of carbon-14 (when tree dies); and if $t=5730$, then $A=\frac{1}{2} C\left(\frac{1}{2}\right.$-life $) \rightarrow$

$$
\begin{aligned}
\frac{1}{2} C & =C e^{k(5730)} \rightarrow \\
\frac{1}{2} & =e^{5730 k} \rightarrow \\
\ln \left(\frac{1}{2}\right) & =\ln e^{5730 k} \rightarrow \\
\ln \left(\frac{1}{2}\right) & =5730 k \rightarrow \\
k & =\frac{\ln \left(\frac{1}{2}\right)}{5730} \rightarrow \\
A & =C e^{\frac{\ln (1 / 2)}{5730} t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } \begin{aligned}
t & =500 \rightarrow \\
A & =C e^{\frac{\ln (1 / 2)}{5730}(500)} \\
& \approx C(0.9413) \\
& =94.13 \% \text { of } C, \text { the }
\end{aligned}
\end{aligned}
$$

$$
\text { original amount of } C-14 \text {. }
$$

Example: A fossilized shark tooth contains 7.35% of its original amount of carbon-14. Estimate the age of the shark tooth.
assume $A=C e^{k t}$, where C is the original amount of carbon-14; and if $t=5730$, then $A=\frac{1}{2} C\left(\frac{1}{2}-l i f e\right)$

$$
\begin{array}{ll}
\rightarrow & \frac{1}{2} C=C e^{k(5730)} \\
\rightarrow & \frac{1}{2}=e^{5730 k} \\
\rightarrow & \ln \left(\frac{1}{2}\right)=\ln e^{5730 k}
\end{array}
$$

$$
\begin{aligned}
& \rightarrow \quad \ln \left(\frac{1}{2}\right)=5730 k \\
& \rightarrow \quad k=\frac{\ln (1 / 2)}{5730} \\
& \rightarrow \quad A=C e^{\frac{\ln (1 / 2)}{5730} t} ; \\
& \text { if } A=7.35 \% \text { of } C=0.0735 C \rightarrow \\
& 0.0735 C=C e^{\frac{\ln (1 / 2)}{5730} t} \rightarrow \\
& 0.0735=e^{\frac{\ln (1 / 2)}{5730} t} \rightarrow \\
& \ln 0.0735=\ln e^{\frac{\ln (1 / 2)}{5730} t} \rightarrow \\
& \ln 0.0735=\frac{\ln (1 / 2)}{5730} t \rightarrow \\
& t=\frac{5730(\ln 0.0735)}{\ln (1 / 2)} \approx 21,580 \text { yr2. }
\end{aligned}
$$

