Discrete and Continuous Compounding of interest

Example A: Suppose that $\$ 600$ is put in a savings account earning 24% annual interest, which is compounded monthly ($\frac{1}{12}$ of $24 \%=2 \%$ monthly rate).
How much is in the account after 3 months?
\#months amount of \$

$$
\begin{array}{ll}
1 & 600+0.02(600)=\$ 612 \\
2 & 612+0.02(612)=\$ 624.24 \\
3 & 624.24+0.02(624.24) \approx \$ 636.72
\end{array}
$$

Math 16B
Kouba
Discrete and Continuous Compounding of Interest
EXAMPLE : Initially P dollars is deposited into a savings account where interest i is compounded for each of m consecutive interest earning periods. Assume that interest earned remains in the account and that no withdrawals are made and no additional money is deposited in the account. What is the amount A of money in the account after m periods?

Period Amount of money
$1 \quad P+i \cdot P=P(1+i)$
$2 \quad P(1+i)+i \cdot P(1+i)=(1+i) \cdot P(1+i)=P(1+i)^{2}$
$3 \quad P(1+i)^{2}+i \cdot P(1+i)^{2}=(1+i) \cdot P(1+i)^{2}=P(1+i)^{3}$
$4 \quad P(1+i)^{3}+i \cdot P(1+i)^{3}=(1+i) \cdot P(1+i)^{3}=P(1+i)^{4}$
$\begin{array}{cc}\vdots & \vdots \\ \mathrm{m} & P(1+i)^{m}\end{array}$
So after m periods the total amount of money in the account is $A=P(1+i)^{m}$. If the annual interest rate is r and interest is compounded n times per year for t years, then $i=r / n, m=n t$, and

$$
A=P(1+r / n)^{n t} \quad \text { (Discrete Interest Formula) }
$$

Example: How much is in the account in Example A after 3 years?

$$
\begin{aligned}
P & =\# 600, r=0.24, n=12, t=3 \rightarrow \\
A & =600\left(1+\frac{0.24}{12}\right)^{(12)(3)} \\
& \approx \$ 1223.93
\end{aligned}
$$

Continuous Compounding of interest
Begin with $A=P\left(1+\frac{r}{n}\right)^{n t}$ and now let $n \rightarrow \infty$.

$$
\begin{aligned}
& \text { (RECALL: } \left.\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}=e\right) \\
& \begin{aligned}
A & =\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n t} \\
& =\lim _{n \rightarrow \infty} P\left(1+\frac{1}{\left(\frac{n}{r}\right)}\right)\left(\frac{n}{r}\right) r t \\
& =P\left[\lim _{\frac{n}{r} \rightarrow \infty}\left(1+\frac{1}{\left(\frac{n}{r}\right)}\right)^{\left(\frac{n}{r}\right)}\right]^{n t} \\
& =P[e]^{n t} \text { i.e., }
\end{aligned}
\end{aligned}
$$

$A=P e^{r t}$ (Continuous Interest Formula)

Example: You deposit $\$ 2000$ in a savings account earning 7.5% annual interest for 10 years. How much will be in the account if interest is compounded
a.) annually?
b.) monthly?
c.) weekly?
d.) daily ?
e.) continuously?

$$
P=\$ 2000, r=7.5 \%=0.075, t=10
$$

a.) annually, so $n=1$:

$$
\begin{aligned}
A & =2000\left(1+\frac{0.075}{1}\right)^{(1)(10)} \\
& \approx \$ 4122.06
\end{aligned}
$$

b.) monthly, so $n=12$:

$$
\begin{aligned}
A & =2000\left(1+\frac{0.075}{12}\right)^{(12)(10)} \\
& \approx \$ 4224.13
\end{aligned}
$$

c.) weekly, so $n=52$:

$$
\begin{aligned}
A & =2000\left(1+\frac{0.075}{52}\right)^{(52)(10)} \\
& \approx \$ 4231.71
\end{aligned}
$$

d.) daily, so $n=365$:

$$
\begin{aligned}
A & =2000\left(1+\frac{0.075}{365}\right)^{(365)(10)} \\
& \approx \$ 4233.67 \\
& A=2000 e^{(0.075)(10)} \\
& \approx \$ 4234.00
\end{aligned}
$$

e.)

Example: a deposit of $\$ 800$ in a savings account grows to $\$ 1800$ in 8 years. If interest is compounded monthly, what is the annual interest rate r ?

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \rightarrow \\
& 1800=800\left(1+\frac{r}{12}\right)^{(12)(8)} \rightarrow \\
& \frac{18 \phi \phi}{8 \phi \phi}=\left(1+\frac{r}{12}\right)^{96} \rightarrow \\
& \frac{9}{4}=\left(1+\frac{r}{12}\right)^{96} \rightarrow \\
& \left(\frac{9}{4}\right)^{1 / 96}=1+\frac{r}{12} \rightarrow \\
& \frac{r}{12}=\left(\frac{9}{4}\right)^{1 / 96}-1 \rightarrow \\
& r=12\left[\left(\frac{9}{4}\right)^{1 / 96}-1\right] \rightarrow \\
& r \approx 0.1018=10.18 \%
\end{aligned}
$$

Example: An account earning an annual interest rate of 3.5% grows to $\$ 5000$ in 12 years. of interest is compounded continuously, what was the initial amount?

$$
\begin{aligned}
A & =P e^{r t} \rightarrow \\
5000 & =P e^{(0.035)(12)} \rightarrow \\
5000 & =P e^{0.42} \rightarrow \\
P & =\frac{5000}{e^{0.42}} \rightarrow \\
P & \approx \$ 3285.23
\end{aligned}
$$

