5.4

APPLICATIONS OF COMMON LOGARITHMS

The $\mathbf{p H}$, or hydrogen potential, of a solution is defined by

$$
\begin{equation*}
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \tag{1}
\end{equation*}
$$

where $\left[\mathrm{H}^{+}\right]$is the concentration of hydrogen ions in an aqueous solution in moles per liter. When $0<\mathrm{pH}<7$ the solution is said to be acid; for $\mathrm{pH}>7$ the solution is base or alkaline; for $\mathrm{pH}=7$ the solution is neutral (for example, water). A strongly acid solution such as lemon juice has a pH in the range $\mathrm{pH} \leq 3$. Human urine averages around $\mathrm{pH}=6$. Note that (1) can also be written $\mathrm{pH}=\log _{10} 1 /\left[\mathrm{H}^{+}\right]$.

In a healthy person it is found that the concentration of hydrogen ions in blood is $\left[\mathrm{H}^{+}\right]=3.98 \times 10^{-8}$ moles/liter. Determine the pH of blood.

From (1) we find that the pH of blood is given by

$$
\begin{aligned}
\mathrm{pH} & =-\log _{10} 3.98 \times 10^{-8} \\
& =-\left[\log _{10} 3.98+\log _{10} 10^{-8}\right] \\
& =-\left[\log _{10} 3.98-8\right] \\
& =-[0.5999-8] \\
& \approx 7.4
\end{aligned}
$$

Severe illness, or even death, could result when a person's blood pH falls outside the narrow limits $7.2 \leq \mathrm{pH} \leq 7.6$. We note that values of pH are usually given to the nearest tenth of a unit.

$$
\begin{gathered}
\text { Source: College Mathematics by } \\
\text { Dennis Kill, and Edition }
\end{gathered}
$$

