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SECTION 10.4  Power Series and Taylor's Theorem 687

A Basic List of Power Series

Example 6 illustrates an important point in determining power series representa-
sions of functions. Although Taylor’s Theorem is applicable to a wide variety of
functions, it is often tedious to use because of the complexity of finding deriva-
tives. The most practical use of Taylor’s Theorem is in developing power series
for a basic list of elementary functions. Then, from the basic list, you can deter-
mine power series for other functions by the operations of addition, subtraction,
multiplication, division, differentiation, integration, and composition with known

power series. t‘

I Power Series for Elementary Functions
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The last series in the list above is called a binomial series. Example 7 illus-

Arates the use of such a series.

. EXAMPLE 7 | Using the Basic List of Power Series

‘Find the power series for

glx) = ¥1 +x,
centered at zero.
SOLUTION Using the binomial series

kk — 1)x? | k(k — D)k = 2)x3
o 31 A

l+xr=1+ke+

with k = %, you can write

2 3 4
s = {_E_ 2-5x_2~5°8x
(1 +x) 143 =5 T 3 3441

which converges for =1 < x < 1. P—

TRY IT 7

Use the basic list of power series to find the power series for glx) = V1 +x,
centered at zero.

K= 12 M= D=2 k= D= Dk =3t

-, O0<x<?2

-1l<x<1

., 0D<x<2

-0 <X <o

-, -l<x<1



