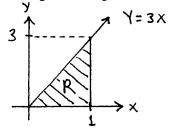
Print your name here.	Your HW #

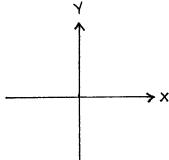

- 1. Please do not turn this page until told to do so.
- 2. No notes, books, or classmates may be used as resources for this exam. You may *NOT* use a calculator.
- 3. Read directions to each problem carefully. Show all work for full credit. In most cases, a correct answer with no supporting work will *not* receive full credit. What you write down and how you write it are the most important means of your getting a good score on this exam. Neatness and organization are also important.
- 4. Stay calm and put forth your best effort on this exam.
- 5. Don't be overly alarmed by problems that you cannot immediately solve. Just maintain your composure and work at a steady rate.
- 6. Make sure that you have eight (8) pages, including the cover page.
- 7. You have until 8:50 o'clock sharp to finish the exam.

1.) (12 pts) Compute z_x , z_y , and z_{xy} for $z = x y^3 + \tan(x - y)$.

2.) (12 pts.) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{x^{2}}} (2x^{2}y-3) dy dx$$
.

3.) (12 pts.) Evaluate $\int_{0}^{8} \int_{y^{1/3}}^{6y} dx dy$. HINT: Switch the order of integration.

4.) (12 pts.) Find the average value of $f(x, y) = \cos(3x - y)$ over the region R given in the diagram.



- 5.) Consider the equation $z = x^3 + 3 x y^2 3 x^2 3 y^2 + 4$.
 - a.) (10 pts.) Find all critical points for z . (HINT : There are four !)

b.) (6 pts.) Classify each critical point in part a.) as that which determines a maximum value, minimum value, or saddle point.

6.) (12 pts.) Use Lagrange multipliers to minimize $S = x^2 + 2y^2 + 3z^2$ subject to the constraint 3x-2y+z=6.

- 7.) Consider the function $f(x, y) = \ln (9-x^2-y^2)$.
- a.) (6 pts.) Determine the domain of f and sketch the domain on the given axes.

b.) (4 pts.) Determine the range of f.

8.) (14 pts.) The cost for the top, bottom, and sides of a closed rectangular box are \$2/ft.², \$6/ ft.², and \$3/ft.², resp. Find the length (x), width (y), and height (z) of the least expensive box with volume 36 ft.³

EXTRA CREDIT PROBLEM -- The following problem is worth 10 extra credit points and is *optional* .

Find the minimum distance from the origin to the cone given by the equation

$$z^2 = (x-1)^2 + (y-2)^2$$
.