- 1. [7 points] Find and sketch the domain of $f(x, y) = \sqrt{x^2 + y^2 9}$.
- 2. [10 points] Let $f(x, y) = \cos(1 + xy^2)$. Compute the following:
 - (a) [4 points] f_y

- (b) [6 points] f_{yx}.
- 3. [15 points] Let $f(x, y) = 5 + x^2 x^2y y^2 \frac{1}{3}y^3$.
 - (a) [8 points] Find all critical points f.
 - (b) [7 points] Classify each critical point of f as a relative maximum, relative minimum, or saddle point.
- 4. [10 points] Use Newton's method with initial guess $x_1 = 0$ to compute two successive approximations to the solution of the equation $x^3 + 3x = 1$.
- 5. [12 points] Determine whether the following sequences converge or diverge. Find the limit of the convergent ones.

(a)
$$a_n = \frac{\sqrt{n^2 - 5}}{2n + 3}$$

(b)
$$a_n = (-1)^n \cos(\frac{1}{n})$$

6. [18 points] Determine whether the following series converge or diverge. Clearly explain why.

(a)
$$\sum_{n=0}^{\infty} \frac{n}{500n + 79}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 \sqrt{n}}$$

(c)
$$\sum_{n=1}^{\infty} (2n)! \left(\frac{2}{3}\right)^n$$

- 7. [12 points] Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{3^{-n}}{n+1} (x+1)^n$. (Do not check end points.)
- 8. [10 points] Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{3^n 2^{n-2}}$

9. [26 points] Evaluate the following double integrals.

(a)
$$\int_{0}^{2} \int_{0}^{\sqrt{x}} y(x-y^2)^3 dy dx$$

(b)
$$\int_{0}^{4} \int_{\sqrt{x}}^{2} x \sin(1 + y^{5}) dy dx$$

10. [26 points] Solve the following differential equations.

(a)
$$e^{x^2-x}y' + y = 2xy$$

(b)
$$xy' - 2y = x \ln x$$
, $y(1) = 0$

- 11. [12 points] John is supposed to learn 1,000 French vocabulary words, of which he initially knows none. Suppose that he learns these words at a rate proportional to the number of words that he has not yet learned, and that he learns 150 words in the first 5 days. How many days does it take him to learn half the words? (Let N be the number of words learned after t days.)
- 12. [13 points] Use any method to find the 3rd-degree Taylor polynomial centered at c=1 for $f(x)=\frac{1}{2x-1}$.
- 13. [13 points] Approximate the definite integral $\int_{0}^{1} xe^{-x^3} dx$ using a 7th-degree Taylor polynomial for $f(x) = xe^{-x^3}$. Express your answer as a fraction.
- 14. [12 points] Use the method of Lagrange multipliers to minimize $f(x, y, z) = x^2 + y^2 + z^2$ subject to x y + 2z = 3 and 3x + y z = 0.