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Equation (8.38) allows us to eliminate C. Solving (8.38) for C, we find that C =
BV ~07% and, therefore,

Z% = BV=07%(0,794)v97%-1 — (0.794) BV -

Rearranging terms yields

dB dv
— = (0.794) —
B ( ) |
Dividing both sides by dt, we get

dB 1dv

1
—— = (0.794) — —
. B dt ( 9)th

which is the same as (8.39). N

Homeostasis The nutrient content of a consumer (e.g., the percent nitrogen of the
consumer’s biomass) can range from reflecting the nutrient content of its food to
being constant. The former is referred to as absence of homeostasis, the latter as strict
homeostasis. A model for homeostatic regulation is provided in Sterner and Elser

(2002). The model relates a consumer’s nutrient content (denoted by y) to its food’s
nutrient content (denoted by x) as

dy 1y

— === 840
dx 0x ( ) )
where 6 > 1 is a constant. Solve the differential equation and relate 6 to absence of
homeostasis and strict homeostasis.

Solution  We can solve (8.40) by separation of variables:

dy 1 fdx

y 7} X
Integrating and simplifying yields

1
In{yl = Znlx| + Cy
,y, —_ e(1/9)|nlx|+C1
[y = [x)%e

y = *eix1/?

Since x and y are positive (they denote nutrient contents), it follows that

y = Cxl/@
where C is a positive constant,

Absence of homeostasis means that the consumer reflects the food’s nutrient
content. This occurs when y = Cx and thus when 6 = 1. Strict homeostasis means
that the nutrient content of the consumer is independent of the nutrient content of
the food; that is, y = C; this occurs in the limit as 8 — oo. n

' Section 8.1 Problems.

28.1.1 2 2 €3 where yy = 10 for xo = 0
In Problems 1-8, solve each pure-time differential equation. dx
d dy

1
L 2 = x +sinx, where yo =0 forxy = 0 3. —~=—,wherey, = Owhenxy =1
dx x X
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dy 1
, — = ——— where y; =1whenxp =0
Y ETIER Yo °
dx 1
, ~— = —— where x(0) =2
5 dt 1 -1t (

6. %-:- = cos(27(t — 3)), where x(3) =1

7. g—{ =,/3t+ 1, wheres(0) =1
t
8. % =5 — 16¢%, where h(3) = 11

9. Suppose that the volume V(t) of a cell at time ¢ changes
according to

-‘-11- =1+cost withV(Q) =S5
dt
Find V ().

10. Suppose that the amount of phosphorus in a lake at time ¢,
denoted by P(1), follows the equation

ar =3t+1 with P(0)=0
dt
Find the amount of phosphorus at time ¢ = 10.

m 8.1.2

In Problems 11-16, solve the given autonomous differential
equations.

11. 31 = 3y, where yo = 2 forxp = 0
X

12, S—X =2(1 - y), where yg =2 forxy = 0
x
13. E = —2x,where x(1) =5
dt
14. j—': =1 - 3x, where x(-1) = -2
dh
15. I =2h+ 1, where h(0) =4
16. (2—1:, =5~ N,where NQ2) =3

17. Suppose that a population, whose size at time ¢ is denoted by
N(t), grows according to

‘fi—}:l =0.3N(t)  with N(O) =20
Solve this differential equation, and find the size of the population
attime t = 5,

18. Suppose that you follow the size of a population over time,
When you plot the size of the population versus time on a semilog
plot (i.e., the horizontal axis, representing time, is on a linear scale,
whereas the vertical axis, representing the size of the population,
is on a logarithmic scale), you find that your data fit a straight line
which intercepts the vertical axis at 1 (on the log scale) and has
slope —0.43. Find a differential equation that relates the growth
rate of the population at time ¢ to the size of the population at
timet.

19. Suppose that a population, whose size at time ¢ is denoted by
N (1), grows according to

(8.41)

where r is a constant.
(a) Solve (8.41).

(b) Transform your solution in (a) appropriately so that the
resulting graph is a straight line. How can you determine the
constant r from your graph?

(c) Suppose now that, over time, you followed a population which
evolved according to (8.41). Describe how you would determine
r from your data.

20. Assume that W(r) denotes the amount of radioactive material
ina substance at time 7. Radioactive decay is then described by the
differential equation

daw

-:h— = -AW(t) with W©O) =W,
where A is a positive constant called the decay constant.
(a) Solve (8.42).
(b) Assume that W(0) = 123gr and W(5) = 20gr and that time
is measured in minutes. Find the decay constant A and determine
the half-life of the radioactive substance.
21, Suppose that a population, whose size at time ¢ is given by
N(t), grows according to

dN 1 .,
ar i’

(a) Solve (8.43).
(b) Graph N(1) as a function of ¢ for 0 < t < 10. What happens
ast — 10? Explain in words what this means.

22. Denote by L(r) the length of a fish at time t, and assume that
the fish grows according to the von Bertalanffy equation

(8.42)

with N(0) = 10 (8.43)

%f_ = k(34— L(t)) with L(0) =2

(a) Solve (8.44).

(b) Use your solution in (a) to determine & under the assumption
that L(4) = 10. Sketch the graph of L(t) for this value of k.

(c) Find the length of the fish when ¢ = 10.

(d) Find the asymptotic length of the fish; that is, find
lim,, , L(¢).

23. Denote by L(¢) the length of a certain fish at time t, and
assume that this fish grows according to the von Bertalanffy
equation

(8.44)

dL .
5 =kl =L() with L(0) =1 (8.45)

where k and L, are positive constants. A study showed that the
asymptotic length is equal to 123 in and that it takes this fish 27
months to reach half its asymptotic length.

(a) Use this information to determine the constants k and L in
(8.45). [Hint: Solve (8.45).]
(b) Determine the length of the fish after 10 months.

(¢) How long will it take until the fish reaches 90% of its
asymptotic length?

24. Let N(1) denote the size of a population at time ¢. Assume
that the population exhibits exponential growth.

(a) If you plot log N (¢) versus ¢, what kind of graph do you get?
(b) Find a differential equation that describes the growth of this
population and sketch possible solution curves.

25. Use the partial-fraction method to solve

dy
—— 1
e yd+y)

where yg = 2 for xy = 0.
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26. Use the partial-fraction method to solve

dy
— = y(] _ y)
dx

where yy = 2 for v, = 0.
27. Use the partial-fraction method to solve

d

2= yiy -5

dx

where yp = 1 for xg = 0.

28, Use the partial-fraction method to solve

d_v_ _ _
d—x-—(y Dy -2

where yp = 0 forxp = 0.

29. Use the partial-fraction method to solve

dy

— = 2y(3 -
ix y(3-y)

where yo = S forxp; = 1.
30. Use the partial-fraction method to solve

dy 1,
AN N}
ar 20 77

where yp = ~3 for = 0.

In Problems 31-34, solve the given differential equations.

dy dy 2
. == 2. — = (1
3 p yi+y 3 . t+y)
dy 3 dy
, - M —=03- 24
3 p a+y . B-»2+y

35. (a) Use partial fractions to show that

f du 1 In
w2 —a® " 2a

(b) Use your resultin (a) to find a solution of

u—a
u+ta

dy 2
A
dx Y
that passes through (i) (0, 0), (ii) (0, 2), and (iii) (0, 4).
36. Find a solution of
dy 2
= = 4
dx y+
that passes through (0, 2).

37. Suppose that the size of a population at time ¢ is denoted by
N(t) and that N (r) satisfies the differential equation

dN N
= =034 - ith N (0) = 50
— = 034N (1 200) with N(0)

Solve this differential equation, and determine the size of the
population in the long run; that is, find lim,_, . N(2).

38. Assume that the size of a population, denoted by N(r),
evolves according to the logistic equation. Find the intrinsic rate of
growth if the carrying capacity is 100, N (0) = 10, and N (1) = 20.

39. Suppose that N(r) denotes the size of a population at time ¢

and that
dN N
— =15N[] - —
dt > ( 50)
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(a) Solve this differential equation when N(0) = 10.

(b) Solve this differential equation when N (0) = 90,

(¢) Graph your solutions in (a) and (b) in the same coordinate
system.

(d) Find lim,_,_ N(r) for your solutions in (a) and (b).

40. Suppose that the size of a population, denoted by N(t),

satisfies
dN N
— =0IN|1~ — 46
=0 (1-%) 40

(a) Determine all equilibria by solving d N /dt = 0.

(b) Solve (8.46) for (i) N (0) = 10, (ii) N (0) = 35, (iii) N (0) = 50,
and (iv) N(0) = 0. Find lim,_, , N{(r) for each of the four initial
conditions.

(c) Compare your answer in (a) with the limiting values you
found in (b).

41. Let N(t) denote the size of a population at time ¢. Assume
that the population evolves according to the logistic equation.
Assume also that the intrinsic growth rate is 5 and that the carrying
capacity is 30.

(a) Find a differential equation that describes the growth of this
population.

(b) Without solving the differential equation in (a), sketch
solution curves of N(¢) as a function of + when (i) N(0) = 10,
(ii) ¥ (0) = 20, and (jii) N (0) = 40.

42, Logistic growth is described by the differential equation

_dﬁ=,N(1_ﬁ)

The solution of this differential equation with initial condition
N(0) = Ny is given by
K

N({t) = ——o— (8.47)
1+ (5 = De

(a) Show that

1 K- Ny 1 N()

by solving (8.47) for r.

(b) Equation (8.48) can be used to estimate r. Suppose we follow
a population that grows according to the logistic equation and find
that N(0) = 10, N(5) = 22, N(100) = 30, and N(200) = 30,
Estimate r.

43. Selection at a Single Locus We consider one locus with two
alleles, A; and A,, in a randomly mating diploid population. That
is, each individual in the population is either of type A; A, A, A,,
or A2A;. We denote by p(r) the frequency of the A, allele and by
q (1) the frequency of the A; allele in the population at time ¢. Note
that p()+q(r) = 1. We denote the fitness of the AiAjtypebyw;;
and assume that w; = 1, w;; = 1 —5/2,and wyp = 1 — s, where s
is a nonnegative constant less than or equal to 1. That is, the fitness
of the heterozygote A, A is halfway between the fitness of the two

homozygotes, and the type A A, is the fittest. If 5 is small, we can
show that, approximately,

| 1 ;
‘_[Z = =sp(l — p) with p(0) = py (8.49)
dt 2

(a) Use separation of variables and partial fractions to find the
solution of (8.49).

(b) Suppose py = 0.1 and s = 0.01: how long will take until
ptr) =0.5?

(¢) Findlim,_ . p(t). Explain in words what this limit means.
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1 8.1.3

In Problems 44-52, solve each differential equation with the given
initial condition.

44, iy—=2~y-,wif.l'l)'o=].if.X()=1
dx x

a5, DI by =2ifx =0
dx y
dy y , .

, — = yWwithyg=1ifxy =0

6 G = ryr 0
dy e s . _

47, = =(y+ e, withyy =2ifxg =0
dx

48, d—y = x2y?, with yg = 1if xy = 1
dx

1 .

09, 2 2t ik e = Sitx =2
dx x-1
du sin? ] .

50, E:m,Wlthuo=3lfto=0
dr . ,

51, — =re”',withrg=1ift; =0
dt
dx 1x

52, — = —— withxy=2ify, =3

2, -2y 0 Yo

53. (Adapted from Reiss, 1989) In a case study by Taylor et al.
(1980) in which the maximal rate of oxygen consumption (in
mls~!) for nine species of wild African mammals was plotted
against body mass (in kg) on a log-log plot, it was found that the
data points fall on a straight line with slope approximately equal
to 0.8. Find a differential equation that relates maximal oxygen
consumption to body mass.

54. Consider the following differential equation, which is impor-
tant in population genetics:

1d
a(x)g(x) ~ 5 Tx [bx)gx)] =0

Here, b(x) > 0.

M 8.2 Equilibria and Their Stability

(a) Define y = b(x)g(x), and show that y satisfies

a _1dy

5oy” "3 =0 (8.50)

(b) Separate variables in (8.50), and show that if y > 0, then

y=Cexp[2[§g—;dx]

55. When phosphorus content in Daphnia was plotted against
phosphorus content of its algal food on a log-log plot, a straight
line with slope 1/7.7 resulted. (See Sterner and Elser, 2002; data
from DeMott et al., 1998.) Find a differential equation that relates

the phosphorus content of Daphnia to the phosphorus content of
its algal food.

56. This problem addresses Malthus’s concerns. Assume that a
population size grows exponentially according to

N(r) = 1000¢
and the food supply grows linearly according to
F(it) =13t

(a) Write a differential equation for each of N (t) and F(1).

(b) What assumptions do you need to make to be able to compare
whether and, if so, when food supply will be insufficient? Does
exponential growth eventually overtake linear growth? Explain.

() Doa Web search to determine whether food supply has grown
linearly, as claimed by Malthus,

57. Atthe beginning of this section, we modified the exponential-
growth equation to include oscillations in the per capita growth
rate. Solve the differential equation we obtained, namely,

id].:/_ =2(1 +sinQrt)) N(t)

with N(0) =5,

In Subsection 8.1.2, we learned how to solve autonomous differential equations and

graphed their solutions as functions of the independent variable for given initial
conditions. For instance, logistic growth

(8.51)

with initial condition N(0) = N, has the solution given in (8.33) and graphed in
Figure 8.10 for different initial values.

The solution of a differential equation can inform us about long-term behavior,
as we saw in the case of logistic growth. In particular, if Ny > 0, then N ) = K,

the carrying capacity,

ast — oo, and if Ny = 0, then N(t) = 0 forall ¢ > O, Also, if

No = K,then N(t) = K for allt > 0. What is so special about Ny = K or Ny = 0?
We see from Equation (8.51) thatif N = K or N = 0, then dN/dt = 0, implying

that N(t) is constant,

Constant solutions form a very special class of solutions of autonomous differen-
tial equations. These solutions are called point equilibria or, simply, equilibria. The
constant solutions N = K and N = 0 are point equilibria of the logistic equation.

R
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A graph of g(N) is shown in Figure 8.23a. Differentiating g(N) yields

, 2 3N?
SNy =r (2N + T?—N - = —a) = %(21\/1( +2aN - 3N? — aK)

We can compute the eigenvalue g’(N) associated with the equilibrium N:

-

if N=0, then g(0)= -—;—(—(—aK) <0

A

if N=a, then g'(a)= Fr{—a(K —a)>0 ;
if N=K, then g(K)= %K(a ~K)<0 ‘

As we continue, you should compare the results from the eigenvalue method. with
the graph of g(N). ' !
Since g’(0) < 0, it follows that N = 01is locally stable. Likewise, since g'(K) < 0, J
it follows that N = K is locally stable. The equilibrium N = q is unstable, because I
g'(a) > 0. This instability is also evident from Figure 8.23a. The Allee effect is an
example in which both stable equilibria are locally, but not globally, stable.

y
7
Qo 6
N
dN w2 |
@ & = gy — 5 Z .
§ 3
=
a N 1
0 1 4 1 3 i L L 1 —
01 2 3 4567 8 910 «x
Time
Figure 8.23a The graph of g(N) Figure 8.23b Solution curves when r = 0.5,
illustrating the Allee effect. a = 2,and K = 5. When the initial condition

N(0) is between 0 and 2, the solution curve
approaches the locally stable equilibrium

N = 0. When the initial condition N(0) is
greater than 2, the solution curve approaches
the locally stable equilibrium N = K = 5. The
approach is from below when 2 < N(0) < § ke
and from above when N (0) > 5. ‘i ‘

We see from Figures 8.23a and 8.23b that if 0 < N(0) < a, then N (t) > Gas i
t > o00.Ifa < N0O) < KorN@©O) > K,then Nt) - K ast — o0. To interpret i
our results, we observe that if the initial population N (0) is too small [i.e., N(0) < al,
then the population goes extinct, and if the initial population is large enough [ie.,
N(0) > a], then the population persists. That is, the parameter g is a threshold level.
The recruitment rate is large enough only when the population size exceeds this level.

| Section 8.2 Problems. . »

¥ 8.2.1 (c) Compute the eigenvalues associated with each equilibrium, '
1. Suppose that and discuss the stability of the equilibria. ;
dy =y2-y) 2. Suppose that
dx

(a) Find the equilibria of this differential equation.
(b) Graphdy/dx as a function of y, and use your graph to discuss
the stability of the equilibria. (a) Find the equilibria of this differential equation.

dy__ _ _
‘—i;—(4 NG~y
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' (b) Graphdy/dx as a function of y, and use your graph to discuss
the stability of the equilibria.
(¢) Compute the eigenvalues associated with each equilibrium,
and discuss the stability of the equilibria.

3. Suppose that
dy
==yly-)y-2)
dx
(a) Find the equilibria of this differential equation.

(b} Graphdy/dx as a function of y, and use your graph to discuss
the stability of the equilibria.

(c) Compute the eigenvalues associated with each equilibrium,
and discuss the stability of the equilibria.

4. Suppose that
d
2 =y2-no-3
dx
(a) Find the equilibria of this differential equation.

(b) Graphdy/dx as afunction of y, and use your graph to discuss
the stability of the equilibria.

(¢} Compute the eigenvalues associated with each equilibrium,
and discuss the stability of the equilibria.

5. Logistic Equation Assume that the size of a population
evolves according to the logistic equation with intrinsic rate of
growth r = 1.5. Assume that the carrying capacity K = 100,

(a) Find the differential equation that describes the rate of
growth of this population.

(b) Find all equilibria, and, using the graphical approach, discuss
the stability of the equilibria.

(c) Find the eigenvalues associated with the equilibria, and
use the eigenvalues to determine the stability of the equilibria.
Compare your answers with your results in (b).

6. A Simple Model of Predation Suppose that N(t) denotes the
size of a population at time ¢. The population evolves according to
the logistic equation, but, in addition, predation reduces the size
of the population so that the rate of change is given by

N 9N
)

- (8.65)
dt 50/ 5¥N

The first term on the right-hand side describes the logistic growzh;
the second term describes the effect of predation.

(a) Set
N 9N
8‘”’—N(l‘§5)‘m
and graph g(N).

(b) Find all equilibria of (8.65).

(¢} Use your graph in (a) to determine the stability of the
equilibria you found in (b),

(d) Use the method of eigenvalues to determine the stability of
the equilibria you found in (b).

7. Logistic Equation Assume that the size of a population
evolves according to the logistic equation with intrinsic rate of
growth r = 2. Assume that N(0) = 10,

(8) Determine the carrying capacity X if the population grows
fastest when the population size is 1000. (Hint: Show that the
graph of d N /dt as a function of N has a maximum at K /2.)

(b) IfN(0) = 10, how long will it take the population size to reach
1000?

(¢} Find lim N(1).

100

8. Logistic Equation The logistic curve N (t) is an §-shaped curve
that satisfies
N .
— =rN (1 - 7{-) with N(0) = N, (8.66)
when Ny < K.
(a) Use the differential equation (8.66) to show that the inflection
point of the logistic curve is at exactly half the saturation value
of the curve. [Hint: Do not solve (8.66); instead, differentiate the
right-hand side with respect to t.)
(b) The solution N(¢) of (8.66) can be defined for all ¢ ¢ R.
Show that N (¢) is symmetric about the inflection point and that
N(0) = N,. That is, first use the solution of (8.66) that is given in
(8.33), and find the time 1, so that N(t) = K /2 (i.e., the inflection
point) is at t = #,. Compute N (¢, + h) and N(ty — h) forh > 0,
and show that
Nty + h) - X = X - Nty —h)
2 2
Use a sketch of the graph of N (#) to explain why the preceding
equation shows that N(t) is symmetric about the inflection point
(o, N(15)).
9. Suppose that a fish population evolves according to the logistic
equation and that a fixed number of fish per unit time are

removed. That is,
dN N
——=rN{l-—=]-

a 7 ( K) H

Assume that r = 2 and K = 1000

(2) Find possible equilibria, and discuss their stability when H =
100.

(b) What is the maximal harvesting rate that maintains a positive
population size?

10. Suppose that a fish population evolves according to a logistic
equation and that fish are harvested at a rate proportional to the
population size. If N (¢) denotes the population size at time 1, then

dN N
-——-rN(l—;(—)—hN

Assume that r = 2 and K = 1000.

(@) Find possible equilibria, use the graphical approach to discuss
their stability when 4 = 0.1, and find the maximal harvesting rate
that maintains a positive population size.

(b) Show thatifh < r = 2, then there is a nontrivial equilibrium.
Find the equilibrium.

(c) Use (i) the eigenvalue approach and (ji) the graphical
approach to analyze the stability of the equilibrium found in (b).

¥ 8.2.2

11, Assume the single-compartment model defined in Subsection
8.2.2: If C(r) is the concentration of the solute at time ¢, then
dC/dt is given by (8.57); that is,

ac ¢

- ==(C;~C

dt V( ! )
where ¢, V, and C, are defined as in Subsection 8.2.2. Use the
graphical approach to discuss the stability of the equilibrium € =

IB
12. Assume the single-compartment model defined in Subsection
8.2.2; that is, denote the concentration of the solute at time ¢ by
C(1), and assume that
dc

— =320 - C(1))

fort >0
dt

(8.67)




(a) Solve (8.67) when C(0) = 5.
(b) Find lim,_, , C(r).
(¢) Use your answer in (a) to determine ¢ so that C(¢) = 10.

13. Assume the single-compartment model defined in Subsection
8.2.2; that is, denote the concentration of the solution at time ¢ by
C(t), and assume that the concentration of the incoming solution
is 3 g liter™" and the rate at which mass enters is 0.2 liter s,
Assume, further, that the volume of the compartment V = 400
liters.

(a) Find the differential equation for the rate of change of the
concentration at time 7.

(b) Solve the differential equation in (a) when C(0) = 0, and find
lim C(t). '

(c) Findallequilibria of the differential equation and discuss their
stability.

14, Suppose that a tank holds 1000 liters of water, and 2 kg of sait
is poured into the tank.

(a) Compute the concentration of salt in g liter™!.

(b) Assume now that you want to reduce the salt concentration.
One method would be to remove a certain amount of the salt
water from the tank and then replace it by pure water. How much
salt water do you have to replace by pure water to obtain a salt
concentration of 1 g liter™1?

00

(¢) Another method for reducing the salt concentration would
be to hook up an overflow pipe and pump pure water into the
tank. That way, the salt concentration would be gradually reduced.
Assume that you have two pumps, one that pumps water at a rate
of Lliter s™', the other at a rate of 2liter s~!. For each pump,
find out how long it would take to reduce the salt concentration
from the original concentration to 1gliter™! and how much pure
water is needed in each case. (Note that the rate at which water
enters the tank is equal to the rate at which water leaves the tank.)
Compare the amount of water needed using the pumps with the
amount of water needed in part (b).

15. Assume the single-compartment model introduced in Subsec-
tion 8.2.2. Denote the concentration at time ¢ by C(¢), measured
in mg/L, and assume that

‘_id—tq =0.37Q54 mg/L - C(t)) forr >0

(a) Find the equilibrium concentration.

(b) Assume that the concentration is suddenly increased from the
equilibrium concentration to 400 mg/L. Find the return time to
equilibrium, denoted by 7%, which is the amount of time until the
initial difference is reduced to a fraction e~

(¢) Repeat (b) for the case when the concentration is suddenly
increased from the equilibrium concentration to 800 mg/L.

(d) Are the values for T computed in (b) and (c) different?

16. Assume the compartment model as in Subsection 8.2.2.
Suppose that the equilibrium concentration is C/ and the initial
concentration is Co. Express the time it takes until the initial
deviation Cy — C; is reduced to a fraction pinterms of Tg.

17. Assume the compartment model as in Subsection 8.2.2.
Suppose that the equilibrium concentration is C;. The time T has

an integral representation that can be generalized to systems with
more than one compartment. Show that

°°C(t)—C,
T = —dt
R /o O
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[Hint: Use (8.58) to show that

cH-C = e~/
co-c

and integrate both sides with respect to ¢ from 0 to 00.}

18. Use the compartment model defined in Subsection 8.2.2 to
investigate how the size of a lake influences nutrient dynamics
in the lake after a perturbatijon. Mary Lake and Elizabeth Lake
are two fictitious lakes in the North Woods that are used as
experimental lakes to study nutrient dynamics. Mary Lake has a
volume of 6.8 x 10° m®, and Elizabeth Lake has twice that volume,
or 13.6 x 10*m’. Both lakes have the same inflow/outflow rate
g = 170liter s=', Because both lakes share the same drainage
area, the concentration C; of the incoming solute is the same
for both lakes, namely, C; = 0.7 mg liter!. Assume that at the
beginning of the experiment both lakes are in equilibrium; that
is, the concentration of the solution in both lakes is 0.7 mg liter™!,
Your experiment consists of increasing the concentration of the
solution by 10% in each lake at time 0 and then watching how
the concentration of the solution in each lake changes with time.
Assume the single-compartment model to make predictions about
how the concentration of the solution will evolve, (Note that 1 m?
of water corresponds to 1000 liters of water.)

(a) Find the initial concentration Cy of the solution in each lake at
time 0 (i.e., immediately after the 10% increase in concentration
of the solution).

(b) Use Equation (8.58) to determine how the concentration of
the solution changes over time in each lake. Graph your results,
(¢) Which lake returns to equilibrium faster? Compute the return
time to equilibrium, T, for each lake, and explain how it is related
to the eigenvalues corresponding to the equilibrium concentration
C) for each lake.

19, Use the single-compartment model defined in Subsection
8.2.2 to investigate the effect of an increase in the input
concentration C; on the nutrient concentration in a lake.
Suppose a lake in a pristine environment has an equilibrium
phosphorus concentration of 0.3 mg~'. The volume V of the
lake is 12.3 x 10°m?, and the inflow/outfiow rate q is equal to
220liter s™1. Conversion of land in the drainage area of the
lake to agricultural use has increased the input concentration
from 0.3mgliter™ to 1.1 mgliter™. Assume that this increase
happened instantaneously. Compute the return time to the new
equilibrium, denoted by Ty, in days, and find the nutrient
concentration in the lake Ty units of time after the change in input

concentration. (Note that 1 m® of water corresponds to about 1000
liters of water.)

X 823

20. Levins Model Denote by p = p(¢) the fraction of occupied
patches in a metapopulation model, and assume that

C—i£=2p(1—p)—p fort >0

dt

(a) Setg(p) =2p(1 — p) — p. Graph g(p) for p € [0, 1.
(b) Find all equilibria in (8.68) that are in (0, 1]. Use your graph
in (a) to determine their stability.

(c) Use the eigenvalue approach to analyze the stability of the
equilibria that you found in (b).

21. Levins Model Denote by p = p(1) the fraction of occupied
patches in a metapopulation model, and assume that

(8.68)

d
;’?’ =05p(1 = p)—=1.5p fort>0 (8.69)

(a) Setg(p) =0.5p(1 - p) — 1.5p. Graph g(p) for p € [0, 1].
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(b) Find all equilibria of (8.69) that are in [0, 1]. Use your graph
in (a) to determine their stability.

(c) Use the eigenvalue approach to analyze the stability of the
equilibria that you found in (b).

22, A Metapopulation Model with Density-Dependent Extinc-
tion Denote by p = p(t) the fraction of occupied patches in a
metapopulation model, and assume that

2

4P _ o= p)~p* fort>0 (8.70)

dt
where ¢ > 0. The term p? describes the density-dependent
extinction of patches; that is, the per-patch extinction rate is p,
and a fraction p of patches are occupied, resulting in an extinction
rate of p?. The colonization of vacant patches is the same as in the
Levins model.
(a) Set g(p) = cp(1 — p) ~ p* and sketch the graph of g(p).
(b) Find all equilibria of (8.70) in [0, 1], and determine their
stability.
(¢) Is there a nontrivial equilibrium when ¢ > 0? Contrast your
findings with the corresponding results in the Levins model.
23, Habitat Destruction In Subsection 8.2.3, we introduced the
Levins model. To study the effects of habitat destruction on a
single species, we modify equation (8.63) in the following way:
We assume that a fraction D of patches is permanently destroyed.
Consequently, only patches that are vacant and undestroyed can
be successfully colonized, These patches have frequency 1— p(¢) -
D if p(t) denotes the fraction of occupied patches at time ¢. Then

dp
2 =P —p-D)—mp
(a) Explain in words the meaning of the different terms in (8.71).
(b) Show that there are two possible equilibria: the trivial
equilibrium p; = 0and the nontrivial equilibrium py = 1— D~ 2.
Sketch the graph of p; as a function of D.

(¢) Assume that m < ¢ such that the nontrivial equilibrium is
stable when D = 0. Find a condition for D such that the nontrivial
equilibrium is between 0 and 1, and investigate the stability of both
the nontrivial equilibrium and the trivial equilibrium under that
condition.

(d) Assume the condition that you derived in (c); that is, the
nontrivial equilibrium i3 between 0 and 1. Show that when
the system is in equilibrium, the fraction of patches that are

(8.71)

vacant and undestroyed—that is, the sites that are available
for colonization—is independent of D. Show that the effective
colonization rate in equilibrium —that is, ¢ times the fraction of
available patches—is equal to the extinction rate. This equality
shows that the effective birth rate of new colonies balances their
extinction rate at equilibrium.,

n 8.2.4

24. Allee Effect Denote the size of a population at time ¢ by
N(1), and assume that

E1—1!=2N(N—-10)<1—iv-—) fort >0

7 10 (8.72)

(a) Find all equilibria of (8.72).

(b) Use the eigenvalue approach to determine the stability of the
equilibria you found in (a), ‘

(c) Set
N

for N > 0, and graph g(N). Identify the equilibria of (8.72) on
your graph, and use the graph to determine the stability of the
equilibria. Compare your results with your findings in (b), Use
your graph to give a graphical interpretation of the eigenvalues
associated with the equilibria.

25. Allee Effect Denote the size of a population at time ¢ by
N(t), and assume that

dN
—— = 03N(N - 17) (1 - l) fort >0

dt 200 (8.73)

(a) Find all equilibria of (8.73).

(b) Use the eigenvalue approach to determine the stability of the
equilibria you found in (a).

(c) Set

N
g(N)=03N(N-17) (1 - 50—6)

for N > 0, and graph g(N). Identify the equilibria of (8.73) on
your graph, and use the graph to determine the stability of the
equilibria. Compare your results with your findings in (b). Use
your graph to give a graphical interpretation of the eigenvalues
associated with the equilibria.

A 8.3 Systems of Autonomous Equations (Optional)

In the preceding two sections, we discussed models that could be described by a
single differential equation. If we wish to describe models in which several quantities
interact, such as a competition model in which various species interact, more than one
differential equation is needed. We call this model a system of differential equations.
We will restrict ourselves again to autonomous systems—that is, systems whose
dynamics do not depend explicitly on the independent variable (which typically is

time).

This section is a preview of Chapter 11, in which we will discuss systems of
differential equations in detail. A thorough analysis of such systems requires a fair
amount of theory, which we will develop in Chapters 9 and 10. Since we are not yet
equipped with the right tools to analyze systems of differential equations, this section
will be rather infcrmal. As with movie previews, you will not know the full story
after you finish reading the section, but reading it will (hopefully) convince you that
systems of differential equations provide a rich tool for modeling biological systems,




We assume that p; = p

1 — p;. Hence,

dp;

—_— R

dt
if

Since dp,/dt > 0 when species 1 is in equilibrium and species 2 has a low abundance
it follows that species 2 can invade. We conclude that species 1 and 2 can coexist when

2
2 >c.
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=1-1/c| and that p; is very small. Then 1 — DL~ py =

1 4]
f27) Cz——1—6‘1+1 =p|—=—c]>0
(&1 C

1

C2
— - >0, or

2
cy > cy
41

Y

This mechanism of coexistence is referred to as the competition—colonization

trade-off. That is, the weaker competitor (species 2) can compensate for its inferior
competitiveness by being a superior colonizer (c; > cf).

| Section 8.3 Problems

¥ 8.3.1

In Problems 14, we will investigate the classical Kermack-
McKendrick model for the spread of an infectious disease in
a population of fixed size N. (This model was introduced in
Subsection 8.3.1, and you should refer to that subsection when
working out the problems.) If S(t) denotes the number of
susceptibles at time t, I(t) the number of infectives at time t, and
R(t) the number of immune individuals at time t, then

ds

— = —bSI
dt b

dl

— =bSI —al
dt a

and R(t) = N — S(1) - 1(r).

L Determine, in each of the following cases, whether or not the
disease can spread (Hint: Compute R.):

(a) S(0) =1000,a =200,b = 0.3

(b) S(0) =1000,a =200, 5 = 0.1

2. Assume that g = 100 and b = 0.2. The critical number of
susceptibles S.(0) at time O for the spread of a disease that is
introduced into a population at time 0 is defined as the minimum
number of susceptibles for which the disease can spread. Find
S-(0).

3. Suppose that a = 100, b = 0.01, and N = 10, 000. Can the
disease spread if, at time 0, there is one infected individual?

4. Refer to the simple model of epidemics in Subsection 8.3.1.
{a) Divide (8.75) by (8.74) to show that when I > 0,

dl atl

ds bS
Also, show that when R(0) = 0,7(0) = Iy, and S(0) = S, the
solution of (8.84) satisfies

1 (8.84)

_ a. S
1([)—~N—S(I)+Zh’l"§—

0

where /(f) denotes the number of infectives, N the total
number of individuals in the population, and S(¢) the number of
susceptibles at time ¢.

(b) Since I(¢) gives the number of infectives at time ¢ and
dl/dt = bSI — al, if $(0) > a/b, then dl/dt > 0 at time
t = 0. Also, since lim,_, ., I(t) = 0, there is a time ¢ > 0 at
which /(¢) is maximal. Show that the number of susceptibles when
1(1) is maximal is given by § = a/b. [Hint: When I(t) attains a
maximum, the derivative of J (1) with respect to ¢, d 1 /dt, is equal
to 0.]

(¢) In(a),youexpressed I () as a function of § (2). Use your result
in (b) to show that the maximal number of infectives is given by

a a a/b
Ipax =N — - 4+ = —
max = N b+bln(Sg)

(d) Use yourresultin (c) to show that Imax is a decreasing function
of the parameter a/b for a/b < §, (i.e., in the case in which the
infection can spread). Use the latter statement to explain how a

and b determine the severity (as measured by I'nax) of the disease,
Does this make sense?

n 8.3.2

S. Assume the compartment model of Subsection 832, withg =
5,b=0.02,m=1,andc = 1.

(a) Find the system of differential equations that corresponds to
these values,

(b) Determine which values of N; result in a nontrivial
equilibrium, and find the equilibrium values for both the
autotroph and the nutrient pool.

6. Assume the compartment model of Subsection 8.2.3, with g =
L,b=00l,m=2¢=1,and N; = 500.

(a) Find the system of differential equations that corresponds to
these values.

(b) Plot the zero isoclines corresponding to this system.

(¢) Use your graph in (b) to determine whether the system has a
nontrivial equilibrium.

7. Assume the compartment model of Subsection 8.3.2, withg =
Lb=001l,m=2,¢c=1 and N, = 200.

(a) Find the system of differential equations that corresponds to
these values.

(b) Plot the zero isoclines corresponding to this system.

(c) Use your graph in (b) to determine whether the system has a
nontrivial equilibrium.

i
¥
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2833

8. Assume the hierarchical competition model introduced in
Subsection 8.3.3, and assume that the model describes two species,
Specifically, assume that

dp

PV api (1= py)

T pl=p)—p

d

71’.:3 =5p(l-pr—p2)~pr—2pip2

(a) Find all equilibria.

(b) Determine whether species 2 can invade a monoculture of
species 1. (Assume that species 1 is in equilibrium.)

9, Assume the hierarchical competition model introduced in
Subsection 8.3.3, and assume that the model describes two species.
Specifically, assume that

dp1

=2 =20~ py) —

Pr nd—p) - p

d

-£3 =3p(l—-p1—p)— p2—2p1p;

() Find all equilibria.
(b) Determine whether species 2 can invade a monoculture
equilibrium of species 1. .
10. Assume the hierarchical competition model introduced in
Subsection 8.3.3, and assume that the model describes two species.
Specifically, assume that

dp

P an(l—=py) —
ar p(l—=p)—pr

d
-3’1—’- =6py(1 — pr ~ p2) — P2 — 2p1 2

(a) Use the zero-isocline approach to find all equilibria graphi-
cally.

(b) Determine the numerical values of all equilibria.

Chapter 8 Key Terms.

11. Assume the hierarchical competition model introduced in
Subsection 8.3.3, and assume that the model describes two species.
Specifically, assume

dp:
dt

d
“‘i’? =5p(1—p1 = p2) — p, = 3p1p2

=3pl-p) - p

(@) Use the zero-isocline approach to find all equilibria graphi-
cally.

(b) Determine the numerical values of all equilibria.

12. (Adapted from Crawley, 1997) Denote plant biomass by V,
and herbivore number by N. The plant-herbivore interaction is
modeled as

dv V. .
—_—=aV(l - —)—
o= a K) bVN
N VN —an

dt

(a) Suppose the herbivore number is equal to 0. What differential
equation describes the dynamics of the plant biomass? Can you
explain the resulting equation? Determine the plant biomass
equilibrium in the absence of herbivores.

(b) Now assume that herbivores are present. Describe the effect
of herbivores on plant biomass; that is, explain the term —bV N
in the first equation. Describe the dynamics of the herbivores—
that is, how their population size increases and what contributes
to decreases in their population size.

(c) Determine the equilibria (1) by solving

dv
Ti-t——o and —d_t—=0

and (2) graphically. Explain why this model implies that “plant
abundance is determined solely by attributes of the herbivore,” as
stated in Crawley (1997).

dN

Discuss the following definitions and 6.
concepls:
1. Differential equation . Logistic equation
. Separable differential equation 9.
3. Solution of a differential equation
4. Pure-time differential equation

. Autonomous differential equation

~
as

10. Equilibrium
11. Stability
12. Eigenvalue

h

Exponential growth
7. Von Bertalanffy equation

Allometric growth

13. Single-compartment model
14. Levins model

15, Allee effect

16. Kermack-McKendrick model
17. Zero isocline

18. Hierarchical competition model

Chapter & Review Problems .

L. Newton’s Law of Cooling Suppose that an object has
temperature T and is brought into a room that is kept at a
constant temperature 7,. Newton’s law of cooling states that
the rate of temperature change of the object is proportional to
the difference between the temperature of the object and the
surrounding medium.

(a) Denote the temperature at time ¢ by T(¢), and explain why

is the differential equation that expresses Newton’s law of cooling,

(b) Suppose that it takes the object 20 min to cool from 30°C to
28°C in a room whose temperature is 21°C. How long will it take
the object to cool to 25°C if it is at 30°C when it is brought into the
room? [Hint: Solve the differential equation in (a) with the initial
condition T(0) = 30°C and with T, = 21°C, Use T(20) = 28°C
to determine the constant .]

2. (Adapted from Cain et al., 1995) In this problem, we discuss
a model for clonal growth in the white clover Trifolium repens.
T. repens is a widespread perennial clonal plant species that
spreads through stolon growth. (A stolon is a horizontal stem.)
By mapping the shape of a clone over time, Cain et al. estimated




stolon elongation and dieback rates as follows. Denote by S(¢) the
stolon length of the clone at time ¢. Cain et al. observed that the
change in stolon length was proportional to the stolon length; that

is, s
— xS
dt
Introducing the proportionality constant 7, called the net growth
rate, we find that
— =rS 8.85
= (8.85)
(a8) Suppose that S; and ) are the final and the initial stolon
lengths, respectively, and that T denotes the period of observation.
Use (8.85) to show that r, the net growth rate, can be estimated
from S'
1
r=—=In-L
T S
[Hint: Solve the differential equation (8.85) with initial condition
§(0) = S, and use the fact that S(T) = Ss.
(b) The net growth rate r is the difference between the stolon
elongation rate b and the stolon dieback rate m; that is,

r=b-m

Let B be the total amount of stolon elongation and D be the total
amount of stolon dieback over the observation period of length
T. Show that

T
5
B= / bS(t)dt = ?—;ﬂ(e” -1
0

T
D=fnwmm=%ﬁwﬂq)
0

(c) Show that B~ D = §; — S, and rearrange the equations for
B and D in (b) so that you can estimate b and m from r, B, and D;
that is, show that

rB _ B
S;~S B-D

rD rD
£ £ B IR eusnmnsna i -~ S —

S-S% B-D

(d) Explain how B and r can be estimated if S f» S0, and D are
known from field measurements. Use your result in (c) to explain
how you would then find estimates for b and m.

3. Diversification of Life (Adapted from Benton, 1997, and
Walker, 1985) Several models have been proposed to explain
the diversification of life during geological periods. According to
Benton (1997),

The diversification of marine families in the past 600
million years (Myr) appears to have followed two or
three logistic curves, with equilibrium levels that lasted
for up to 200 Myr. In contrast, continental organisms
clearly show an exponential pattern of diversification,
and although it is not clear whether the empirical
diversification patterns are real or are artifacts of a poor
fossil record, the latter explanation seems unlikely.

In this problem, we will investigate three models for
diversification. They are analogous to models for population
growth; however, the quantities involved have a different
interpretation. We denote by N(¢) the diversification function,
which counts the number of taxa as a function of time, and by r
the intrinsic rate of diversification.
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(a) (Exponential Model) This model is described by
dN
P reN (8.86)

Solve (8.86) with the initial condition N(0) at time 0, and show
that r, can be estimated from

_ 1 N(@)

[Hint: To find (8.87), solve for r in the solution of (8.86).]
(b) (Logistic Growth) This model is described by

dN N

where X is the equilibrium value. Solve (8.88) with the initial
condition N (0) at time 0, and show that r; can be estimated from

_1, [K-NO] 1 N()
for N(t) < K. ’

(c) Assume that N (0) =1 and N(10) = 1000. Estimate r, and n
for both K = 1001 and K = 10, 000.

(d) Use your answer in (c) to explain the following quote from
Stanley (1979):

There must be a general tendency for calculated values
of [r] to represent underestimates of exponential rates,
because some radiation will have followed distinctly
sigmoid paths during the interval evaluated.

(e) Explain why the exponential model is a good approximation
to the logistic model when N /K is small compared with 1.

4. A Simple Model for Photosynthesis of Individual Leaves
(Adapted from Horn, 1971) Photosynthesis is a complex mecha-
nism; the following model is a very simplified caricature: Suppose
that a leaf contains a number of traps that can capture light. If a
trap captures light, the trap becomes energized. The energy in the
trap can then be used to produce sugar, which causes the energized
trap to become unenergized. The number of traps that can become
energized is proportional to the number of unenergized traps and
the intensity of the light. Denote by T the total number of traps
(unenergized and energized) in a leaf, by 7 the light intensity, and
by x the number of energized traps. Then the following differential

equation describes how the number of energized traps changes
over time:

dx

:17 = kl(T —X)] - kzx
Here, k, and k; are positive constants. Find all equilibria, and use

the eigenvalue approach to study their stability.

5. Gompertz Growth Model This model is sometimes used to
study the growth of a population for which the per capita growth
rate is density dependent. Denote the size of population at time
t by N(t); then, for N > 0,

ﬂ =kN(InK ~ InN) with N(0) = N, (8.90)

dt
- - K —~kt
N(t) = Kexp [ (1n _No) e ]

(a) Show that

is a solution of (8.90). To do this, differentiate N(¢) with respect
to t and show that the derivaive can be written in the form (8.90).
Don’t forget to show that N(0) = N,. Use a graphing calculator
to sketch the graph of N(¢) for Ny = 100, k = 2,and K = 1000.
The function N(t) is called the Gompertz growth curve.
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‘(b) Use I'Hospital's rule to show that

lim NInN =0
N0

and use this equation to show that limy_,,dN/dt = 0. Are there
any other values of N where dN/dt = 0?

(¢) Sketch the graph of dN/dt as a function of N for k = 2 and
K = 1000. Find the equilibria, and use your graph to and discuss
their stability. Explain the meaning of K.

6. Island Blogeography Preston (1962) and MacArthur and
Wilson (1963) investigated the effect of area on species diversity
in oceanic islands. It is assumed that species can immigrate to an
island from a species pool of size P and that species on the island
can go extinct. We denote the immigration rate by 7(S) and the
extinction rate by E(S), where § is the number of species on the
island. Then the change in species diversity over time is

g.i =I(5) - E(S)

8.91
T (8.91)
For a fixed island, the simplest functional forms for / (S)and E(S)
are
I(S)=c|1 S (8.92)
=c 7 \
E(S) S (8.93)
= n— "
P

where ¢, m, and P are positive constants.

(a) Find the equilibrium species diversity § of (8.91) with I1(S)
and E(S) given in (8.92) and (8.93).

(b) It is reasonable to assume that the extinction rate i a
decreasing function of island size. That is, we assume that if A
denotes the area of the island, then m is a function of the island
size A, with dm/dA < 0. Furthermore, we assume that the
immigration rate / does not depend on the size of the island.
Use these assumptions to investigate how the equilibrium species
diversity changes with island size.

(¢) Assume that S(0) = S,. Solve (8.91) with I(S) and E(S) as
given in (8.92) and (8.93), respectively.

(d) Assume that S, = 0. That is, the island is initially void of
species. The time constant T for the system is defined as

S(TYy=(01-eH§
Show that, under the assumption Sy = 0,

P
c+m

T =

(¢) Use the assumptions in (b) and your answer in (d) to
investigate the effect of island size on the time constant T'; that is,
determine whether T(A) is an increasing or decreasing function
of A,

7. Chemostat A chemostat is an apparatus for growing bacteria
in a medium in which all nutrients but one are available in
excess. One nutrient, whose concentration can be controlled, is
held at a concentration that limits the growth of bacteria. The
growth chamber of the chemostat is continually flushed by adding
nutrients dissolved in liquid at a constant rate and allowing the
liquid in the growth chamber, which contains bacteria, to leave the
chamber at the same rate, If X denotes the number of bacteria in

the growth chamber, then the growth dynamics of the bacteria are
given by

X
(f—h— =r(N)X - gX (8.94)

where r(N) is the growth rate depending on the nutrient
concentration N and ¢ is the input and output flow rate. The
equation for the nutrient flow is given by

dN

I =qNy—qN - r(N)X

Note that (8.94) is (8.79) with m = 0, Ny =qNy,anda =¢ =4
and that (8.95) is (8.78) with m = 0.

(a) Explainin words the meaning of the terms in (8.94) and (8.95).
(b) Assume that r(N) is given by the Monod growth function

N
WM=bw
where k and b are positive constants. Draw the zero isoclines in
the N-X plane, and explain how to find the equilibria (N, X)
graphically.
() Show that a nontrivial equilibrium (an equilibrium for which
N and X are both positive) satisfies

(8.95)

r(l\?)—q =0
qNo—-qN ——r(ﬁ)f{ =0

(8.96)
(8.97)

Show also that (8.96) has a positive solution N if q < b, and find
an expression for N. Use this expression and (8.97) to find X,

(d) Assumethatq < b. Use yourresultsin (c) to show that ¥ > ¢

A

if N < Noand N < Nyif g < bNo/(k + Ny). Furthermore, show

~

that N is an increasing function of qforg < b,

(e) Use your resultsin (d) to explain why the following is true: As
we increase the flow rate ¢ from 0 to bNy/(k + Np), the nutrient
concentration N increases until it reaches the value N, and the
number of bacteria decreases to 0,

8. (Adapted from Nee and May, 1992, and Tilman, 1994) In
Subsection 8.3.3, we introduced a hierarchical competition model.
We will use this model to investigate the effects of habitat
destruction on coexistence. We assume that a fraction D of
the sites is permanently destroyed. Furthermore, we restrict our
discussion to two species and assume that species 1 is the superior
and species 2 the inferior competitor. In the case in which both
species have the same mortality (my = my), which we set equal to
1, the dynamics are described by

dp
- =cop(l-p - D) - p,

o (8.98)
dp,
25 =l =pr~pr— D)~ py—c1pip, (8.99)
where p;, i = 1,2, is the fraction of sites occupied by species §.

(a) Explainin words the meanings of the different terms in (8.98)
and (8.99).
(b) Show that

N 1

hr=l-=-p

(4]

is an equilibrium for species 1, which is in (0, 1), and is stable if
D <1~—1/¢ and ¢; > 1.

(c) Assumethate; > land D < 1—~1/c;. Show that species 2 can
invade the nontrivial equilibrium of species 1 [computed in (b)] if

¢ > cl(1 = D)
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(d) Assume thatc; =2and ¢, = 5. Then species 1 can survive as dynamics for species 2 reduce to
long as D < 1/2. Show that the fraction of sites that are occupied

by species 1 is then . % =5p(1~p,— D) — p,
1
! ~D for0<D< 3 in this case. Show, in addition, that the nontrivial equilibrium is of
b= 2 1 the form
0 for-<D<1
2 . 1 1 1
p2=1—*5'—D fOl’ESDﬁl—'S-
Show also that
1 2 1 Plot j; and p, as functions of D in the same coordinate system. ‘
D= m + §D for 0<D< 3 What happens for D > 1 — 1/5? Use the plot to explain in words

how each species is affected by habitat destruction.
For D > 1/2, species 1 can no longet persist. Explain why the (e) Repeat (d) for ¢; = 2 and =3

=2




