Math 17B

Kouba

Discussion Sheet 2

- 1.) Sketch the graph of $y = 3x^2 + 2$ on the interval [0, 1]. Consider the area of the region below the graph and above [0, 1]. Use the limit definition of a definite integral to find the exact area of the region.
- 2.) Use the limit definition of a definite integral to evaluate $\int_{-1}^{2} (x^2 2x + 1) dx$.
- 3.) Determine the following indefinite integrals. Do not use u-substitution.

a.)
$$\int x^2(x+1) dx$$
 b.) $\int (e^x + 2^x) dx$ c.) $\int 2x \cos(x^2) dx$ d.) $\int \frac{x^2 + 1}{x^3} dx$ e.) $\int \frac{x^2 + 1}{x + 3} dx$ f.) $\int \frac{x^2}{x^3 + 1} dx$

4.) Evaluate the following definite integrals. Do not use u-substitution.

a.)
$$\int_{4}^{9} \frac{1}{x^{2}} dx$$
 b.) $\int_{0}^{1} 3^{x+1} dx$ c.) $\int_{1}^{2} \frac{(x+1)^{2}}{x} dx$ d.) $\int_{0}^{5} \sqrt{x+4} dx$ e.) $\int_{\pi/6}^{\pi/4} \cos(3x) dx$ f.) $\int_{-1}^{0} \frac{x^{2}}{x-1} dx$ g.) $\int_{0}^{\sqrt{\ln 3}} x e^{x^{2}} dx$ h.) $\int_{0}^{\ln 2} \frac{e^{x}}{e^{x}+1} dx$ i.) $\int_{0}^{1} \frac{1}{e^{x}} dx$ j.) $\int_{0}^{\frac{\pi}{2}} \cos x e^{\sin x} dx$ k.) $\int_{-1}^{1} 3x^{2} \cdot 5^{x^{3}} dx$ l.) $\int_{0}^{\pi/12} 5 \sec^{2} 3x dx$

5.) Differentiate each: a.)
$$F(x) = \int_{-1}^{3x} \sqrt{1+t^2} \, dt$$
 b.) $F(x) = \int_{\tan x}^{\sec x} 5^{t^2} \, dt$

6.) Find an equation of the line perpendicular to the graph of

a.)
$$F(x) = 3 + \int_0^x 2e^{t^2} dt$$
 at $x = 0$.
b.) $F(x) = \int_{2x}^{x^2} \sqrt{t^2 + 5} dt$ at $x = 2$.

7.) Find the average value of each of the following functions over the given interval. Draw a sketch showing the connection between your answer and the definite integral.

1

a.)
$$f(x) = x^3 + 1$$
 on $[-1, 1]$ b.) $f(x) = 5 + \sqrt{x}$ on $[0, 4]$

- 8.) If $\int_{-3}^{1} f(x) dx = 3$ and $\int_{-3}^{3} f(x) dx = -2$. What is the value of $\int_{3}^{1} f(x) dx$?
- 9.) A long and thin corn stalk is 100 inches long. Its density x inches from its base is given by f(x) = 2 - (1/100)x ounces per inch. Set up a definite integral and compute the exact weight of the corn stalk.
- 10.) Consider the region R enclosed by the graphs of the given functions. Describe each region R using
 - i.) vertical cross-sections.
 - ii.) horizontal cross-sections.
 - a.) y = 2x, x = 4, and y = 0
 - b.) $y = e^x$, x = 0, and $y = e^2$
 - c.) y = 2/x, y = 2x, and x = 4
 - d.) y = 2x, y = (1/2)x, and y = 6 x
 - e.) $y = x^2$ and y = 4x + 5
- 11.) Find the area of the region bounded by the graphs of the given equations.

 - a.) y = x, y = 2x, and x = 2 b.) $y = e^x, x = 0$, and y = 2 c.) $x = y^2$ and x = 9 d.) y = x, y = 0, y = 2, and y = (1/2)x 2
- 12.) Assume that f is an odd function and $\int_{-2}^{1} f(x) dx = 3$. What is the value of $\int^{-2} f(x) \, dx ?$
- 13.) The speed s (in miles per hour) of a jogger at time t (in hours) is given by $s(t) = t + \sqrt{t}$.
 - a.) Find the jogger's average speed between t = 0 hrs. and t = 4 hrs.
 - b.) Find the total distance traveled by the jogger between t=0 hrs. and t=4 hrs.
- 14.) A heavy snow begins to fall at Squaw Valley Ski Resort. If snow falls at time t hours at the rate of (1/2)t + 1 in./hr. for $t \ge 0$, then what is the total accumulated snowfall for t = 0 to t = 8 hours?
- 15.) Find the volume of the solid formed by revolving each region bounded by the given graphs about the given axis.
 - a.) $y = x^2 1$ and the x-axis about the x-axis
 - b.) $y = \sqrt{x}$, y = 0, and x = 4 about the x-axis
 - c.) $y = \sqrt{x}$, y = 0, and x = 4 about the y-axis
 - d.) y = 3x, y = 6, and x = 0 about the x-axis
 - e.) y = 2x, y = 5 (1/2)x, and y = 0 about the y-axis

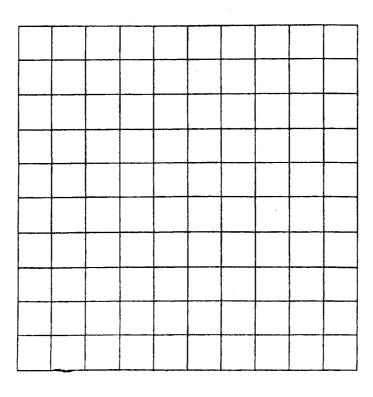
f.)
$$y = x^2$$
 and $y = x + 2$ about the line $y = 4$

g.)
$$y = x^2$$
 and $y = x^3$ about the line $y = 2$

h.)
$$y = x^2$$
 and $y = x^3$ about the line $y = -1$

i.)
$$y = x^2$$
 and $y = x^3$ about the line $x = 3$

j.)
$$y = x^2$$
 and $y = x^3$ about the line $x = -2$


- 16.) Find the length of each graph on the given interval.
 - a.) $y = x^{3/2}$ on the interval [0, 4] b.) $y = (2/3)(x^2 + 1)^{3/2}$ on the interval [0, 2]

c.
$$y = \frac{x^4}{4} + \frac{1}{8x^2}$$
 on the interval [2, 4]

d.)
$$y = (1/2)(e^x + e^{-x})$$
 on the interval $[0, \ln 2]$

THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY

15.) Count the total number of squares (including overlapping squares) in the following diagram.

