t Section 10.1 Problems

1. Cardiac output (CO) is a physiological quantity that is
calculated as the product of heart rate (HR) and stroke volume
(SV). Write cardiac output as a function of heart rate and stroke
volume, If heart rate is measured in beats per minute and stroke
volume in liters per beat, what is the unit for cardiac output?
Determine the domain and range of the function describing
cardiac output, :

2. Mean arterial blood pressure (MAP) is a function of systolic
blood pressure (SP) and diastolic blood pressure (DP). At a
resting heart rate,

1
MAP ~ DP + S(SP - DP)

If systolic pressure is greater than diastolic pressure and both are
nonnegative, what is the range of the function describing mean
arterial pressure?

3. Locate the following points in a three-dimensional Cartesian
coordinate system:

(a) (1,3,2) ) (-1,-2,1)
(9 (0,1,2) @ (2,0,3)

4. Describe in words the set of all points in R® that satisfy the
following expressions: .
(@ x=0 (b) y=0 (© z=0

(@ z20 (e) y<0
In Problems 5-12, evaluate each function at the given point.

2x
S fox,y) = mat(Z,B)

6 f(x.y,0)=/x2=3y+zat(3,—1,1)
7. (8) filx,y)=2x— 3y2 at (-1,2)
b) fily,x) =2x —3y*at(~1,2)

8. (8) filx,y) = % at (3,2) ®) foly,x) = f at (3,2)

© fily.x) = % at (3,2)

& ;2)2] at (1, 5)

10, g(n, p) — np(1 — p)*1 at (5, 0.1)

10 h(xy, x2) = xe~/72 at (2, —1)

12, g(x1, x2, X3, X4) = X1 X4, /35%; at (1, 8,2, —=1)

9. h(x,1) =exp [-—

In Problems 13-18, find the largest possible domain and the
corresponding range of each function. Determine the equation of
the level curves f(x, y) = c, together with the possible values of c.

13, f(x,y) =x*+)? M fix,y)=/9~-x2—y?

15, f(x,y) =In(y - x?) 16. f(x,y) = exp[—(x? + y?)]
=X=7 =*ty

17. f(x.y)-—x+y 18. f(x,y)—x_y

In Problems 19-22, match each function with the appropriate graph
in Figures 10.21-10.24.

19, f(xv )’)=1+x2+y2 20. f(x,y):sin(x)sn](y)
21' f(x,}')=y2—x2 22. f(x,y)::4—-x2

10.1 W Two or More Independent Variables

Figure 10.21

Figure 10.23

Figure 10.24
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512 Chapter 10 B Multivariable Calculus

23. Let

foz y) =ax® + ¥
for (x,y) € R, whereaisa positive constant.
(a) Assume thata =1 and describe the level curves of fi. The
graph of fi(x, y) intersects both the x-z and the y—z planes; show
that these two curves of intersection are parabolas.
(b) Assume thata = 4, Then

falx,y) = 4x% + 5
and the level curves satisfy
ity =c

Use a graphing calculator to sketch the level curves for ¢ =
0,1,2,3, and 4. These curves are ellipses. Find the curves of
intersection of fi(x, y) with the x~z and the y~z planes.

(¢) Repeat (b) fora =1/4.

(d) Explain in words how the surfaces of fa(x, y) change whena
changes.
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Figure 10.25 Isotherms for a typical lake in the Northern
Hemisphere.

24. The graph in Figure 10.25 shows isotherms of a lake in the
temperate climate of the Northern Hemisphere.

(a) Use this plot to sketch the temperature profiles in March and
June. That is, plot the temperature as a function of depth for a day
in March and for a day in June.

(b) Explain how it follows from your temperature plots that the
lake is homeothermic—that is, has the same temperature from the
surface to the bottom —in March.

A 10.2 Limits and Continuity

(c) Explain how it follows from your temperature plots that the
lake is stratified—that is, has a warm layer on top (called the
epilimnion), followed by a region where the temperature changes
quickly (called the metalimnion), followed by a cold layer deeper
down (called the hypolimnion) —in June.

25. Figure 10.26 shows the oxygen concentration for Long Lake,
Clear Water County (Minnesota). The water flea Daphnia can
survive only if the oxygen concentration is higher than 3 mg/l.
Suppose that you wanted to sample the Daphnia population in
1997 on days 180, 200, and 220. Below which depths can you be
fairly sure not to find any Daphnia?
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Figure 10.26 Level curves for oxygen concentration on
Long Lake, Clear Water County (Minnesota). Courtesy of
Leif Hembre.

26. At the beginning of this chapter, we discussed the minimum
temperature required for survival as a function of metabolic
heat production and whole-body thermal conductance. Suppose
that you wish to go winter camping in Northern Minnesota and
the predicted low temperature for the night is —15°F. Use the
information provided at the beginning of the chapter to find the
maximum value of g, for your sleeping bag that would allow you
to sleep safely.

= 10.2.1 Informal Definition of Limits

We need to extend the notion of limits and continuity to the multivariable setting.
The ideas are the same as in the one-dimensional case. We will discuss only the two-
dimensional case, but note that everything in this section can be generalized to higher

dimensions.

Let’s start with an informal definition of limits. We say that the “limit of f(x, y)
as (x, y) approaches (xg, yo) is equal to L™ if f(x, y) can be made arbitrarily close to
L whenever the point (x, y) is sufficiently close (but not equal) to the point (xp, yo).
We denote this concept by

lim
(x.y)—=>{xg.y0)

fx,y)=L

o e et 2 Ak S




518 Chapter 10 ® Multivariable Calculus

But this is exactly what we need to show. In other words, we have shown that, for
every € > 0, we can find a8 > 0 (namely § = /€) such that whenever (x, y) is close
to (0, 0), it follows that x2 + y? is close to 0. n

¢ Section 10.2 Problems

% 10.2.1

In Problems 1-14, use the properties of limits to calculate the
following limits:

L limg 0% =39

2. limg, 2%y + 3x%)

3. limg ) gy (¥2Y° = 3xy)

4, lim(,_y)—,(l,—z)(zxj =3y}xy—2)
5. limg oy 2 (yF = 3xy)

6. limg, sy Y(xy +x%y%)

. 2 x+1 : X
7. limg, )00 (4xy - T) 8. limg ) .01 4yl

. xz+ 2 . x3—x
9. limg 10 7007 10. limg, )13 55y
i 2y3 i 2oyt
1L limg L0 ny'iﬁ 12 limg, ) o 1.-2) 35743
s 2x+4y? . 2%
13, lim, 00 S50 14, limg, 5y 1,2 Tyes

15. Show that
x2 -2y

@00 X2+ y?

2

does not exist by computing the limit along the positive x-axis and
the positive y-axis.
16. Show that
3 x2 -yl
(x)=-©0 Xty
does not exist by computing the limit along the positive x-axis and
the positive y-axis.
17, Compute
. dxy
m =1,
@00 Xty
along the x-axis, the y-axis, and the line y = x. What can you
conclude?
18. Compute
Ixy
-0 X2+ y3
along lines of the form y = mx, for m % 0. What can you
conclude?
19. Compute
2xy
x> 0.0 X+ yx
along lines of the form y = mx, form # 0, and along the parabola
y = x%. What can you conclude?
0. Compute

3x2y2
im  ——
(r.y)= @0 X~ + Y

along lines of the form y = mx, form # 0, and along the parabola
x = y%, What can you conclude?

m 10.2.2
21, Use the definition of continuity to show that
f.y) =x*+y?

is continuous at (0, 0).
22, Use the definition of continuity to show that

fO, )=+ x2+ 52

is continuoﬁs at (0, 0).
23. Show that
Fe )= ik for (x,3) # 0,0
' 0 for(x,y) = (0,0)

is discontinuous at (0, 0). (Hint: Use Problem 17.)

- 24. Show that

ey = [%ﬁf for (x, y) # (0,0)

0 for(x,y) = (0,0)
is discontinuous at (0, 0). (Hint: Use Problem 18.)
25. Show that

fex y)_{;%‘f; for (x,y) # (0,0)

0 for(x,y)=(0,0)
is discontinuous at (0, 0). (Hint: Use Problem 19.)
26. Show that

3x2!2

o= [ e 200
0 for (x, y) = (0, 0)
is discontinuous at (0, 0). (Hint: Use Problem 20.)
27. (a) Write
h(x, y) = sin(x® + y?)
as a composition of two functions.
(b) For which values of (x, y) is h(x, y) continuous?

28. (a) Write
) hx,y)=Vx+y
as a composition of two functions.

-(b) For which values of (x, y) is h(x, y) continuous?

29. (a) Write
h(x,y) ="

as a composition of two functions.
(b) For which values of (x, y) is A(x, y) continuous?
30. (a) Write

h(x, y) = cos(y — x)
as a composition of two functions. ‘
(b) For which values of (x, y) is h(x, y) continuous?

m 10.2.3

31. Draw an open disk with radius 2 centered at (1, —1) in the
x~y plane, and give a mathematical description of this set.




32. Draw a closed disk with radius 3 centered at (2, 0) in the x—y
plane, and give a mathematical description of this set.
33. Give a geometric interpretation of the set

A={(x,y)eRzzm<3}
J4. Give a geometric interpretation of the set
A= {(x.y) eRZ:Jx2+6x+y2—2y+10<2]
35. Let

fxy) =22+ y?

2 10.3 Partial Derivatives
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Use the e~$ definition of limits to show that E '

lim f(x,y)=0 i
(x.)-—(0,0) N

36. Let
fx,y) = x% +3y? |
Use the €48 definition of limits to show that

lim  f(x,y)=0 1‘ I

(x> (0.0) ihiF

A 10.3.1 Functions of Two Variables

Suppose that the response of an organism depends on a number of independent
variables. To investigate this dependency, a common experimental design is to
measure the response when one variable is changed while all other variables are
kept fixed. As an example, Pisek et al. (1969) measured the net assimiliation of
CO; of Ranunculus glacialis, a member of the buttercup family, as a function of
temperature and light intensity. They varied the temperature while keeping the light
intensity constant. Repeating this experiment at different light intensities, they were
able to determine how the net assimiliation of CO, changes as a function of both
temperature and light intensity.

This experimental design illustrates the idea behind partial derivatives, Suppose
that we want to know how the function £ (x, y) changes when x and y change. Instead
of changing both variables simultaneously, we might get an idea of how f(x,y)

depends on x and y when we change one variable while keeping the other variable
fixed.

To illustrate, we look at
flx,y) =x%y

We want to know how f(x, y) changes if we change, say, x and keep y fixed. So we

fix y = yo. Then the change in f with respect to x is simply the derivative of f with
respect to x when y = y,. That is,

d d
/0 = a;xzyo = 2xy,

Such a derivative is called a partial derivative.

T

Definitlon: Suppose that.f is a function of two indeperident variables x anid -

- The partial derivative of £ with respect to x isdefined by * =~/
RERERRTRRE ) ACI) SR (€ hoy) = fayy o
S e e R

The bﬁx_'tial’derivatii'e off With re'speét to y is defined by - :

| | . o vay e K

P

o ry)

To denote partial derivatives, we use “3” instead of “4.” We will also use the notation

_ )

af (x,
Fe(x, ) o and fx,y) = f(axy y)
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The mixed-derivative theorem can be extended to higher-order derivatives.
The order of differentiation does not matter, as long as the function and all of its
derivatives through the order in question are continuous on an open disk centered
at the point at which we want to compute the derivative. For instance,

»Ff 383 ,.
Byiox 5@50 sin x)
= %%(yzcosx)

= %(Zycosx) =2cosx

which is the same as 33 f/(3x 9y?).

® 10.3.1

In Problems 1-16, find 3f/3x and 3f/dy for the given functions.
L flx,y) = x%y + x)? 2. f(x, y)=2xjy'—;§7

Loy =@y =y 4 fx,y) = 4 -7
S. f(x,y) =sin(x + y)

6. f(x,y) =tan(x — 2y)
T f(x,y) = cos*(x* — 2y) 8. f(x,y) =sec(y’x - x3)
9' f(xl )") = em

10. f(x,y) = x2e~ /2
11, f(x,y) = €* sin(xy) 12, f(x,y)= e’ cos(x? — y?)
B flx,y) =Inx+y) 14, f(x,y) =In(3x? — xy)
I5. f(x,y) =logy(y* =x%) 16, f(x,y) = logs(3xy)
In Problems 17-24, find the indicated partial derivatives.
7. flx,y) =3x* -y - 2y% £,(1,0)
8. f(x,y)=x"y —xy'3 £,1,1)
19. g(x,y) =¥, 5,(2,1)
0. h(u,v) = e“sin(u + v); h, (1, =1)
A f(x,2) =In(x2); file, 1)
2 g(v,w) = 8,1, 1)
3 fxy) = a5 fi(-1,2)
4 f(u,v) = e’ ln(u +v); £,(2,1)
5. Let

fOy)=4-32—y?

‘ompute f,(1,1) and 51,1), and interpret these partial
erivatives geometrically.

6. Let

fOy)=va—x1-y
‘ompute f,(1,1) and 5L 1), and interpret these partial
erivatives geometrically.
1. Let

fGxy)=1+x%

ompute f,(-2,1) and f,(~2,1), and interpret these partial
srivatives geometrically,
I Let

fOy) =22 —3yx

dmpute f,(1,2) and 5(1,2), and interpret these partial
‘Tivatives geometrically.

Section 10.3 Problems

29. In Example 4, we investigated Holling’s disk equation
aNT '
T 1¥ann
(See Example 4 for the meaning of this equation.) We will now

consider P, as a function of the predator attack rate g and the

length T of the interval during which the predator searches for
food.

(®) Determine how the predator attack rate a influences the
number of prey eaten per predator.

(b) Determine how the length T of the interval influences the
number of prey eaten per predator.

30. Suppose that the per capita growth rate of some prey at time
t depends on both the prey density H(t) at ¢ and the predator
density P(t) at r. Assume the relationship

1 dH H
—I;? =r(1—;)—aP (102)

where r, X, and a are positive constants, The right-hand side of
(10.2) is a function of both prey density and predator density.
Investigate how an increase in (a) prey density and (b) predator
density affects the per capita growth rate of this prey species.

o 10.3.2

In Problems 31-38, find 3f/dx, df/dy, and 8f/9z for the given
functions.

3 fOy ) =22+ yz? - xy

32 f(x,y,2) = xyz

BSfyd=xy2+ L M fry,0)= P e

3. flx,y,2) =ttt 36. f(x,y,2) =e"sinx

. foy,d=In(x+y+2) 38 f(x.y,2) = ytan(x? +2)
m 10.3.3

In Problems 3948, find the indicated partial derivatives.

. fx ) =2y + x5 54 40, f(x, y) = y2x — 3y); ot
a1 f(x,y) = xer; EL 42 f(x,y) =sin(x - y); 2L
4. f(u,w) = tan(u + w); L4

44, g(s, 1) = In(s? + 3s1); %j{

45. f(x,y) =x’cosy; fa, 46. f(x,y) =e'; a—"’,%,

N fx ) =G +y 8 48 f(xr,y) = sinGry); 6—";%

P,
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49, The functional responses of some predators are sigmoidal;
that is, the number of prey attacked per predator as a function of
prey density has a sigmoidal shape. If we denote the prey density
by N, the predator density by P, the time available for searching
for prey by T, and the handling time of each prey item per
predator by T, then the number of prey encounters per predator
as a function of N, T, and Tj can be expressed as

B*N2T
14 ¢N + bTyN?
where b and ¢ are positive constants.
(a) Investigate how an increase in the prey density N affects the
function f(N, T, Tj).
(b) Investigate how an increase in the time T available for search
affects the function f(N, T, T,).
(¢) Investigate how an increase in the handling time T, affects the
function f(N, T, Tp).
(d) Graph f(N, T, T,) as a function of N when T = 2.4 hours,
Ty = 0.2 hours, b = 0.8,and ¢ = 0.5.
50. In this problem, we will investigate how mutual interference
of parasitoids affects their searching efficiency for a host. We
assume that N is the host density and P is the parasitoid density.
A frequently used model for host-parasitoid interactions is the
Nicholson-Bailey model (Nicholson, 1933; Nicholson and Bailey,
1935), in which it is assumed that the number of parasitized hosts,
denoted by N,, is given by

N, = N[1 - e7F]

where b is the searching efficiency.
(a) Show that

f(NvT'Th)=

(103)

by solving (10.3) for b.

3 10.4 Tangent Planes, Differentiability, and Linearization
¥ 10.4.1 Functions of Two Variables

Tangent Planes Suppose that z = f(x) is differentiable at x = xg. Then the
equation of the tangent line of z = f(x) at (xg, z9) with zg = f(xo) is given by

4 flx) ——

L i (xon 29)

The curve z and the tangent line are illustrated in Figure 10.36.
We now generalize this situation to functions of two variables. The analogue of a

(b) Consider

N
N-N,

b= f(P.N.N,) = %m

as a function of P, N, and N,. How is the searching efficiency b
affected when the parasitoid density increases?

(c) Assume now that the fraction of parasitized host depends on
the host density; that is, assume that

N, =g(N)

where g(N) is a nonnegative, differentiable function. The
searching efficiency b can then be written as follows as a function
of P and N:

1 N

How does the searching efficiency depend on host density when
g(N)is a decreasing function of N? (Use the fact that g(N) < N.)

51. Leopold and Kriedemann (1975) measured the crop growth
rate of sunflowers as a function of leaf area index and percent of
full sunlight. (Leaf area index is the ratio of leaf surface area to the
ground area the plant covers.) They found that, for a fixed level of
sunlight, crop growth rate first increases and then decreases as a
function of leaf area index. For a given leaf area index, the crop
growth rate increases with the level of sunlight. The leaf area index
that maximizes the crop growth rate is an increasing function of
sunlight. Sketch the crop growth rate as a function of leaf area
index for different values of percent of full sunlight.

z~120= f'(x0)(x — xo) (10.4)

tangent line is called a tangent plane, an example of which is shown in Figure 10.37.
Letz = f(x, y) be a function of two variables. We saw in the previous section that the
partial derivatives 3f/dx and 9f/3dy, evaluated at (xo, yo), are the slopes of tangent
lines at the point (xo, yo, 20), Withzg = f(xp, yo), to certain curves through (xo, yo, 20)
on the surface z = f(x, y). These two tangent lines, one in the x-direction, the other
in the y-direction, define a unique plane. If, in addition, f(x, y) has partial derivatives
that are continuous on an open disk containing (xp, yo), then we can show that the
tangent line at (xo, yo, zo) to any other smooth curve on the surface z = f(x, y)
through (xo, yo, 20) is contained in this plane. The plane is then called the tangent
plane.

We will use the two original tangent lines to find the equation of the tangent plane
at a point (xq, yo, Zo) on the surface z = f(x, y). We take the curve that is obtained
as the intersection of the surface z = f(x, y) with the plane that is parallel to the y~z
plane and contains the point (xg, yo, zg) —that is, the plane x = x;—and we denote
this curve by C,. Its tangent line at (xp, yp, Zo) is contained in the tangent plane. (See
Figure 10.37.) Likewise, we take the curve of intersection between z = f(x, y) and

»Y

Figure 10.36 The curve z == f(x)
and its tangent line at the point
(x0, z0)-
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The linearization of f about the point (x}, xJ,

Lx{,...,x;

..., Xy)is then

G xh P
| —
FoYC P . ) !
+ DE(xf, ..., x}) :
. *
. . Xn — X,
Sy x)

t Section 10.4 Problems | ‘

2 10.4.1

In Problems 1-10, the tangent plane at the indicated point
(x0. Yo, 20) exists. Find its equation.

L f(x,y)=2x"+y%(1,2,6)
2 flxy)=x2=3y%(-1,1,-2)
3 fxy) =xy;(-1,-2,2)
4 f(x,y) =sinx +cosy; (0,0,1)
5. f(x,y) =sin(xy); (1,0,0)
b fr.y) =€ (1,-1,¢d)
1o fny) =€ (1,0 )
8. f(x,y)=¢"cosy; (0,0,1)
d f(x,y)=In(x + y); 2, ~1,0)
10, f(x,y) =In(x*+y2; (1, 1,In2)
'n Problems 11-16, show that f(x,y) is differentiable at the
ndicated point, :
L ) =y +xty (LD 12 f(x,y) =xy—3x%(1, 1)
3. f(x,y) =cos(x +¥);(0,0) 14, fx, y) =€7;(0,0)
B flxy) =x 4y —2xy;(~1,2)
6. £(x,y) = tan(x? + y2); (1, —E)
4" 4
n Problems 17-24, find the linearization of f (x, Y) atthe indicated
oint (xg, Yo).
T fy)=x-3y;(3,1)
8 flx,y) =2xy; (1, -1)
% f(x,y) =x+2y;(1,0)
0. f(x,y) = cos(x?y); (%, 0)
L f(x,y) = tan(x + y); (0,0)
3 flx,y)=e¥*;(1,2)
Yofxy) =In(x*+y),1)
L f(x,y)=x% (1,0
5. Find the linear approximation of

flx,y) =t

(0, 0), and use it to approximate £(0.1, 0.05). Using a calculator,
ympare the approximation with the exact value of f(0.1,0.05).

. Find the linear approximation of

fx, y) = sin(x +2)

{0,0), and use it to approximate f(=0.1,0.2). Using a
Iculator, compare the approximation with the exact value of
-0.1,0.2).

27. Find the linear approximation of
fx, y) = In(x* - 3y)

at (1, 0), and use it to approximate f(1.1,0.1), Using a calculator,
compare the approximation with the exact value of f(1.1,0.1).
28. Find the linear approximation of

f(x,y) = tan(2x — 3y?)

at (0,0), and use it to approximate £(0.03,0.05). Using a

calculator, compare the approximation with the exact value of
£(0.03, 0.05).

= 10.4.2
In Problems 29-36, find the Jacobi matrix for each given function.

2. f(x,y) = r;ﬁfi,] 30. £(x, y) = '2x4:23y]
L f(x, y) = -z:i:l 32 f(x, y) = [si(:(;z);)]
3. fx, y) = [gg:g;i;] 3. f(x, y) = -l“(:,f,y)]
35. B(x,y) = -zxzﬁfsiiyy +x]

36. B(x,y) = -@]

In Problems 3742, find a linear approximation to each Sunction
f(x, y) at the indicated point.

212y
3 M,y =| "1 ] at(1,1)

L Xy

38. f(x, y) =

[3x — y?
4y ] at (-1, -2)
2x-y

39. f(x,y) = ln(‘;x - ] at (1,1)

40, £(x, y) =[ ¢’ siny ]at ©, 0)

eV cosx

¢

4L f(x, y) = [ 3 ] at (1,1)

(x + y)? ] at (=1, 1)
xy

43. Find a linear approximation to

2
fx, y) = [’;yz _"{]

at (1, 2). Use your result to find an approximation for f(1.1,1.9),
and compare the approximation with the value of f(1.1, 1.9) that
you get when you use a calculator.

2. f(x,y) =
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" 44, Find a linear approximation to

_ | Xy
f(x, y) = [ny ]
at (—1,1). Use your result to find an approximation for

f(~0.9, 1.05), and compare the approximation with the value of
£(~0.9, 1.05) that you get when you use a calculator.

45. Find a linear approximation to

2xly

at (2, -3). Use your result to find an approximation for
£(1.9, =3.1), and compare the approximation with the value of
f(1.9, —3.1) that you get when you use a calculator.

46, Find a linear approximation to

fx., y) = [Vf" 4 ]
=Yy

at (1,2). Use your result to find an approximation for

£(1.05,2.05), and compare the approximation with the value

of f(1.05,2.05) that you get when you use a calculator.

(x — y)? ]

M 10.5 More about Derivatives (Optional)

& 10.5.1 The Chain Rule for Functions of Two Variables

In Section 10.3, we discussed how the net assimilation of CO, can change as a function
of both temperature and light intensity. If we follow the net assimilation of CO; over
time, we must take into account the fact that both temperature and light intensity
depend on time. If we denote the temperature at time ¢ by T (¢), the light intensity
at time ¢ by /(t), and the net assimilation of CO; at time ¢ by N(z), then N(z) is a
function of both T (t) and I(¢), and we can write

N@) = f(T (), 1(t)

Net assimilation is thus a composite function.
To differentiate composite functions of one variable, we use the chain rule.

Suppose that w = f(x) is a function of one variable and that x depends on . Then,
by the chain rule, to differentiate w with respect to ¢, we have

dw _dwdx 10.12
dt dx dt (10.12)
The chain rule can be extended to functions of more than one variable:
Chain Rule for Functions of 'I‘v'vo'lndépeh(i'eﬁt Variables If w = f(x, )

is differentiable and x and y are differentiable functions of ¢, then w is a .
differentiable function of f and

dw _dwdx  dwdy
dt ~ dxdt  dydt .

;

We will not prove this formula, but merely outline the steps that lead to it. We
approximate w = f{x, y) at (xo, yo) by its linear approximation

3 [}
L(x,y) = f(x0, Yo) + M(x -

8f (xo,
. %) + f);o yo)(y

- Yo)

If we set Ax = x — x0, Ay = y — ¥, and Aw f(x,y) — f(x0, y0), Wwe can

approximate Aw = f(xp + Ax, yy + Ay) — f(xo, yo) by its linear approximation.
We find that

. 9f (xo, yo) af (xo, yo)
ox Ax + 3y Ay

Dividing both sides by A¢, we obtain

Aw

Aw  3f(xo, yo) Ax
At ax At

af (xo0, yo) Ay
3y At




Solution
of f is given as

Hence,
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The gradient of f at (1, 2) is perpendicular to the level curve at (1, 2). The gradient

Vi1, = [_ﬂ

To normalize this vector, we divide V f (1, 2) by its length, Since

VAL =/ (*+ (-4 = /4 +16 =2,/5

"the unit vector that is perpendicular to the level curve of f(x, y) at (1,2) is

u

$v/S

(-]

Section 10.5 Probhlems \

2 10.5.1

1. Let f(x,y) = x* + y? with x(¢t) = 3t and y(1) = ¢. Find the
derivative of w = f(x, y) with respect to t whent = In2.

2. Let f(x,y) = € siny with x(t) = ¢ and y(t) = £*. Find the
derivative of w = f(x, y) with respect to r whent = 1.

3. Let f(x,y) = /x2+ y? with x(¢) = ¢t and y(t) = sint. Find
the derivative of w = f(x, y) with respect to t when t = /3.

4. Let f(x,y) = In(xy — x?) with x(¢) = ¢? and y(¢) = ¢. Find
the derivative of w = f(x, y) with respect tot when ¢ = 5.

5. Let f(x,y) = % + % with x(#) = sint and y(¢) = cost. Find
the derivative of w = f(x, y) with respect to t when ¢t = /4.

6. Let f(x,y) = xe” with x(¢t) = ¢' and y(f) = 2. Find the
derivative of w = f(x, y) with respect to r when t = 0.

7. Find & for z = f(x, y) with x = u(t) and y = v(z).

8. Find 22 for w = e/ withx = u(t) and y = v(r).

A 10.5.2

9. Find 2 if (x? + y})e” =0,

10. Find 2 if (sinx + cos y)x2 = 0.

11 Find £ if In(x? + y?) = 3xy.

12. Find £ if cos(x? + y?) = sin(x? — y?).

13. Find % if y = arccos x.

14, Find g-} if y = arctan x.

15, The growth rate r of a particular organism is affected by
both the availability of food and the number of competitors for
the food source. Denote the amount of food available at time ¢
by F(r) and the number of competitors at time r by N(1). The
growth rate r can then be thought of as a function of the two
time-dependent variables F(¢) and N (¢). Assume that the growth
rate is an increasing function of the availability of food and a
decreasing function of the number of competitors, How is the
growth rate r affected if the availability of food decreases over
time while the number of competitors increases?

16. Suppose that you travel along an environmental gradient,

along which both temperature and precipitation increase. If the
abundance of a particular plant species increases with both

temperature and precipitation, would you expect to encounter
this species more often or less often during your journey? (Use
calculus to answer this question.)

= 10.5.3

In Problems 17-24, find the gradient of each function.

17. f(x,y) = x%y* 18. f(x,y) = 7%

19, f(x,y) = /x¥=3xy 20. f(x,y) =x(x2 — y})¥?
2L f(x,y) =exp I:\/x2 + yz] 22. f(x,y) = tan ‘;—3

23 f(x,y)=1In (% + f) 24. f(x,y) = cos(3x2 —2y%)
In Problems 25-30, compute the directional derivative of f(x, y)
at the given point in the indicated direction.

25. f(x,y) = /222 + y? at (1,2) in the direction [}]

26. f(x,y) = xsiny at (-1, 0) in the direction [_f]

29 £(x, ) = €** at (0, 0)in the direction [ ~{]

28, f(x,y) = x>y at (2, 3) in the direction [_f]

29. f(x,y) = 2xy* — 3x?y at (1, —1) in the direction [;’]
30. f(x,y) = ye* at (0, 2) in the direction [_‘:]

In Problems 31-34, compute the directional derivative of f(x, y)
at the point P in the direction of the point Q.

L fx.y)=2x2y-3x,P=(2,1),0 = (3,2

32 fx,y)=dxy+yL P=(-1,1),0=(3,2)

B fry)=yxy—-2x2, P =(1,6),Q0=3,1)

M f,y)=eYP=2,2.0=(,~1)

35. In what direction does f(x,y) = 3xy — x? increase most
rapidly at (—~1, 1)?

36. In what direction does f(x,y) = e*cosy increase most
rapidly at (0, 7r/2)?

37. In what direction does f(x,y) = /x? — y? increase most
rapidly at (5, 3)?
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38. In what direction does f(x, y) = In(x* + y?) increase most

rapidly at (1, 1)?
39. Find a unit vector that is normal to the level curve of the
function
flx,y)=3x+4y
at the point (—1, 1).
40. Find a unit vector that is normal to the level curve of the

function
2

fo,y)=x+ %
at the point (1, 3).

41. Find a unit vector that is normal to the level curve of the
function

fxy)=x* -y
at the point (1, 3).
42. Find a unit vector that is normal to the level curve of the
function
flx, »)y=xy
at the point (2, 3).

M 10.6 Applications (Optional)

43, Chemotaxis Chemotaxis is the chemically directed move-
ment of organisms up a concentration gradient—that is, in the
direction in which the concentration increases most rapidly. The
slime mold Dictyostelium discoideum exhibits this phenomenon.
Single-celled amoebas of this species move up the concentration
gradient of a chemical called cyclic adenosine monophosphate
(AMP). Suppose the concentration of cyclic AMP at the point
(x, y) in the x-y plane is given by
4

flx,y)= Eam

If you place an amoeba at the point (3,1) in the x—y plane,
determine in which direction the amoeba will move if its
movement is directed by chemotaxis.

44. Suppose an organism moves down a sloped surface along the
steepest line of descent. If the surface is given by

f(x')’):xz"'yz

find the direction in which the organism will move at the point
2,3).

A 10.6.1 Maxima and Minima

In Section 5.1, we introduced local extrema for functions of one variable. Local
extrema can also be defined for functions of more than one independent variable;
here, we will restrict our discussion to functions of two variables. Recall that we
denoted by B;(xo, yo) the open disk with radius & centered at (xq, yo). The following
definition, with which you should compare the corresponding definition in Section
5.1, extends the notion of local extrema to functions of two variables:

Deflnition A ﬂmctxon f (x, y) deﬁned onia set Dc R2 has a local (or relative)
maximum at a point (xo, ) if there exists a 8 > 0 such that o 1

f (x < f (X0, yo) for all (x, y) e B.s(xo. yo) ﬂ D

e P s

A function f (x, y) deﬁned ona set D CR? has alocal (or relative) minimum :
at a pomt (xo. w)if there exxsts ad > 0 such that i :

9

o fGx y) > f(xo.yo) for all. (x.y) € Ba(xo,yo)ﬂD

1

Informally, a local maximum (local minimum) is a point that is higher (lower)
than all nearby points. We can define global (or absolute) extrema as well: If the
inequalities in the definition hold for all (x, y) € D, then f has an absolute maximum
(minimum) at (xo, yo). Figure 10.43 shows an example of a function of two variables
with a local maximum at (0, 0).

How can we find local extrema? Recall that in the single-variable case, a
horizontal tangent line at a point on the graph of a differentiable function is a
necessary condition for the point to be a local extremum (Fermat's theorem). We can
generalize this statement to functions of more than one variable: Looking at Figure
10.43, we see that the tangent plane at the local extremum is horizontal. The equation
of a horizontal tangent plane on the graph of a differentiable function f(x, y) at
(x0, Yo) is

z = f(xo, yo)

Comparing this equation with the general form of a tangent plane (Section 10.4), we

- I
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constant of 107% cm?/s, which means that it takes an oxygen molecule roughly 500
seconds to cross a distance of 1 mm by diffusion alone. Ribonuclease (an enzyme
that hydrolyzes ribonucleic acid) in water at 20°C has a diffusion constant of 1.1 x
10~%cm?/s, which means that ribonuclease takes roughly 4672 seconds (or 1 hr,
18 min) to cross a distance of 1 mm by diffusion alone. These examples illustrate
why organisms frequently rely on other active mechanisms to transport molecules.

'The diffusion equation (10.35) can be generalized to higher dimensions. In that
case, (10.33) becomes

dc
—_=-VJ 10.39
o (10.39)
and (10.34) becomes
J =-DVc (10.40)
Combining (10.39) and (10.40), we find that
ac
— =DV .(V
57 (Vo)

where V - (Vc) is to be interpreted as a dot product. That is, if x = (x;, x3, x3) € R®,

t € R, then

dc 3%c 3 ¥
7 =Plmt =3+t
at dx;  dx,  Ox3

As a shorthand notation, we define

82 32 32
— + —
dx;

A= —_
axs  9xl

where A is called the Laplace operator. We then write

ac —DA
ar o€
More generally, if x = (xq, x3, ..., x,) € R*, then
2 9 9?
A=t —+- 1+ n2
dx;  Ox, 9x,

(Ac is read “the Laplacian of c.”)

i Section: 10.6; Problems:

210.6.1

In Problems 1-10, the functions are defined for all (x,y) € R2.
Find all candidates for local extrema, and use the Hessian matrix to
determine the type (maximum, minimum, or saddle point).

L fx,)=x+y>-2x 2 f(x,y) = —2x2—y2 +3y

3 f(x,y)=x?y~4x? —4y 4 flr,y) =xy—2y°

5. flx,y)==2x"+y' =6y 6 flx,y)=x(1-x+y)
2_,2

T flx,y)=e Y
9

. f(x,y) =xcosy

8 flx,y)=yxe™
10. f(x,y) = ysinx

1. In this problem, we will illustrate that if one of the eigenvalues
of the Hessian matrix at a point where the gradient vanishes is

equal to 0, then we cannot make any statements about whether the
point is a local extremum just on the basis of the Hessian matrix.

Consider the following functions:

filx,y) = x?

LGy =22+ y

iy =x 4yt
Figures 10.68 through 10.70 show graphs of the three functions.
(a) Show that,fori =1,2,and 3,

0
vs0.0=[]
(b) Show that, fori =1, 2,and 3,

Hess £:(0,0) = [(2) g}

and determine the eigenvalues of Hess f; (0. 0).
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Figure 10.68 fi(x, y) in Problem 11.
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Figure 10.69 f,(x, y) in Problem 11.
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Figure 10.70 f3(x, y) in Problem 11,

1

(c) Since one of the eigenvalues of Hess f(0, 0) is equal to 0,
we cannot use the criterion stated in the text to determine the
behavior of the three functions at (0, 0). Use Figures 10.68 through
10.70 to describe what happens at (0, 0) for each function.

12. Consider the function

flx,y) = ax® + by*

Vf(0,0):[g]

(b) Find values fora and & such that (i) (0, 0) is a local minimum,
(ii) (0, 0) is a local maximum, and (iii) (0, 0} is a saddle point.

(a) Show that

In Problems 13-16, the functions are defined on the rectangular
domain :

D={(x,y):~1<x<l,-1sy<l
Find the absolute maxima and minima of f on D.
13 fx,y)=2x—y 14, f(x,y)=3—x+2y
15, f(x,y) = x? =y 16. f(x,y) = x* + ¥
17. Find the absolute maxima and minima of

fx.oy)=x2+y —x+2y
on the set

D={x,y)=0<x=<1,-2<y=<0}

18. Find the absolute maxima and minima of
fro)=x =y +dx+y
on the set
D={(x,y)=-4<x<00<y<1)
19. Maximize the function
fx,y) =2xy = x2y — xy*
on the triangle bounded by the line x + y = 2, the x-axis, and the

y-axis.
20. Maximize the function
f(x,y) =xy(15 ~ 5y — 3x)
on the triangle bounded by the line 5y + 3x = 15, the x-axis, and

the y-axis.
21. Find the absolute maxima and minima of

fay=x>+y" +4x -1

on the disk
D={(xy) :x*+y* <9
22. Find the absolute maxima and minima of

fx,y)=x*+y'—6y+3
on the disk

D ={(x,y): x" + y* < 16}
23. Find the absolute maxima and minima of

fa=xt+y +x-y

on the disk
D={xy:x*+y* <1}
24, Find the absolute maxima and minima of

f.y=x*+y +x+2y

on the disk

D={(x,y):x*+y* <4}
28, Can a continuous function of two variables have two maxima
and no minima? Describe in words what the properties of such a

function would be, and contrast this behavior with a function of
one variable.

26. Suppose f(x, y) has a horizontal tangent plane at (0, 0). Can
you conclude that f has a local extremum at (0, 0)?

27. Suppose crop yield Y depends on nitrogen (N) and
phosphorus (P) concentrations as

Y(N, P) = NPe~N+P)

Find the value of (N, P) that maximizes crop yield.

28. Choose three numbers x, y, and z so that their sum is equal
to 60 and their product is maximal.

29. Find the maximum volume of a rectangular closed (top,
bottom, and four sides) box with surface area 48 m?.

30. Find the maximum volume of a rectangular open (bottom and
four sides, no top) box with surface area 75 m?.

31. Find the minimum surface area of a rectangular closed (top,
bottom, and four sides) box with volume 216 m*.

32. Find the minimum surface area of a rectangular open (bottom
and four sides, no top) box with volume 256 m®.

2




33. The distance between the origin (0,0,0) and the point

(x,y,2)is
Vil yt4 2

Find the minimum distance between the origin and the plane
x +y + z = 1. (Hint: Minimize the squared distance between
the origin and the plane.)

34. Given the symmetric matrix

a=[t3]

where a, b, and c are real numbers, show that the eigenvalues of
A are real. (Hint: Compute the eigenvalues.)

35, Understanding species richness and diversity is a major
concern of ecological studies. A frequently used measure of
diversity is the Shannon and Weaver index

H=—ip.~lnp,-
i=1

where p; is equal to the proportion of species i, i = 1,2, ..., n,
and 7 is the total number of species in the study area. Assume that
a community consists of three species with relative proportions
P, p2, and p;.

(@) Use the fact that p; + p, + p; = 1 to show that H is of the
form

H(p1.p2)=—piInp, ~ pyIn p,
== p1~p)In(l — p; - p,)

and that the domain of H(p,, p,) is the triangular set in the p;-p,
plane bounded by the lines p; = 0, p, = 0, and p+p=1
(b) Show that H attains its absolute maximum when PL=p=
py=1/3 ‘
110.6.2
In Problems 3645, use Lagrange multipliers to find the maxima
and minima of the functions under the given constraints.
36. fx.y)=2x—y; x> +y*=5
37 fx, ) =3xr+y;xt +y2 =1
3B, fx,y)=xy;xr+y2 =4
3. fx. ) =xy;2x —4y =1
W fx,y=xt-yi2x+y=1
A fx, ) =x?+y43x -2y =4
2. fx,y)=xyhx-y=0
3. fix,y)=x*y;x2+3y =1
4. flx.y) =x2y%2x -3y =4
45, flx,y)=xlytxt -yt =1
In Problems 46-55, use Lagrange multipliers to find the answers to
the indicated problems in Section 5.4.
46. Problem 1 47. Problem 2

48. Problem 3 49, Problem 4
§0. Problem 5 51. Problem 6
52. Problem 7 53. Problem 9
54, Problem 12 55. Problem 18

56. Let
fey)y=x+y (x,y)eR?
with constraint function xy = 1.
(a) Use Lagrange multipliers to find all local extrema,
(b) Are there global extrema?
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57, Let

fx,yy=x+y
with constraint function

1
l+—=1,Jc;v.60,y;aé0
x oy

(a) Use Lagrange multipliers to find all local extrema.
(b) Are there global extrema?
58. Let

fe.y)=xy, (x,y)eR?
with constraint function y — x2 = 0,
(») Use Lagrange multipliers to find candidates for local extrema.
(b) Use the constraint y — x? = 0 to reduce Sfx,y) to asingle-
variable function, and then use this function to show that f(x, y)
has no local extrema on the constraint curve.
59. Explain why f(x, y) has a local extremum at the point P in
Figure 10.63 under the constraint g(x, y) = 0ifc; > ¢; > ¢5 > Cs.
60. Explain why f(x, y) has a local extremum at the point P in
Figure 10.63 under the constraint glx,y) = 0ife; < ¢; and
C2 > C3 > C4.
61. In the introductory example, we discussed how egg size
depends on maternal age. Assume now that the total amount of
resources available is 10 (in appropriate units), the number of eggs
per clutch is 3, the number of clutches is 2, and the egg size in
clutch number i is denoted by x;.
{(a) Find the constraint function.

(b) Suppose the fitness function is given by
3 3
JFxi, xp) = 'Z'P(xx) + Zp(xz)

where p(x) = 5%:‘; Find the optimal egg sizes for clutch 1 and
clutch 2 under the constraint in (a).

62. In the introductory example in this subsection, we discussed
how egg size depends on maternal age. Assume now that the
fitness function is given by

5 5
flx,x) = sp(xn) + gp(xz)

with
3x
+x

X)) =
p(x) ,
The constraint function is given by

5)([ + sz =17
(a) Compare the given functions with the corresponding ones in
the text, and identify the parameters n, P1, p2,and R from the text.
(b) Solve the constraint function for x; and substitute your
expression for x, into the function f. This then yields a function
of one variable. Find the domain of this single-variable function
and use single-variable calculus to determine optimal egg sizes for
clutch 1 and clutch 2.
N 10.6.3
63. Show that

clx, 1) =

1 . [ xz]
e —
V8mt P 8t
solves
dclx, t) _ 2826'(x, 1)
a Ix?
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64. Show that (d) Use the fact that

2 ©
c(x, ) = L exp [—f-] f e M du=2n
J2mt 2t -0

to show that, for¢t > 0,
solves

dclx, 1) 13%(x,1) o
a2 oxt f c(x, )dx =1

-0

65. A solution of .
(e) The function c(x, t) can be interpreted as the concentration

3c(x, 1) _ D dc(x, 1) of a substance diffusing in space. Explain the meaning of

at Ax? w
is the function f_w c(x,)dx =1
2 .
clx, 1) = __1_.__ exp [__‘f_] and use your results in (c) and (d) to explain why this means that
47 Dt 4Dt initially (i.e., at # = 0) the entire amount of the substance was

released at the origin.

Mathematically, we can specify such an initial condition (in
which the substance is concentrated at the origin at time 0) by the
S-function 8(x), with the property that

forx e Randt > 0.

(a) Show that, as a function of x for fixed values of t > 0, c(x, 1)
is (i) positive for all x € R, (if) is increasing for x < 0 and
" decreasing for x > 0, (il) has a local maximum at x = 0, and
(iv) has inflection points at x = +./2Dt.

8(x) =0, forx#0
(b) Graph c(x, 1) as a function of x when D = 1 fort = 0.01,

t=01,andt =1 and -
66. A solution of / 8(x)dx =1
-0
2
detx, 1) = Da cx. 0 67. The two-dimensional diffusion equation
At ax?
. : an(r, 1) 3*n(r,t)  n(r,1)
is the function = 1041
, at D ( 3x? ay? ( ) )
1 x
c(x,t) = —4-3; exp [—m] where n(r, t), r = (x,y), denotes the population density at the
4 pointr = (x, y) in the plane at time ¢, can be used to describe the
forx € Randt > 0. spread of organisms. Assume that a large number of insects are
(a) Show that alocal maximum of c(x, 1) occurs at x = 0 for fixed released at time O at the point (0, 0). Furthermore, assume that,
‘. at later times, the density of these insects can be described by the
(b) Show that (0, #), ¢t > 0, is a decreasing function of 1. diffusion equation (10.41). Show that
(c) Find no x4y 4
1 Wy, ) = — - :
,llr(r; clx,1) ey D= [ 4Dt ] ,

when x = 0 and when x # 0. satisfies (10.41). J
B 10.7 Systems of Difference Equations (Optional) :

| 10.7.1 A Biological Example

About 14% of all insect species (and thus about 10% of all species of multicellular
animals) are estimated to belong to a group of insects called parasitoids. These are
insects (mostly in the order Hymenoptera) that lay their eggs on, in, or near the (in
most cases, immature) body of another arthropod, which serves as a host for the
developing parasitoids. The eggs develop into free-living adults while consuming the
host.

Parasitoids play an important role in biological control. A successful example
is Trichogramma wasps, which parasitize insect eggs. These wasps are reared in
factories for subsequent release to the field. Every year, millions of hectares of
agricultural land are treated with released Trichogramma wasps, for instance, to
protect sugar cane from the sugarcane borer, Chilo spp., in China, or to protect
cornfields from the European corn borer, Ostrinia nubilalis (Hiibner), in western
Europe. Another successful example of biological control of an insect pest is the




1C.7 & Systems of Difference Equations (Optional) 581

The solutions of this equation are complex conjugate if the discriminant
2
(1+ %CN*) — 4acN* <0

With N* = ;% L Inb, the discriminant is

Inb

Inb )2 4b

f(b)=(1+b_1 -

This function depends only on b. Graphing f (b) (see Figure 10.74) shows that f(b) <
0 for b > 1, thus confirming that the two eigenvalues of J are complex conjugate if
b>1.
When we discussed linear systems of difference equations, we derived the
identity
I[P = hal? = Miry = detJ

The determinant of J is given by

blnb
b—

1 1
det J =acN‘E +acN* (1 - -5) = acN* =

—

Graphing g(b) = l;,'fl" as a function of b (see Figure 10.75), we see that g(b) > 1 for

b > 1, from which we conclude that, for b > 1,

IAl? = A = Ajry > 1

implying that the nontrivial equilibrium is unstable. ]
A b
14 — f(b) 18 | &)
12 1.6 +
10 14 }-
8r L
61 I.T
S ar s |7/
= Ll % 08f |
0 T T T T T > 06 :
-2+ 05 1 25 3 355 04+ :
—4r 02 !
-6+ 0 1 | 1 L t ] I
\j 0 0.5 1 1.5 2 2.5 3 35 b
Figure 10.74 The graph of f(b) confirms that Figure 10.75 The graph of g(b) confirms that g(b) > 1
fb) <0forb > 1. forb > 1. :

Sectio 10.7 Problems

110.7.1 1. Evaluate the Nicholson-Bailey model for the first 10 genera-
‘roblems 16 refer to the Nicholson~Bailey host-parasitoid model. tlons' when a = 0.02,¢ = 3, and b = 15 - For th'e in itial hfm
‘roblems 1, 2, 5, and 6 are best done with the help of a spreadsheet, d;nsny,;:hooge Ny = 5, and for the initial parasitoid density, o
ut can also be done with a calculator. Nicholson and Bailey =~ ©"°9%¢ fo =0. ) ) o
wroduced the discrete-gencration host-parasitoid model of the ~ % Evaluate the Nicholson-Bailey model for the first 10 genera-

s tions when @ = 0.02, ¢ = 3, and b = 0.5. For the initial host | J
density, choose Ny = 15, and for the initial parasitoid density, i

N4 = bN,e™h choose Py = 0. o

Pro = cN)[1 — =P 3. Show that when the initial parasitoid density is Py = 0, the ;

1+l ! Nicholson~Bailey model reduces to :;

”'I—_-O,).,z..... Nl+]=bN/ I
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" With Ny denoting the initial host density, find an expression for N,
in terms of Ny and the parameter b.

4. When the initial parasitoid density is Pp = 0, the Nicholson—
Bailey model reduces to

Ny =bN,

as shown in the previous problem. For which values of b is the
host density increasing if No > 0? For which values of bisit
decreasing? (Assume that b > 0.)

5. Evaluate the Nicholson-Bailey model for the first 15 genera-
tions when a = 0.02,¢ = 3, and b = 1.5. For the initial host
density, choose Ng = 5, and for the initial parasitoid density,
choose Py = 5.

6. Evaluate the Nicholson-Bailey model for the first 25 genera-
tions when a = 0.02, ¢ = 3, and b = 1.5. For the initial host
density, choose No = 15, and for the initial parasitoid density,
choose Py = 8.

Problems 7-12 refer to the negative binomial host-parasitoid
model. Problems 7, 8, 11, and 12 are best done with the help of
a spreadsheet, but can also be done with a calculator. The negative
binomial model is a discrete-generation host-parasitoid model of
the form

P -k
Nt = bN, (1 + %)

P —~k
P,+1=CN,|:1~—(1+a—k—") ]

fort=0,1,2,....

7. Evaluate the negative binomial model for the first 10
generations when a = 0.02, ¢ = 3, k = 0.75,and b = 1.5. For the
initial host density, choose Ny = 5, and for the initial parasitoid
density, choose Py = 0. o

8. Evaluate the negative binomial model for the first 10
generations when a = 0.02, ¢ = 3,k = 0.75, and b = 0.5. For the
initial host density, choose Ny = 15, and for the initial parasitoid
density, choose Py = 0.

9, Show that when the initial parasitoid density is P, = 0, the
negative binomial model reduces to

Nyt = BN,

With N, denoting the initial host density, find an expression for N,
in terms of Ng and the parameter b.

10. When the initial parasitoid density is Py = 0, the negative
binomial model reduces to

Nv+l =bN,

as shown in the previous problem. For which values of b is the
host density increasing if Ny > 0? For which values of b is it
decreasing? (Assume that b > 0.)

11. Evaluate the negative binomial model for the first 25
generations whena = 0.02,¢ =3, k = 0.75, and b == 1.5. For the
initial host density, choose Ny = 100, and for the initial parasitoid
density, choose Py = 50. ‘

12. Evaluate the negative binomial model for the first 25
generations when a = 0.02, ¢ = 3, k = 0.75, and b = 0.5. For the
initial host density, choose Ny = 100, and for the initial parasitoid
density, choose Py = 50.

13. In the Nicholson-Bailey model, the fraction of hosts escaping
parasitism is given by

fpy=e*
(a) Graph f(P) as a function of P fora = 0.1 and a = 0.01.

(b) For a given value of P, how are the chances of escaping
parasitism affected by increasing a?

14. In the negative binomial model, the fraction of hosts escaping
parasitism is given by

aP\™*
f(P)=(1+—k—)

(a) Graph f(P) asa function of P fora = 0.1 and g = 0.01 when
k =0.75.

(b) For k = 0.75 and a given value of P, how are the chances of
escaping parasitism affected by increasing a?

15. In the negative binomial model, the fraction of hosts escaping
parasitism is given by

aP\™*
f(P)=(l+—k—)

(a) Graph f(P) asafunction of P fork = 0.75and k = 0.5 when
a =0.02

(b) For a = 0.02 and a given value of P, how are the chances of
escaping parasitism affected by increasing k?

16. The negative binomial model can be reduced to the
Nicholson-Bailey model by letting the parameter k in the negative
binomial model go to infinity. Show that

—x
lim (1 + f{_)) = g~oF

k-»00

(Hint: Use 'Hospital’s rule.)

110.7.2
17. Show that [§] is an equilibrium of

ae+1] _[=07 0 [ xa®
x(t + 1) -1 -03 0.2 x5(1)

and determine its stability.
18. Show that [ is an equilibrium of

X\(t +1) _ 0.4 0.2 xi(1)
e+ | |0 -0.9 Xx2()

and determine its stability.
19. Show that [g] is an equilibrium of

we+D]_[-14 0 [ 20
Be+D [T =05 01 n0
and determine its stability.
20. Show that [ ] is an equilibrium of

x(¢+1 ] _[01 0.4 x (1)
xe+1)]7 101 -02 x3(t)

and determine its stability.
21. Show that [8] is an equilibrium of

e+ _ |12 x1 ()
i+D {13 21| x

and determine its stability.




22. Show that [g] is an equilibrium of

@+ | _ (15 02} x()
xn(t+1 ] 1008 0 x(t)
and determine its stability.
23. Show that the equilibrium [8] of

xit+1D )} _ 1 ~0.2 ~04 ][ xi(n)
xt+1) |~ 0.6 0.1 x2(1)
is stable.

24. Show that the equilibrium [g] of
xe+D]_[ 02 037 x0
e+ [T ~05 —04 | x0)

is stable.

25. Show that the equilibrium [§] of

@+ _ 142 =347 @)
LE+D17 124 -1 x2(t)
is unstable.

26. Show that the equilibrium [{] of

xn+1 ) _ 12 -4 0
e+ {715 =61 x()

is stable.
3 10.7.3
27. Show that the equilibrium [g] of
t
x(t+1) = ___sz2___
4(1 4+ x; (1))
25t
w0+ 1) = =8
1+ 220

is locally stable.
28. Show that the equilibrium [0] of

0
Ixz(8)
Pl = 2
xl 1+x2()
x4 1) = =
1+ 22(1)

s unstable.
2. Show that the equilibrium [§ ] of

Xt +1) = x()
2x2(t) — %1 (1)
x(t+1D = 2—_’_;1(7)—

§ locally stable.

0. Show that, for any a > 1, the equilibrium [8] of

Xt +1) = x2(s)
axy(t) — (@ — Dx, ()

i+ = atal)

s locally stable,

10.7 ® Systems of Difference Equations (Optional)

31. Show that [g] is an equilibrium point of

I[(t + 1) = axz(t)
x2(t + 1) = 2x,(£) — cos(xz(t)) + 1

Assume that a > 0. For which values of a is [8] locally stable?

32, Show that [g] and ['Z ] are equilibria of
Xt +1) = —x(f)
x(t + 1) = sin(xy(2)) — x,(¢)

and analyze their stability.
33. Find all nonnegative equilibria of

(@ +1) =x()
1 2 2
Xt+1) = Exl(t) + 3«\72(') —~x,(1)
and analyze their stability.
34. Find all nonnegative equilibria of
x0+1) = x(t)
1 1 )
i+ = Exl(t) + sz(’) —x;(t)

and analyze their stability.

35. For which values of g is the equilibrium [g] of

axa(t)

Xt +1) = ——
14+ x7(0)

x@)

x(t + 1) = 3
1+ x,(0)

locally stable?
36. For which values of a is the equilibrium [g] of
x(t +1) = x(¢)
1
x(t+1) = 200 + axn) - x0)

locally stable?

37. Denote by x;(t) the number of juveniles, and by x,(r) the
number of adults, at time ¢. Assume that x1(t) and x,(¢) evolve

according to
xi(t + 1) = x2(0)

1
xRt +1) = 2x0(@) + ra) - P 0))

(a) Show that if r > 1/2, there exists an equilibrium [:‘.] with
R

x> 0and x; > 0. Find x} and xJ.

(b) Determine the stability of the equilibrium found in (a) when

r>1/2,
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8. Find all biologically relevant equilibria of the Nicholson-
Bailey model

N = 2Nre—0‘2P'
Py = N, [1 _ e-o.zr,]

and analyze their stability.

39. Find all biologically relevant equilibria of the Nicholson-
Bailey model

N,+1 = 4N'e-0.lP,
Pu=N [1 - e—O.U’:]

and analyze their stability.

40. Find all biologically relevant equilibria of the negative

binomial host-parasitoid model

2

0.012,\ 2
P,+1=N,[1—(1+—-2-—-'-> ]

and analyze their stability.

41. Find all biologically relevant equilibria of the negative
binomial host-parasitoid model

0.01P\?
Niy = 4N, (1 + ——'—,)

0.5

0.01P\ %
P:+1=N:\:1—(1+-—-63—"> }

0.017\""
Niyp = 4N, (1 + ——‘—“’)

and analyze their stability.

f Chapter 10 Key Terms.

Discuss the following definitions and
concepts:

1. Real-valued function

2. Function of two variables

11. Tangent plane
12. Differentiability

10. Mixed-derivative theorem

13. Differentiability and continuity

20. Directional derivative
21. Gradient

22. Local extrema

23. Sufficient condition for finding local

3. Surface 14, Sufficient condition for extrema
4. Level curve differentiability 24, Hessian matrix
5. Limit 1S, Standard linear approximation, 25. Global extrema

6. Limit laws
7. Continuity
8, Partial derivative

9. Geometric interpretation of a partial
derivative

18. Chain rule

§ Chapter 10 Review Prohlems:

1. Germination Suppose that you conduct an experiment to
measure the germination success of seeds of a certain plant as
a function of temperature and humidity. You find that seeds
don’t germinate at all when the humidity is too low, regardless
of temperature; germination success is highest for intermediate
values of temperature; and seeds tend to germinate better when
you increase humidity levels. Use the preceding information
to sketch a graph of germination success as a function of
temperature for different levels of humidity. Also, sketch the
graph of germination success as a function of humidity for
different temperature values.

2. Plant Physiology Gaastra (1959) measured the effects of
atmospheric CO; enrichment on CO;, fixation in sugar beet leaves
at various light levels. He found that increasing CO; at fixed light
levels increases the fixation rate and that increasing light levels
at fixed atmospheric CO, concentration also increased fixation.
If F(A, I) denotes the fixation rate as a function of atmospheric
CO, concentration (A) and light intensity (/), determine the signs
of 3F/3A and 3F /31,

3. Plant Ecology In Burke and Grime (1996), a long-term field
experiment in a limestone grassland was described.

(8) One of the experiments related total area covered by
indigenous species to fertility and disturbance gradients. The

tangent plane approximation
16. Vector-valued function
17. Jacobi matrix, derivative matrix

19, Implicit differentiation

26. The extreme-value theorem

27. Diffusion

28, Systems of difference equations
29. Point equilibria and their stability
30. Nicholson-Bailey equation

experiment was designed so that the two variables (fertility and
disturbance) could be altered independently. Burke and Grime
found that the area covered by indigenous species generally
increased with the amount of fertilizer added and decreased
with the intensity of a disturbance. If A;(F, D) denotes the
area covered by indigenous species as a function of the amount
of fertilizer added (F) and the intensity of disturbance (D),

determine the signs of 8A;/dF and 3A,/3D for Burke and
Grime’s experiment.

(b) In another experiment, Burke and Grime related the total
area covered by introduced species to fertility and disturbance
gradients. Let A,(F, D) denote the area covered by introduced
species as a function of the amount of fertilizer added (F) and the
intensity of disturbance (D). Burke and Grime found that

04,

3F>0

and
dA,
aD
Explain in words what this means.

(¢) Compare the responses to fertilization and disturbance with
the area covered in the two experiments.

>0




4. Plant Physiology Vitousek and Farrington (1997) investigated
nutrient limitations in soils of different ages. In the abstract of
their paper, they say,

Walker and Syers (1976) proposed a conceptual model
that describes the pattern and regulation of soil
nutrient pools and avaitability during long-term soil and
ecosystem development. Their model implies that plant
production generally should be limited by N {nitrogen]}
on young soils and by P [phosphorus] on old soils; N
and P supply should be more or less equilibrate on
intermediate aged soils.

Vitousek and Farrington tested this hypothesis by conducting
fertilizer experiments along a gradignt of soil age, measuring
the average increment in diameter (in mm/yr) of Metrosideros
polymorpha trees.

Denote by D(N, P, 1) the diameter increment (in mm/yr) as

a function of the amount of nitrogen (N) added, the amount of

phosphorus (P) added, and the age (¢) of the soil. Vitousek and
Farrington’s experiments showed that

aD
—(N, 0, 0
5 ( 1) <

and

oD
—@0,P, 1) >0
a:( P>

for their choices of N > 0 and P > 0. Explain why their results
support the Walker and Syers hypothesis.

5. Find the Jacobi matrix

2 _
f(x,y)=[;2_y’2J
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6. Find a linear approximation to

2
f(x, y) = [2” ]

-4
y

at (1, 1).

7. Mark-Recapture Experiment We can compute the average
radius of spreading individuals at time ¢, denoted by ravg. We find
that

rovg = V7 Dt (10.55)

(a) Graph Tavg @s a functionof D fort = 0.1, = 1,andt = 5.
Describe in words how an increase in D affects the average radius
of spread.

(b) Show that

. (r avg)z
7]
(¢} Equation (10.56) can be used to measure D, the diffusion
constant, from field data of mark-recapture experiments, taken
from Kareiva (1983), as follows: Marked organisms are released
from the release site and then recaptured after a certain amount
of time ¢ from the time of release, The distance of the recaptured
organisms from the release site is measured.

If N denotes the total number of recaptured organisms, d;
denotes the distance of the ith recaptured organism from the
release site, and ¢ is the time between release and recapture, use
(10.56) to explain why

1 {1&4)

can be used to measure D from field data. (Note that the time
between release and recapture is the same for each individual in
this study.)

D (10.56)




