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We can summarize all this graphically in the T-A plane as shown in Figure 11.17.
The parabola 4A = 12 is the boundary line between oscillatory and nonoscillatory
behavior. The line r = 0 divides the stable and the unstable regions. The line A =0
separates the saddle point from the node regions. The case in which the eigenvalues A
are identical resides on the boundary line 4A = 12,

a4 =44 —

Unstable
spiral

Unstable
node

. 4

Saddle Saddle

Y

Figure 11.17 The stability behavior of a system of two
linear, homogeneous differential equations with constant
coefficients.

The line A = 0 corresponds to the case in which one eigenvalue is equal to 0.
As long as the other eigenvalue is not equal to 0, both eigenvalues are again distinct
and the solution is of the form (11.26). However, in this case there are equilibria
other than (0, 0). We will discuss two such examples in Problems 67 and 68 and one
in Section 11.2.

Section 11.1 Prohlems

® 1111

In Problems 1-4, write each system of differential equations in
matrix form.

Determine the direction vectors associated with the following
points in the x;—x;, plane, and graph the direction vectors in the x;~
x2 plane: (2,0), (1.5, 1), (1, 0), (0, 1), (1, 1), (0, 0), and (-2, -2).

dx dx 7. Consider
L -—1-=2x1+3x2 2. —l=x1+x; dx;
dt dt o =x1+3x;
dx2 dxz
— =4 —= -2
P X1+ X Tt 2 %=—-x1+2x2
d d
3 Fxl =x3 — 2x; 4, -aﬂ = 2%y - 3x; — x3 Determine the direction vectors associated with the following
! d points in the x;~x; plane, and graph the direction vectorsin the x;~
d_x_z = —X; ﬂﬁ = —-Xx + X2 X2 P]ane: (1: 0): (Ov 1)‘ (—19 1)’ (Oa —1)’ (_3v 1)1 (Oy 0)7 and (—21 1)'
dt dt 8. Consider
dx;__x +x; +x dx3-—5x + dxl——x
a 1 2 3 a 1T X3 a 2
8. Consider dx; .
d — =x; +x
asd R —x1 + 2% dt TR
dt Determine the direction vectors associated with the following
dx; _ x points in the x;-x; plane, and graph the direction vectors in the x;~
dt - X2 Pla!'le: (1, O)v (Ov 1)1 (—1' O)v (09 "'1)9 (1$ 1)7 (01 O)v and (—2. —2)'

Determine the direction vectors associated with the following
points in the x;—x; plane, and graph the direction vectors in the x;~
x3 plane: (1, 0), (0, 1), (-1, 0), (0, ~1), (1, 1), (0, 0), and (-2, 1).
6. Consider

9. In Figures 11.18 through 11.21, direction fields are given. Each
of the following systems of differential equations corresponds
to exactly one of the direction fields. Match the systems to the
appropriate figures.

— d-xl _ dx1 _
P =2x — X3 () R = 2x; (») o =x +2x2
dx; dx, dx;
ar - o Tt i
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Figure 11,18
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16. (Figure 11.28)

Figure 11.27
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is given in Figure 11.24. Sketch the solution curve that goes

608 Chapter 11 B Systems of Differential Equations
through the point (-3, =3).

" 12. The direction field of

NV TN~ O — A

the eigenvectors. Indicate on each line the direction in which the
x4

solution would move if it starts on that line.

of differential equations and sketch the lines in the direction of
13. (Figure 11.25)

In Problems 13-18, find the general solution of each given system

Figure 11.24
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xi ()
x2(r)

=i
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dxy
dt
dxg
dt



17. (Figure 11.29)

dxy
dt

dxy
dt

-2 0 xi1(1)
=3 1] x2)

1}
—
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2 E3 _ [4 7] a0 ]

L5 ] 12 S =0]
with x;(0) = 13 and x,(0) = 3.

Fan ] T 1r I
” Z1 13 4] =0

dxq -

I.T‘T- L—l 2_ _X2(t)_
with x;(0) = 1 and x,(0) = 2.
2 ARE 7 e

L’%’_ L =2 || x|

with x;(0) = —1 and x; (0; =-2

-4
25, Fl_{2 6]||n0

EJ R EC
with x;(0) = —3 and x,(0) = 1.

In Problems 27 and 28, we discuss the case of repeated eigenvalues.

27. Let
dx
F | _[1 0][ a0
dxn 0 1]]x(t)

dt
1 0
St

has the repeated eigenvalues Ay = A, = 1.

(b) Show that [;] and [?] are eigenvectors of A and that any

(11.34)

(a) Show that

vector [g] can be written as

(2]

wo[t]oa[1]
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18. (Figure 11.30)
dxy
@ (|5 2]
) 1 6| x®
dr
Xy 4
5 A LS SR N K O 3 % S L B I .. P
NANANARAR Yt iy A2 AP,
4 n LS. SO S0 T 00 10 TG R S . NP S N S N4 R4
NN NN XY MM AN
e T, R A EIR I NNEE WA TS | S | y SR N )
3 X
2&\\\&\\‘!??}‘)’};/}///%
puDuibe i ISR NN MRS DA B D M P o
1.—¢_...._¢.¢- IR > P et i P e g~
PO P o . o . L I . B R i st ol e
00—'0—0‘0—#'0’!'4—'.!-5-#—{—’-‘.—0—.——’—4

_l/wer-—-r ' PR T R Y - mige e b by

L o I . G o S G A B R T B T e dh o dh S e
-2 NS RN T P I ‘ P

o A W Y EE LY N Y Y Y e e
L I 's Wb gty b b

A A A Y i MY Y Y W N
—4/1 e 7 4 LART.Z 208 T 2k A R S

A AL S LY L T b M NN
=S VA A ke ety ey N .

-5 -4 -3 -2 -1 0 1 2 3 4 5 x

Figure 11.30

In Problems 19-26, solve the given initial-value problem.

o
. = _ -3 0

dxy

- -

e 4 2|

xi(r)
x(2)

with x,(0) = —5 and x,(0) = 5.

w1 T
dx 13
d —_
el P 0 2
de

with x;(0) = 2 and x,(0)
dxl- B
an 3 -2
21 ;’z =
EJNEER!
with x,(0) = 1 and x,(0)
el T
d
n| &=
il

-1
1 -~

-

xi(t)
_xz(t)

= -1,

-
x ()

| %2(1)

=1

0-} xy(t)
2 ] x2(t)

with x,(0) = —1 and x2(0) = —2.

(¢) Show that

x(t)=c1e'[(1)]+cze'[(l)]

is a solution of (11.34) that satisfies the initial condition x1(0) = ¢,

and x2(0) = ¢;.
dxl ~
2]-[: i)l
ax 0 1| x0

28. Let
1 2
Az[o 1]

has the repeated eigenvalues Ay == A5 == 1.
(b) Show that every eigenvector of A is of the form

1-
Cl[o

where ¢, is a real number different from 0.
(c) Show that

(11.35)

(a) Show that

:
(@) = ¢ (1,]

is a solution of (11.35).
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" (d) Show that

R ] 0
X:(t) =te [0] +eé [0.5
is a solution of (11.35).

(e) Show that
aixi () + ox2(t)

is a solution of (11.35). (It turns out that this is the general
solution.)

® 1113
In Problems 2942, we consider differential equations of the form

dx
— == Ax(?
e )
where
A= [au a2 ]
ay ap

The eigenvalues of A will be real, distinct, and nonzero. Analyze
the stability of the equilibrium (0, 0), and classify the equilibrium
according to whether it is a sink, a source, or a saddle point.

29.A=|:3 ‘; 30.A=:_(1) _g]
31.A=-—§ % 32.A=:"2 ‘g
33.A=;:‘5‘ g 34.A=[_§ _‘;’:
35.A=:_g "5‘] 36.A=L_; _gj
37.A=[‘§ :é] 38.A=:_:; _;
39. A= _(1) ‘g] 40.A=:(3] ,2/]

41.A=[“f ‘g] 42.A=[g :}]

In Problems 43-56, we consider differential equations of the form

dx
—_— t
T Ax(1)
where
A= [an an ]
Gy axn

The eigenvalues of A will be complex conjugates. Analyze the
stability of the equilibrium (0,0), and classify the equilibrium
according to whether it is a stable spiral, an unstable spiral, or a
center.

43.A=i§ “(1)] aa=["1 :g]
45.A=[:§ _;] 46.A=i_; ﬂ
47.A=:_1 _;] 4s.A=:§ :f]
was[3 3] was[2 2]

-1 1 3 -2
wa-[21] mas[? ]
0 -1 0 -3
53.A=[1 0] 54. A-[z 2]
1 2 2 -3
sa-[ 2] wa[2 2]

In Problems 57-66, we consider differential equations of the form

dx
i Ax(1)
where
A= [au an ]
ay an

Analyze the stability of the equilibriuni (0,0), and classify the
equilibrium,

57.A=:“’i _g 58.A=:j §
59.A=:‘; :;7 60.A=:§ g]

1. A=:; g] 62. A=::; 37
63.A=:“f __2: M.A:["f “;]
65.A=L; j] 66.A=:_j _3]

67. The following system has two distinct real eigenvalues, but
one eigenvalue is equal to 0:

dx _
dt
(a) Find both eigenvalues and the associated eigenvectors.

(b) Use the general solution (11.26) to find x; (z) and x, ().

(¢) The direction field is shown in Figure 11.31. Sketch the
lines corresponding to the eigenvectors. Compute dx,/dx;, and
conclude that all direction vectors are parallel to the line in
the direction of the eigenvector corresponding to the nonzero
eigenvalue. Describe in words how solutions starting at different
points behave.

4 8

B (11.36)

] x(1)

YA
5 SN SR S et . ek . — e, S N
Bl e S R IR SR e J QS VR A S S
4 iR L e e i s gl R s AR 0 I i L e i T A e S
) s M S S -
4 » C A AR B I e B B G AP I B I e e e i =
2 pra DR i e S L St SETs VM IR IV S
L T R T I B e i ™ I = e )
1«&««4»4—4»»4-& B s = e 3
(1] T SR 0 O A & WO e B0 Wi i ol S Bl 7
14—4—4—«-4-—1—4-4- “ a4 LT A S e I < e A o d
D el R R i LR R LA B I S B IS AR N
-2 D e N e e o et e
T T e T e e e 4 e 4 e e e el 4 4
“3 PR E @RS T E T
T T T e AT A T e A e e e A e e ] e
-4 T e e T e T e e e T E R ETETETETE
_5 AT T T E e T e T 4 A e A e e e e e e
i e e e T T T T € e 4 e e 4 e 4 e e
-5 -4 -3 -2 -1 0 1 2 3 4 5 x
Figure 11.31
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68. The following system has two distinct real eigenvalues, but y
one eigenvalue is equal to O: 51 ;;;;;;;;;,;’;j FEZEZS
4 11111\11)1})))1') y.4
d ‘ 3-:11:1?;;:11;:/:-,";,;;
._x.=[2 4]x(1) (11.37) 2 R R NI N N A
dt 36 1:: :::':-:xx;;ﬂ; ;ﬂ;'{
. Y xRy » ” ” o
{a) Find both eigenvalues and the associated eigenvectors. 0 YNNI R s Aa A s
: Mok ek e T i xR A
(b) Use the general solution (11.26) to find x;(¢) and x,(¢). —; o i Sty S i o P Fous R Py
(¢) The direction field is shown in Figure 11.32. Sketch the 3 W B SR A VARV VAV VS Dol iV B
lines corresponding to the eigenvectors. Compute dx;/dx;, and 2l 2 B A AR A VR S VR e R
H : H H - P PEET S0 g0 T G S 4 S g ' 4
conclude that all direction vectors are parallel to the line in v, AL S A AL A W b oz ]
direction of the eigenvector corresponding to the nonzero CAN SUAN S 4N 440 SN AL SLALAL &1 a8 434 >
the 8 P & ~5 -4 -3 -2 -1 0 1 2 3 4 5 «x

eigenvalue. Describe in words how solutions starting at different

points behave. Figure 11.32

M 11.2 Linear Systems: Applications
® 11.2.1 Compartment Models

Compartment models (which we encountered in Chapter 8) describe flow between
compartments, such as nutrient flow between lakes or the flow of a radioactive tracer
between different parts of an organism. In the simplest situations, the resulting model
is a system of linear differential equations.
We will consider a general two-compartment model that can be described by a
11 system of two linear differential equations. A schematic description of the model is
ax, given in Figure 11.33. . .
4 % We denote by x; (f) the amount of matter in compartment 1attimet and .by x2(t)
bxy the amount of matter in compartment 2 at time 7. To have a concrete example in mind,
think of x;(f) and x2(t) as the amount of water in each of the two compartments,
l‘-‘xx 14*'2 respectively. The direction of the flow of matter and the rates at which matter flows
are shown in Figure 11.33. We see that matter enters compartment 1 at the constant
Figure 11.33 A schematic rate I and moves from compartment 1 to compartment 2 at rate ax, if x; is the amount
description of a general of matter in compartment 1. Matter in compartment 1 is lost at rate cx;. In addition,
two-compartment model. matter flows from compartment 2 to compartment 1 at rate bx; if x; is the amount
of matter in compartment 2. Matter in compartment 2 is lost at rate dx,; there is no
external input into compartment 2. The constants /, a, b, ¢, and d are all nonnegative.
We describe the dynamics of x;(¢) and x;(t) by the following system of

differential equations:

d
% =1 —(a+0)x +bx;

(11.38)
ﬁ-—ax —b+dx;
dt - 1 2

If I > 0, then (11.38) is a system of inhomogeneous linear differential equations
with constant coefficients. Constant input is often important in real situations, such
as the flow of nutrients between soil and plants, in which nutrients might be added
at a constant rate. In the discussion that follows, however, we will set I = 0, since
this corresponds to the situation discussed in the previous section (i.e., no matter is
added over time). It is not difficult to guess how the system behaves when I = 0:
Either some matter is continually lost, so one or both compartments empty out, or
no matter is lost, so at least one compartment will contain matter. We will discuss

both cases.
When I = 0, (11.38) reduces to the linear system

dx _ . _ | —(a+0o) b
7l Ax(t) with A= [ a b +d)] (11.39)

To avoid trivial situations, we assume that at least one of the parameters a, b, ¢, and
d is positive. (Otherwise, no material would ever move in the system.)
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We can solve (11.42) directly: Since

it follows that

and -

d
7 sin(at) = a cos(at)

d .
o cos(at) = —asin(at)

d2

7 sin(at) = —qg? sin(at)

2
2
cos(at) = —a* cos(at
de ( ) (at)

If we set a = /&, we see that cos(v/kt) and sin(vEr) solve (11.42). Using the
superposition principle, we therefore obtain the solution of (11.42) as

x(t) = ¢y sin(vkt) + ¢, cos(vkt)

To determine the constants ¢; and c,, we must fix an initial condition. If we assume,

for instance, that

then

x(0)=0 and v(0) = vg (11.43)

0=Cz

Since v(t) = dx/dt, we have

and, therefore,

which implies that

v(t) = e1vk cos(ﬁt) — vk sin(s/lzt)

v(0) = c1vVk = vy

Cl = ——=

7k

Hence, the solution of (11.42) that satisfies the initial condition (11.43) is given by

x(t) = %sm‘(ﬁt)

The harmonic oscillator is quite important in physics. It describes, for instance, a
frictionless pendulum when the displacement from the resting state is not too large,

Section 11.2 Problems

u11.21

In Problems 1-8, determine the system of differential equations
“orresponding to each compartment model and analyze the stability

2f the equilibrium (0, 0). The parameters have the same meaning as
n Figure 11.33.

La=055=0.1,c=005d = 0.02
La=04,b=12,c=03,d=0
ha=25b=07c=0,d=0.1
ha=17,b=06,c=01,d =03
ha=0,b=01,c=0,d =03

" a=02,b=01,c=0,d=0
“a=01,b=12c=05,d = 0.05

8a=02,b=0,c=0,d=03

In Problems 9-18, find the corresponding compartment diagram
for each system of differential equations.

9, % = —0.4x; +0.3x, 10. %":—‘ = ~0.4x; +3x;
% = 0.1x; - 0.5x, % = 0.2x; —3x,

1L % 020401, 12 5;‘7‘ = —0.2x; + 1.1x;
‘% = —0.1x % = 02r,—11x
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.13. d—d? = —2.3x; + L.1x; 14. ‘—3—? = —1.6x; + 0.3x;
d—;;z- = 0.2x;—2.3x; (—1;;2- = 0.1x; ~0.5x;
15. d‘%l- =-1.2x, 16. éd:?— = —0.2x; + 0.4x;
dg"tz = 0.3x —0.2x; ‘—?-} = 0.2x —0.4x;
17. %? = ~0.2x; 18. % =-—x
% = ~0.3x; 5%2- = x;—0.5x,

19, Suppose that a drug is administered to a person in a single
dose, and assume that the drug does not accumulate in body tissue,
but is excreted through urine. Denote the amount of drug in the
body at time ¢ by x;(t) and in the urine at time ¢ by x,(¢). If
x1(0) = 4 mg and x,(0) = 0, find x;(¢) and x,(t) if

d
7;;—‘ = —0.3x,()

20. Suppose that a drug is administered to a person in a single
dose, and assume that the drug does not accumulate in body tissue,
but is excreted through urine. Denote the amount of drug in the
body at time ¢ by x,(t) and in the urine at time ¢ by x;(t). If
x1(0) = 6 mg and x,(0) = O, find a system of differential equations
for x, (1) and x,(¢) if it takes 20 minutes for the drug to be at one-
half of its initial amount in the body.

21. A very simple two-compartment model for gap dynamics in
a forest assumes that gaps are created by disturbances (wind, fire,
etc.) and that gaps revert to forest as trees grow in the gaps. We
denote by x,(¢) the area occupied by gaps and by x;(f) the area
occupied by adult trees. We assume that the dynamics are given

by

d
% = —0.2x; +0.1x; (11.44)
%3 =0.2x% - 0.1x; (11.45)

(a) Find the corresponding compartment diagram,
(b) Show that x;(¢) + x5 (¢) is a constant. Denote the constant by
A and give its meaning. [Hint: Show that 4 (x; + x;) = 0]
(c) Let x1(0) 4+ x2(0) = 20. Use your answer in (b) to explain why
this equation implies that x (¢) + x;(¢t) = 20 for alt t > 0.
(d) Use your result in (¢) to replace x; in (11.44) by 20 — x;, and
show that doing so reduces the system (11.44) and (11.45) to

-dzxt—l' =2- 0.3x1
with x;(£) + x2(t) = 20 for alit > 0.
(e) Solve the system (11.44) and (11.45), and determine what
fraction of the forest is occupied by adult trees at time ¢ when
x1(0) = 2 and x,(0) = 18. What happens as ¢t — 00?

(11.46)

22, One simple model for forest succession is a three-compart-
ment model. We assume that gaps in a forest are created by
disturbances and are colonized by early successional species,
which are then replaced by late successional species. We denote
by x;(t) the total area occupied by gaps at time , by x2 () the total
area occupied by early successional species at time ¢, and by x3(¢)
the total area occupied by late successional species at time ¢. The
dynamics are given by

dx1

—_ = 0.2x - 2x
a 2+ X3 1
d.‘q

— = 2x; — 0.7

dt ! ¥

dx;

— =0.5x; —

dt X2 — X3

(a) Draw the corresponding compartment diagram.
(b) Show that
() +x) +x)=A

where A is a constant, and give the meaning of A.

m11.2.2
23. Solve
d?x
PToiai
with x(0) = 0 and £2 =6,
24. Solve
d’x
-d_tz_ = —Ox

with x(0) = 0 and £2 = 12,
25. Transform the second-order differential equation

into a system of first-order differential equations.
26. Transform the second-order differential equation
d*x 1

=77
into a system of first-order differential equations.
27. Transform the second-order differential equation
d*x + dx
e " dt
into a system of first-order differential equations.
28. Transform the second-order differential equation
dx _ds
de? dt

into a system of first-order differential equations.

= 3x
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dx,
dr

st off

0 1

'

['SCY S g g

3 4 5 6 x,

Figure 11.42 The zero isoclines in the x;-x; plane.

the vertical arrow in the x,-direction. Since the vertical arrow is on the zero isocline of
X2, the sign of dx; /dt does not change as we cross the equilibrium in the x,-direction.
Therefore, ay; = 0. The signs of a;; and ay; follow from observing that if we cross
the zero isocline of x) in the x,-direction (the vertical arrow), then dix; /dt changes
from positive to negative, making a1; < 0. If we cross the zero isocline of x; in the
direction of x; (the horizontal arrow), we see that dx,/dt changes from negative to
positive, making a;; > 0.

To determine the stability of X, we look at the trace and the determinant. Since

the trace is negative and the determinant is positive, we conclude that the equilibrium
is locally stable. ]

This simple graphical approach does not always give us the signs of the real parts
of the eigenvalues, as illustrated in the following example: Suppose that we arrive at
the Jacobi matrix in which the signs of the entries are

[+ 2]

The trace may now be positive or negative. Therefore, we cannot conclude anything
about the eigenvalues. In this case, we would have to compute the eigenvalues or the
trace and the determinant explicitly and cannot rely on the signs alone.

Section 11.3 Problems

111.3.1 In Problems 7-12, find all equilibria of each system of differential
equations and use the analytical approach to determine the stability

1 Problems 1-6, the point (0, 0) is always an equilibrium. Use the of each equilibrium,

1alytical approach to investigate its stability.

dx1
d . d T — =-x; +25;(1 — x
i:xl —2x2 + XX 2. "ﬁ = —X] — X3 +X12 dt ! 1 1)
dt dt dx;
dx, + dx; 2 o =Tt 5xz(1 = xy ~ x3)
dr - T m a2 TH
dx
d. d = — Xy —
7;—1 = Xx; + Xlz - 2.x1.X2 + x; 4, % = 3x1x2 — X1+ X3 8. dt = =Xt + 3X1(1 X1 x2)
dx
dX2 dXz 2 _Z Jr— s — -
Pl o =R E ar = atmd-n-x)
dx dx R dx; . dx . .
d_ll = xle"‘z 6. 7;1‘ = —Zsmx1 9, d_fl = 4x1(1 —xl) - 2x1xz 10. d_tl = 2.!1(5 - X1 - Xz)
dXQ dX2 dxz dxz
— Xy - = 1 —_ = p - — — = - -
py 2128 dr Xze" ar x2( x;) X2 ar 3X2(7 3X1 x;)




630 Chapter 11 W Systems of Differential Equations

' dX1 dX1
—_— — o ——— = - X
11. 5 =5 X2 12 P Tiae s
dxz dx2
— - — +x
T X1X7 — X2 at Xy 2

13. For which value of a has

—ftl = x3(x, +a)

dxz 2
—_—=Xy X=X
dt 2

a unique equilibrium? Characterize its stability.

14. Assume that a > 0. Find all point equilibria of

éﬁ =1-—axix;
dt

de

—J‘— = gx1xX; — X2

and characterize their stability.

m 1132
15. Assume that

dx
-:i-tl = x1(10 - le b X2)

d).’z

T = x2(10 = x1 ~ 2x3)

(a) Graph the zero isoclines. - -

(b) Show that (‘—39. %) is an equilibrium, and use the analytical
approach to determine its stability.

16. Assume that

dx
7;1' = x1(10 — xy — 2x,)
dx
_;i?z_ = %(10 — 2x — x2)

(a) Graph the zero isoclines.

(b) Show that (1—39, %’-) is an equilibrium, and use the analytical
approach to determine its stability.

In Problems 17-22, use the graphical approach for 2 x 2 systems
to find the sign structure of the Jacobi matrix at the indicared
equilibrium. If possible, determine the stability of the equilibrium.
Assume that the system of differential equations is given by

dx
7;1 = fi(x1, x2)

dx:
7} =vf2(X1.xz)

Furthermore, assume that x, and x, are both nonnegative. In each
problem, the zero isoclines are drawn and the equilibrium we want
to investigate is indicated by a dot. Assume that both x; and x;
increase close 1o the origin and that fi and f; change sign when
crossing their zero isoclines.

17.

]

See Figure 11.43.

Figure 11.43

18, See Figure 11.44.

X2

1\

Figure 11.44

19. See Figure 11.45.

X2

3

Figure 11.45

20, See Figure 11.46.

X2

Figure 11.46
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1. See Figure 11.47. 23. Let
04 dx =x12 ~ x1) = x1x;
dt
%:o %‘tl-o dX2
-;1-’— =X1X— X

(a) Graph the zero isoclines.

(b) Show that (1, 1) is an equilibrium. Use the graphical approach
to determine its stability.

24. Let
dx
. _(-f_tl- =x1(2—x12)—x1x2
A dx; X{X3 — X
T =XX X
‘igure 11.47 . dt

) (a) Graph the zero isoclines.
12. See Figure 11.48.

\ (b) Show that (1, 1) is an equilibrium. Use the graphical approach

) to determine its stability.

at & =0

‘igure 11.48

B 11.4 Nonlinear Systems: Applications

B 11.4.1 The Lotka-Volterra Model of Interspecific Competition

Imagine two species of plants growing together in the same plot. They both
use similar resources: light, water, and nutrients. The use of these resources
by one individual reduces their availability to other individuals. We. call this
type of interaction between individuals competition. Intraspecific competition
occurs between individuals of the same species, interspecific competition between
individuals of different species. Competition may result in reduced fecundity
or reduced survivorship (or both). The effects of competition are often more
pronounced when the number of competitors is higher.

In this subsection, we will discuss the Lotka-Volterra model of interspecific
competition, which incorporates density-dependent effects of competition in the
manner described previously. The model is an extension of the logistic equation
to the case of two species. To describe it, we denote the population size of species
1 at time ¢ by N;(¢) and that of species 2 at time ¢ by N,(t). Each species grows
according to the logistic equation when the other species is absent. We denote their
respective carrying capacities by K, and X, and their respective intrinsic rates of
growth by r1 and r;. We assume that K, K3, ry, and r; are positive. In addition,
the two species may have inhibitory effects on each other. We measure the effect
of species 1 on species 2 by the competition coefficient o;;; tlie effect of species 2on
species 1 is measured by the competition coefficient ay;. The Lotka~Volterra model
of interspecific competition is then given by the following system of differential
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Section 11.4 Problems

m11.4.1

1. Suppose that the densities of two species evolve in accordance
with the Lotka-Volterra model of interspecific competition.
Assume that species 1 has intrinsic rate of growth r, = 2 and
carrying capacity Ki = 20 and that species 2 has intrinsic rate
of growth r; = 3 and carrying capacity K, = 15. Furthermore,
assume that 20 individuals of species 2 have the same effect on
species 1 as 4 individuals of species 1 have on themselves and that
30 individuals of species 1 have the same effect on species 2 as
6 individuals of species 2 have on themselves. Find a system of
differential equations that describes this situation.

2. Suppose the densities of two species evolve in accordance with
the Lotka~Volterra model of interspecific competition. Assume
that species 1 has intrinsic rate of growth r, = 4 and carrying
capacity K; = 17 and that species 2 has intrinsic rate of growth
r, = 1.5 and carrying capacity X, = 32. Furthermore, assume that
15 individuals of species 2 have the same effect on species 1 as 7
individuals of species 1 have on themselves and that 5 individuals
of species 1 have the same effect on species 2 as 7 individuals
of species 2 have on themselves. Find a system of differential
equations that describes this situation.

In Problems 3-6, use the graphical approach to classify the
following Lotka-Volterra models of interspecific competition
according to “coexistence,” “founder control,” “species 1 excludes
species 2,” or “species 2 excludes species 1.”

N N:
3. ﬂ=21vl (1~ 1 0.71—’)

dt 10 10
D g (10
RER A
%:4&(1—-"3%—0.8%)
RPN
6. %:31\/,(1—%4.22’51)
%:N;(l %—o.s%)

In Problems 7-10, use the eigenvalue approach to analyze all
equilibria of the given Lotka-Volterra models of interspecific

competition.

7. % =3M (1 - lﬁs‘- - 1.3%2—)
d‘% =2N, (1 - %’- - o.s’zv(;)

8. % = 4N, (1 - %‘- 0.3%2-)
d—d}%- =5M, (1 - _11V_52_ -0.2—11!51-)

N N.
9, 5‘—‘=N1(1-ﬂ-3 ’)

dt 35735
%=3N2(1—%—4%)
10. d—d]% =N, (1—%—0.1%)

‘%3=N2(1-%-1.2%)

11 Suppose that two species of beetles are reared together in one
experiment and separately in another. When species 1 is reared
alone, it reaches an equilibrium of about 200. When species 2 is
reared alone, it reaches an equilibrium of about 150. When both of
them are reared together, they seem to be able to coexist: Species
1 reaches an equilibrium of about 180 ‘and species 2 reaches
an equilibrium of about 80. If their densities follow the Lotka—
Volterra equation of interspecific competition, find ai; and .
12. Suppose that two species of beetles are reared together.
Species 1 wins if there are initially 100 individuals of species 1 and
20 individuals of species 2. But species 2 wins if there are initially
20 individuals of species 1 and 100 individuals of species 2. When
the beetles are reared separately, both species seem to reach an
equilibrium of about 120. On the basis of this information and
assuming that the densities follow the Lotka—Volterra model of
interspecific competition, can you give lower bounds on a4, and
021?

m11.4.2

In Problems 13 and 14, use a graphing calculator to sketch solution
curves of the given Lotka-Volterra predator-prey model in the N-

13, ﬂ:zN-PN
dt
dP—‘PN P
dt ~ ?

with initial conditions

(8) (N(0), P(0)) =(2,2)

(e) (N(©), P(0)) =(4,4)
dN

14, —~ =3N-2PN
dt
dp
dr

with initial conditions

(a) (NO), P(0)) = (1,3/2)

() (N(0), P(0)) = (3,1)

In Problems 15 and 16, we investigate the Lotka-Volterra predator-

prey model. :

15. Assume that

b) (NO), P(0))=(3,3)

=PN-P

(b) (N©), P(0))=(2,2)

dN-N 4PN
T

dP

~— =2PN — 3P
dt

(a) Show that this system has two equilibria: the trivial equi-
librium (0, 0), and a nontrivial one in which both species have
positive densities.

(b) Use the ecigenvalue approach to show that the trivial
equilibrium is unstable.




(c) Determine the eigenvalues corresponding to the nontrivial
equilibrium. Does your analysis allow you to infer anything about
the stability of this equilibrium?

(d) Use a graphing calculator to sketch curves in the N~P plane.
Also, sketch solution curves of the prey and the predator densities
as functions of time.

16. Assume that

aN _sn-pPN
dt

dP

—— = PN - P
dt N

(a) Show that this system has two ,equilibria: the trivial
equilibrium (0, 0), and a nontrivial one in which both species have
positive densities.

(b) Use the eigenvalue approach to show that the trivial
equilibrium is unstable.

(¢) Determine the eigenvalues corresponding to the nontrivial
equilibrium. Does your analysis allow you to infer anything about
the stability of this equilibrium?

(d) Use a graphing calculator to sketch curves in the N-P plane.

Also, sketch solution curves of the prey and the predator densities
as functions of time.

17, Assume that N (¢) denotes the density of an insect species at
time ¢ and P(¢) denotes the density of its predator at time ¢. The
insect species is an agricultural pest, and its predator is used as a
biological control agent. Their dynamics are given by the system
of differential equations

daN

— = 5N -~ 3PN
dr

(a) Explain why
(11.85)

describes the dynamics of the insect in the absence of the predator.
Solve (11.85). Describe what happens to the insect population in
the absence of the predator.

(b) Explain why introducing the insect predator into the system
:an help to control the density of the insect.

{¢) Assume that at the beginning of the growing season the insect
lensity is 0.5 and the predator density is 2. You decide to control
he insects by using an insecticide in addition to the predator.
You are careful and choose an insecticide that does not harm the
redator. After you spray, the insect density drops to 0.01 and
he predator density remains at 2. Use a graphing calculator to
nvestigate the long-term implications of your decision to spray
he field. In particular, investigate what would have happened to
he insect densities if you had decided not to spray the field, and
ompare your results with the insect density over time that results
rom your application of the insecticide.

8. Assume that N(r) denotes prey density at time ¢ and P(¢)
lenotes predator density at time . Their dynamics are given by
he system of equations

ﬂ =4N —- 2PN
dt

dP

—_—= -3
ar PN P

ssume that initially N(0) = 3 and P(0) = 2.
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(a) Ifyoufollowed this predator-prey community over time, what
would you observe?

(b) Suppose that bad weather kills 90% of the prey population
and 67% of the predator population. If you continued to observe
this predator-prey community, what would you expect to see?

19. An unrealistic feature of the Lotka-Volterra model is that the
prey exhibits unlimited growth in the absence of the predator.
The model described by the following system remedies- this
shortcoming (in the model, we assume that the prey evolves
according to logistic growth in the absence of the predator; the
other features of the model are retained):

%¥=3N(L—%)—2PN
J (11.86)
P
—— = PN —4P
dt d
(a) Explain why the prey evolves according to
dN N
o~ =3N{1l-— .
F i (1 10) ’ (11.87)

in the absence of the predator. Investigate the long-term behavior
of solutions to (11.87). ' '

(b) Findallequilibria of (11.86), and use the eigenvalue approach
to determine their stability.

(¢) Use a graphing calculator to sketch the solution curve of.
(11.86) in the N-P plane.when N(0) = 2 and P(0) = 2. Also,
sketch N(¢) and P(t) as functions of time, starting with N (0) = 2
and P(0) =2. , e e
20. An unrealistic feature of the Lotka—Volterra model is that the:
prey exhibits unlimited growth in the absence of the predator.
The model described by the following system remedies. this
shortcoming. (in the model, we assume that the prey evolves

according to logistic growth in the absence of the predator; the
other features of the model are retained):

dt

ip (11.88)
— = PN —-5P

dt N

Here, K > 0 denotes the carrying capacity of the preyin the’
absence of the predator. In what follows, we will investigate how
the carrying capacity affects the outcome of this predator-prey
interaction.

(a) Draw the zero isoclines of (11.88) fox (i) X = 10 and K =
3.

(b) When K = 10, the zero isoclines intersect, indicating the
existence of a nontrivial equilibrium. Analyze the stability of this
nontrivial equilibrium. ‘

() Is there a minimum carrying capacity required in order to
have a nontrivial equilibrium? If yes, find it and explain what
happens when the carrying capacity is below this minimum and
what happens when the carrying capacity is above this minimum.

21. An unrealistic feature of the Lotka—Volterra model is that the
prey exhibits unlimited growth in the-absence of the predator.
The model described by the following system remedies this
shortcoming (in the model, we assume that the prey evolves

“according to logistic growth in the absence of the predator; the
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" other features of the model are retained):

%’- =N(1—%)—5PN

. (11.89)
dP

—— =2PN - 8P

dt

(a) Draw the zero isoclines of (11.89).
(b) Use the graphical approach of Subsection 11.3.2 to determine
whether the nontrivial equilibrium is locally stable.

In Problems 22-26, we will analyze how a change in parameters in
the modified Lotka-Volterra predator-prey model

‘% =aN(1— %)—bPN

(11.90)
d_l: =cPN -dP
ar

affects predator-prey interactions.

22. () Find the zero isoclines of (11.90), and determine condi-
tions under which a nontrivial equilibrium (i.e., an equilibrium in
which both prey and predator have positive densities) exists.

(b) Use the graphical approach of Subsection 11.3.2 to show that
if a nontrivial equilibrium exists, it is locally stable.

In Problems 2326, we use the results of Problem 22. Assume that
the parameters are chosen so that a nontrivial equilibrium exists.
23, Use the results of Problem 22 to show that an increase in a
(the intrinsic rate of growth of the prey) results in an increase in
the predator density, but leaves the prey density unchanged.

24. Use the results of Problem 22 to show that an increase in b
(the searching efficiency) reduces the predator density, but has no
effect on the equilibrium abundance of the prey.

25, Use the results of Problem 22 to show that an increase in
¢ (the predator growth efficiency) reduces the prey equilibrium
abundance and increases the predator equilibrium abundance.

26. Use the results of Problem 22 to show that an increase in’

K (the prey carrying capacity in the absence of the predator)
increases the predator equilibrium abundance, but has no effect
on the prey equilibrium abundance.

m 1143

In Problems 27-34, classify each community matrix at equilibrium
according to the five cases considered in Subsection 11.4.3 and
determine whether the equilibrium is stable. (Assume in each case
that the equilibrium exists.)

n oy ] [ ]
2[5 55 0 =[98 Lod]
a7 1] 2 [ 3] o8]
a5 ] [T 37

In Problems 35-40, we consider communities composed of two
species. The abundance of species 1 at time t is given by N (1),
the abundance of species 2 at time t by Ny(t). Their dynamics are
described by

dN
_Et—l = fi(N, N2)
dN,
' = f2(Ny, N2)

Assume that when both species are at low abundances their
abundances increase and that f, and f, change sign when crossing
their zero isoclines. In each problem, determine the sign structure
of the community matrix at the nontrivial equilibrium (indicated by
a dot) on the basis of the graph of the zero isoclines. Determine the
stability of the equilibria if possible.

38. See Figure 11.66.

N,
Figure 11.66
36. See Figure 11.67.
N,
fi=0
f2=0
Figure 11.67
37. See Figure 11.68.
A
fi=0
f2=0
N,
Figure 11.68

38. See Figﬁre 11.69.

]
f=0 fH=0

"~

Figure 11.69




39, See Figure 11.70.
A

Figure 11.70
40. See Figure 11.71.
h=0
fi=0
Figure 11.71

41. Assume that the diagonal elements a;; of the community
matrix of a species assemblage in equilibrium are negative.
Explain why this assumption implies that species i exhibits self-
regulation.

42. Consider a community composed of two species. Assume
that both species inhibit themselves. Explain why mutualistic and
competitive interactions lead to qualitatively similar predictions
about the stability of the corresponding equilibria. That is, show
that if A = [a;;] is the community matrix at equilibrium for the
case of mutualism, and if B = [b;;] is the community matrix at
equilibrium for the case of competition, then the following holds:
Ifla;| = by for1 < i, j < 2, then either both equilibria are
locally stable or both are unstable.

43. The classical Lotka-Volterra model of predation is given by

ﬂ=aN~—bNP
dt
££=CNP—dP
dt

where N = N(r) is the prey density at time t and P = P(1) is
the predator density at time ¢. The constants a, b, ¢, and 4 are all
positive,

(a) Find the nontrivial equilibrium (N, P) with N > Oand £ > 0.
(b) Find the community matrix corresponding to the nontrivial
equilibrium,

() Explain each entry of the community matrix found in (b) in
terms of how individuals in this community affect each other.

44. The modified Lotka-Volterra model of predation is given by

dN N
— =aN{1-=)-bNP
¢ ( K) |

where N = N(r) is the prey density at time 7 and P = P@)is
the predator density at time r. The constants a, b, c, d, and X are
positive. Assume thatd/c < K.
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(a) Find the nontrivial equilibrium (¥, ) with ¥ > Oand P > 0,
(b) Find the community matrix corresponding to the nontrivial
equilibrium.

() Explain each entry of the community matrix found in (b) in
terms of how individuals in this community affect each other.
w1144

45. Use a graphing calculator to study the following example of
the Fitzhugh-Nagumo model: ‘

dv .

- = -V(V-03(V-1)-w
dw

— = 0.01(V - 0.4

dt ( w)

Sketch the graph of the solution curve in the V-w plane when
@ (V(0), w(0)) = (0.4, 0) and (i) (V(0), w(0)) = (0.2, 0).

46. Use a graphing calculator to study the following example of
the Fitzhugh-Nagumo model:

dv
?=—V(V—O.6)(V—1)—w
dw

— = 0.03(V - 0.6

dt ( 0.6w)

Sketch the graph of the solution curve in the V-w plane when
(@ (V(0), w(0)) = (0.8, 0) and (i) (V(0), w(0)) = (0.4, 0).

47. Assume the following example of the Fitzhugh-Nagumo
model:

dv '

-(—17 =~-V(V-03(V-1)—-w
dw

— = 0.01(V - 0.

ar 0.01(V - 0.4w)

Assume that w(0) = 0. For which initial values of V(0) can you
observe an action potential?

48. Assume the following example of the Fitzhugh-Nagumo
model:

dv

I = '—V(V - 06)(V - 1) —w
dw

— =0.03(V - 0.6

dr ( w)

Assume that w(0) = 0. For which initial values of V(0) can you
observe an action potential?

» 1145
In Problems 49-52, use the mass action law to translate each
chemical reaction into a system of differential equations.

. [

9 A+B-5 C 50.A+B+T—’c

k k:
SLE+S—SES—SE+P 82 A+B-5A+C

§3. Show that the following system of differential equations has
a conserved quantity, and find it:

dx

dy

- =3y -2
dt Y
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| 54. Show that the following system of differential equations has
a conserved quantity, and find it:

dx

= —4x 42
T x + 2y
dy

= - 2x
=

55. Show that the following system of differential equations has
a conserved quantity, and find it:

dx

puad 2x

T x4 2xy +2

dy

A,

dt y

dz _ x—-2

dr

56. Suppose that x(1) + y(f) isa conserved quantity. If

dx
— =-3x+2x
dt * Y

find the differential equation for y(¢).
£7. The Michaelis-Menten law [Equation (11.76)] states that

dp _ Unms

dt  Kn+s
where p = p(t) is the concentration of the product of the
enzymatic reaction at time t, s = s(¢) is the concentration of the
substrate at time ¢, and v,, and K, are positive constants. Set
VS

S)=

£ Kn+s
where v,, and K, are positive constants.
(a) Show that

lim f(s) = vn
(b) Show that v
f(Kn) = —2"1

(¢) Show that, for s = 0, f(s) is (i) nonnegative, (i) increasing,
and (jif) concave down. Sketch a graph of f(s). Label v,, and K,
on your graph.

(d) Explain why we said that the reaction rate dp/d!¢ is limited by
the availability of the substrate.

58. The growth of microbes in a chemostat was described by
(11.77). Using the notation of that equation, together with the
relationship

VS
Kny+s

where v, and K, are positive constants, we will investigate
how the substrate concentration § in equilibrium depends on the
uptake rate Y.

(a) Assume that the microbes have a positive equilibrium density.
Find the equilibrium concentration § algebraically, and investigate
how the uptake rate Y affects §.

qs) =

(b) Assume that the microbes have a positive equilibrium density.
Sketch a graph of g(s), and explain how you would determine
§ graphically. Use your graph to explain how the uptake rate Y
affects §.

59. The growth of microbes in a chemostat was described by

(11.77). Using the notation of that equation, together with the

relationship
VS

Kn+s

we will investigate how the substrate concentration § in
equilibrium depends on D, the rate at which the medium enters.
the chemostat.

(a) Assume that the microbes have a positive equilibrium density.
Find the equilibrium concentration § algebraically. Investigate
how the rate D affects §.

q(s) =

(b) Assume that the microbes have a positive equilibrium density.
Sketch a graph of g(s), and explain how you would determine .
graphically. Use your graph to explain how the rate D affects §.

In Problems 60 and 61, we investigate specific examples of
microbial growth described by (11.77). We use the notation of

Subsection 11.4.5. In each case, determine all equilibria and their
stability.

ds 3s ds
60. — =2(4—5) - 6., — = —) -
g =249 - gx 6l = -s) - s
dx X dx 3sx
—— = - 2x —_— —
dt  2+s dt 1+s

Chapter 11 Key Terms

Discuss the following definitions and
concepts:

1. Linear first-order equation
2. Homogeneous

3. Direction field, slope field, direction -
vector

4. Solution of a system of linear
differential equations

5. Eigenvalue, eigenvector
6. Superposition principle
7. General solution

8. Stability

10. Saddle point

12, Spiral

18, Critical point

9, Sink, or stable node
11. Source, or unstable node

13. Euler’s formula

14, Compartment model
15. Conserved quantity
16. Harmonic oscillator

17. Nonlinear autonomous system of
differential equations

19. Zero isoclines, or null clines

20. Graphical approach to stability
21. Lotka~Voliterra model of
interspecific competition

22. Intraspecific competition,
interspecific competition

23. Competitive exclusion, founder
control, coexistence

24. Lotka-Volterra predator-prey model
25. Community matrix

26. Fitzhugh-Nagumo model

27. Action potential

28. Michaelis-Menten law

PV,




Chapter 11 B Review Problems 657

Chapter 11 Review Problems

1. Population Growth Let N,(7) and N;(r) denote the respective
sizes of two populations at time ¢, and assume that their dynamics
are respectively given by

dN,
— =y N
ar ryfvy
anN,
— =nN.
dr r2ivy

where ry and r; are positive constants denoting the intrinsic rate of
growth of the two populations. Set Z(¢) = N, (t)/ N,(t), and show
that Z(t) satisfies

% IMZ{t)=r —r, (11.91)
Solve (11.91), and show that lim, ., Z(f) = oo if r, >

r2. Conclude from this that population 1 becomes numerically
dominant when r; > r,.

2. Population Growth Let N,(f) and N,(r) denote the respective
sizes of two populations at time ¢, and assume that their dynamics
are respectively given by

dN,
—_— = N
dr ri
dN,
— =N
ar raivy

where ry and r, are positive constants denoting the intrinsic rate of
growth of the two populations, Denote the combined population
size at time ¢ by N(2); that is, N(t) = N,(t) + Ny(¢). Define the
relative proportions

—Nl and = N2
= N pr= N

Use the fact that p;/p; = Ny/N, to show that

d

{t_‘ =pl=p)r—r)

Show thatif ry > r,and 0 < p;(0) < 1, p,(t) will increase for
t > 0 and population 1 will become numerically dominant.

3. Predator-Prey Interactions An unrealistic feature of the
Lotka-Volterra model is that the prey exhibits unlimited growth
in the absence of the predator. The model described by the
following system remedies this shortcoming (in the model, we
assume that the prey evolves according to logistic growth in the

absence of the predator; the other features of the model are
retained):

(11.92)

(a) Draw the zero isoclines of (11.92).

(b) Use the graphical approach of Subsection 11.3.2 to determine
whether the nontrivial equilibrium is locally stable.

4. Resource Competition Tilman (1982) developed a theoretical
framework for studying resource competition in plants. In its
simplest form, the theory posits that one species competes for a
single resource —for instance, nitrogen. If B(z) denotes the total

biomass at time ¢ and R(t) is the amount of the resource available -

at time f, then the dynamics are described by the following system
of differential equations:

4B BLf(R) - m]

dr
dR
= =9(5 = R)—cBf(R)

The first equation describes the rate of change of biomass,

where the function f(R) describes how the species growth rate
depends on the resource, and m is the specific loss rate. The
second equation describes the resource dynamics; the constant §
is the maximal amount of the resource in a given habitat, The
rate of resource supply (dR/dt) is assumed to be proportional
to the difference between the current resource level and the
maximal amount of the resource; the constant a is the constant of
proportionality. The term c¢Bf(R) describes the resource uptake
by the plants; the constant ¢ can be considered a conversion factor,

In what follows, we assume that f(R) follows the Monod .

growth function
dR

FR =%

where d and k are positive constants,

(a) Find all equilibria. Show thatifd > mand § > mk/(d — m),
then there exists a nontrivial equilibrium.

(b) Sketch the zero isoclines for the case in which the system

admits a nontrivial equilibrium. Use the graphical approach to
analyze the stability of the nontrivial equilibrium.

5. Plant Competition In this problem, we describe a simple
competition model in which two species of plants compete for
vacant space. Assume that the entire habitat is divided into a large
number of patches. Each patch can be occupied by at most one
species. We denote by p;(f) the fraction of patches occupied by

species i. Note that 0 < pi(t) + p;(t). < 1. The dynamics are.

described by
d
71;1 =cp(l - pi — p2) —mypy

ap
_Jp;_ =cp2(1 = p1 ~ p2) —my

where ¢y, ¢;, my, and m, are positive constants. The first term on
the right-hand side of each equation describes the colonization of
vacant patches; the second term on the right-hand side of each
equation describes how occupied patches become vacant.

(a) Show that the dynamics of species 1 in the absence of species
2 are given by

d
"—5—1 =capi(l - p1) —mp (11.93)
and find conditions on ¢; and m, so that (11.93) admits a nontrivial
equilibrium (an equilibrium in which 0 < p; < 1).
(b) Assume now that c; > m, and ¢; > m,. Show that if
(4] [~]
— > —
my mj

then species 1 will exclude species 2 if species 1 initially occupies
a positive fraction of the patches.
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6. Paradox of Enrichment Rosenzweig (1971) analyzed a num-
ber of predator-prey models and concluded that enriching the
system by increasing the nutrient supply destabilizes the nontrivial
equilibrium. We will think of the predator-prey model as a plant-
herbivore system in which plants represent prey and herbivores
represent predators. The models analyzed were of the form

dN

- =f®.P (11.94)
dP
— =8N, P) (11.95)

where N = N(¢) is the plant abundance at time f and P = P(#)
is the herbivore abundance at time ¢. The models all shared the
property that the zero isocline for the herbivore was a vertical line
and the zero isocline for the plants was a hump-shaped curve. We
will look at one of the models, namely,

dN

N —rN
I_azv(l-E)-wu )

dP _,N -
S =cP-e)-dp

(11.96)

(a) Find the zero isoclines for (11.96), and show that (i) the zero
isocline of the herbivore (d P/dt = 0) is a vertical line in the N~
P plane and (i) the zero isocline for the plants (dN/dt = 0)
intersects the N-axisat N = K.

(b) Plot the zero isoclines in the N-P plane fora = b = ¢ =
r = 1 and d = 0.9 and for three levels of the carrying capacity:
() K =1, (i) K = 4, and (jii) X = 10.

(¢) For each of the three carrying capacities, determine whether
a nontrivial equilibrium exists.

(d) Use the graphical approach of Subsection 11.3.2 to determine
the stability of the existing nontrivial equilibria in (c). '
(e) Enriching the community could mean increasing the carrying
capacity of the plants. For instance, adding nitrogen or phosphorus
to plant communities frequently results in an increase in biomass,
which can be interpreted as an increase in the carrying capacity
of the plants (the K-value). On the basis of your answers in (d),
explain why enriching the community (increasing the carrying
capacity of the plants) can result in a destabilization of the
nontrivial equilibrium. What are the consequences?

7. Microbial Growth The growth of microbes in a chemostat was
described by Equation (11.77). We will investigate how the mi-
crobial abundance in equilibrium depends on the characteristics
of the system.

(a) Assume that g(s) is a nonnegative function. Show that the
equilibrium abundance of the microbes is given by

= Y(So —E)

where § is the substrate equilibrium abundance. When is £ > 0?
(b) Assume now that

UpnS

Kn+s

q(s) =

. constant. Show that (11.97) can be reduced to just one equation,

Investigate how the uptake rate Y and the rate D at which new
medium enters the chemostat affect the equilibrium abundance
of the microbes.

8. Successional Niche Pacala and Rees (1998) discuss a simple
mathematical model of competition to explain successional
diversity by means of a successional niche mechanism. In
this model, two species—an early successional and a late
successional —occupy discrete patches. Each patch experiences
disturbances (such as fire) at rate D. After a patch is disturbed,
both species are present. Over time, however, the late successional
species outcompetes the early successional species, causing the
early successional species to become extinct. This change, from
a patch that is occupied by both species to a patch that is occupied
by the late successional species only, happens at rate a. We keep
track of the number of patches occupied by both species at time ¢,
denoted by x(¢), and the number of patches occupied by just the
late successional species at time ¢, denoted by y(t). The dynamics
are given by the system of linear differential equations

= —ax + Dy
(11.97)

E:ax—Dy

- where a and D are positive constants.

(a) Show that all equilibria are of the form (x, ax/D).

(b) Find the eigenvalues and eigenvectors corresponding to each
equilibrium.

(c) Show that

x@®) ) u v
[o]=alu]rae ]

where [:;] is the eigenvector corresponding to the zero

eigenvalue and [:’;] is the eigenvector corresponding to the
nonzero eigenvalue A,, is a solution of (11.97).

(d) Show that x(¢) + y(¢) does not depend on ¢. [Hint: Show that
4 (x(t)+y(1)) = 0.] Show also that the line x +y = A (where A is
a constant) is parallel to the line in the direction of the eigenvector
corresponding to the nonzero eigenvalue.

(e) Show that the zero isoclines of (11.97) are given by

’=D

and that this line is the line in the direction of the cigenvector
corresponding to the zero eigenvalue.

(D Suppose now that x(¢) + y(t) = ¢, where c is a positive

namely,
dx

dt
Show that ¥ = ¢ Dlia is the only equilibrium, and determine its
stability.

=—(a+ D)x+ Dc




