1.) Find the Jacobi Matrix for each function.

a.)
$$f(x,y) = \begin{pmatrix} 3x + 4y \\ 2x - 5y \end{pmatrix}$$

b.)
$$f(x,y) = \begin{pmatrix} x + e^y \\ \ln(x - y) \end{pmatrix}$$

c.)
$$f(x,y) = \begin{pmatrix} x/y \\ x^3 \sin y \end{pmatrix}$$

d.)
$$f(x,y) = \begin{pmatrix} \tan(xy) \\ \cos(5x - y) \end{pmatrix}$$

e.)
$$f(x,y) = \begin{pmatrix} \sqrt{x^2 + y^2} \\ x\sqrt{y} \end{pmatrix}$$

- 2.) Find the linearization L(x,y) of $f(x,y) = \begin{pmatrix} x^2 + 3y \\ xy^2 \end{pmatrix}$ at (1,-1).
 - a.) Compute f(0.9, -1.2) and L(0.9, -1.2). What do you conclude?
 - b.) Compute f(3,2) and L(3,2). What do you conclude?
- 3.) Assume that $z = x^2y + xy^2$, $x = t^3$, and $y = \sqrt{t}$. Compute $\frac{dz}{dt}$ when t = 1.
- 4.) Assume that $z = \ln(xy) + e^{2x+3y}$, x = f(t), and y = g(t). If f(0) = -1, f'(0) = 2, g(0) = 3, and g'(0) = 1, then what is the value of $\frac{dz}{dt}$ when t = 0?
- 5.) Assume that y is a function of x and $x^2y^3+ye^{2x}=\ln y$. Use the partial derivative "shortcut" to determine $\frac{dy}{dx}$.
- 6.) A Madagascar hissing cockroach is walking on the plane x + 2y + 3z = 6 above the circle $x^2 + y^2 = 1$. Assume that the roach's position (x, y, z) (distance measured in inches) at time t seconds is determined by $x = \cos t$ and $y = \sin t$. Determine the roach's rate of change of elevation $\left(\frac{dz}{dt}\right)$ when t = 0 seconds; $t = \pi$ seconds.

- 7.) Compute the derivative of $f(x,y) = \ln(2x+3y)$ at the point P = (2,0) in the direction of vector $A = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.
- 8.) Consider the function $f(x,y)=xy^3$ and the point P=(2,1). Determine all unit vectors u so that $D_{\overrightarrow{u}}f(2,1)$ is
 - a.) as large as possible (f increases most rapidly).
 - b.) as small as possible (f decreases most rapidly).
 - c.) equal to zero.
- d.) equal to 1.
- 9.) Assume that the surface of a volcanic mountain is given by the function $z = 5e^{-(x^2+y^2)}$, where z is measured in miles. Sketch this mountain in 3D-Space. Assume you are standing on this mountain at the point $(x,y)=(1/2,\sqrt{3}/2)$. What is your elevation?
 - a.) Find the SLOPE of the mountain at this point in the
 - i.) positive x-direction.
 - ii.) positive y-direction.
 - iii.) negative x-direction.
 - iv.) direction of vector $\overrightarrow{v} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.
 - b.) In what direction will the SLOPE at this point be
 - i.) largest? What is the value of this slope?
 - ii.) smallest? What is the value of this slope?
- 10.) Consider the surface given by $x^2 + y^2 + z^2 = 169$ and the point P = (3, 4, 12) on the surface. Find equations for
 - a.) the plane tangent to the surface at point P.
 - b.) the line normal (perpendicular) to the surface at point P.
- 11.) Consider the surface (hyperbolic paraboloid or saddle) given by $f(x,y) = 3x^2 2y^2 + 5y^2 +$ and the point P = (2, 3, -1) on the surface. Find equations for
 - a.) the plane tangent to the surface at point P.
 - b.) the line normal (perpendicular) to the surface at point P.
- 12.) Let $f(x,y) = xy^2 + 2x 3y$. Use a linearization L(x) at the point (0,0) to estimate the value of f(0.2, -0.1).
- 13.) Find and classify critical points as determining relative maximums, relative minimums, or saddle points.

a.)
$$z = 3x^2 - 6xy + y^2 + 12x - 16y + 1$$
 b.) $z = x^2y - x^2 - 2y^2$ c.) $z = x^2 - 8\ln(xy) + y^2$ d.) $z = 3x^2y - 6x^2 + y^3 - 6y^2$

- 14.) Find the point on the plane x + 2y + 3z = 6 nearest the origin.

- 15.) Determine the dimensions and minimum surface area of a closed rectangular box with volume 8 ${\rm ft.}^3$
- 16.) Determine the point on the sphere $x^2 + y^2 + z^2 = 4$ which is a.) nearest the point (1, -1, 1). b.) farthest from the point (1, -1, 1).

"If you judge people, you have no time to love them." - Mother Teresa