Math 17 C

Kouba

The Second Derivative Test for Relative Extrema in Three Dimensional Space

We seek to find the relative maximum and relative minimum values of surfaces in three-dimensional space given by the function z = f(x, y).

SECOND DERIVATIVE TEST:

1.) First compute the partial derivatives $\frac{\partial f}{\partial x} = f_x$ and $\frac{\partial f}{\partial y} = f_y$. Then find all points (a, b) which satisfy

$$f_x = 0$$
 and $f_y = 0$.

These points (a, b) are called critical points.

2.) Determine the partial derivatives f_{xx} , f_{yy} , and f_{xy} . For each of the critical points compute the discriminant

$$D = (f_{xx})(f_{yy}) - (f_{xy})^2 .$$

- 3.) a.) If D > 0 and $f_{xx} > 0$, then f has a relative minimum value at (a, b).
 - b.) If D > 0 and $f_{xx} < 0$, then f has a relative maximum value at (a, b).
- c.) If D < 0, then f has a saddle point at (a, b). In other words, at the point (a, b) there is a path along which z = f(a, b) appears to be a maximum and another path along which z = f(a, b) appears to be a minimum.
- d.) For all other cases (for example, if D=0) this test is INCONCLUSIVE. This means other methods must be used to determine if the critical point determines a maximum value, minimum value, or saddle point.