RECALL: Consider two points (x 1, y 1) and (x 2, y 2) in two-dimensional space. The midpoint of the line segment joining these two points is given by

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

RECALL: The set of all points (x, y) in two-dimensional space which are a distance r from a fixed point (h, k) is a circle (with center (h, k) and radius r) given by the equation

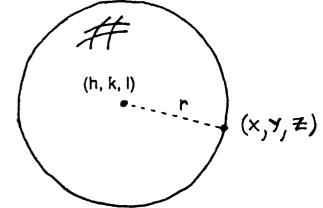
$$(x-h)^2 + (y-k)^2 = r^2$$
. (h, k)

Let (x_1, y_1, z_1) and (x_2, y_2, z_2) be two points in three-dimensional space. The midpoint of the line segment joining these two points is given by

The distance between
$$(x_1, y_1, z_1)$$
these two points is
$$(x_2, y_2, z_2)$$

$$(x_1, y_1, z_1)$$

$$(x_2, y_2, z_2)$$


$$(x_2, y_2, z_2)$$

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} . \qquad (x_2, y_2, z_2)$$

DEFINITION: The set of all points (x, y, z) in three-dimensional space which are a distance r from a fixed point (h, k, l) is a sphere (with center the land radius to given by the equation

(h, k, l) and radius r given by the equation

$$(x-h)^2 + (y-k)^2 + (z-1)^2 = r^2$$
.

Example: Find the center and radius of each of the following spheres.

1.
$$2x^2 + 2y^2 + 2z^2 = 32$$

center (0, 0, 0) radius 4

2. $x^2 + y^2 + z^2 - 4x + 6y = 17$

center (2,-3,0)

radius √30

Example: The diameter of a sphere has endpoints (1, 3, 0) and (-2, 4, 6). Determine an equation for this sphere.

$$(x + 1/2)^2 + (y-7/2)^2 + (z-3)^2 = 23/2$$

Example: Find and simplify an equation for all points (x, y, z) in three-dimensional space which are equidistant from the point (1,-2,3) and the plane z=-1.

$$Z = 1/8 (x-1)^2 + 1/8 (y+2)^2 + 1$$