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Slopes and Tangent Lines
In Exercises 1-4, use the grid and a straight edge to make a rough
estimate of the slope of the curve (in y-units per x-unit) at the points
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In Exercises 5-10, find an equation for the tangent to the curve at the
given point. Then sketch the curve and tangent together.

5.y=4-x% (-1,3) =@-12%+1, (1,1

7. y=2V% (1,2 8. y==, (11
X

-1 (_,_1
10.y-x3, (2, 8)

In Exercises 11-18, find the slope of the function’s graph at the given
point. Then find an equation for the line tangent to the graph there.

1L fxy=x*+1, (2,5 12, f(x) =x— 2%, (1,-1)

9. y =1 (=2,-8)

13. g(x) = 3,3) 14. gx) = @2,2)

_x

— 2’
15. A1) =1, (2,8)
17. fx) = Vx, 4,2)

.;2.7
16, h(t) =2 + 31, (1,4
18. fx) = Vx + 1, (8,3)

In Exercises 19-22, find the slope of the curve at the point indicated.
19. y=5x - 342 x=1 2. y=x*—2x+7, x=-2

21.y=;—i—l,x=3 22.y=;c;{, x=0

Interpreting Derivative Values ‘
23. Growth of yeast cells In a controlled laboratory experiment;;
yeast cells are grown in an automated cell culture system thaty
counts the number P of cells present at hourly intervals. The nums ;
ber after ¢ hours is shown in the accompanylng figure. '
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a. Explain what is meant by the derivative P’(5). What are its
units? 4

b. Which is larger, P'(2) or P’(3)? Give a reason for your
answer.

¢. The quadratic curve capturing the trend of the data points
(see Section 1.4) is given by P(f) = 6.102 — 9.28¢ + 16. 43

Find the instantaneous rate of growth when ¢ = 5 hours. ‘

24. Effectiveness of a drug On a scale from O to 1, the effecti

ness £ of a pain-killing drug ¢ hours after entering the blo
stream is displayed in the accompanying figure.
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a. At what times does the effectiveness appear to be increasin
What is true about the derivative at those times?

b. At what time would you estimate that the drug reaches its

maximum effectiveness? What is true about the derivative a
that time? What is true about the derivative as time increase
in the 1 hour before your estimated time?

At what points do the graphs of the functions in Exercises 25 and
have horizontal tangents?

25, fx) =x*+4x -1 26. g(x) = x* — 3x
27. Find equations of all lines having slope —1 that are tangent to
curve y = 1/(x — 1).

28. Find an equation of the straight line having slope 1/4 that is
gent to the curve y = V.

Rates of Change
29. Object dropped from a tower An object is dropped from thil
top of a 100-m-high tower. Its height above ground after ¢ sec i§
100 — 4.9/ m. How fast is it falling 2 sec after it is dropped?
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Speed of a rocket At ¢ sec after liftoff, the height of a rocket is does not exist, because the limit is o from the right and —o© from the

3¢2 ft. How fast is the rocket climbing 10 sec after liftoff? left.

1, Circle’s changing area What is the rate of change of the area

f a circle (A = 7rr?) with respect to the radius when the radius

isr = 3?

2. Ball’s changing volume What is the rate of change of the vol-

ume of a ball (V = (4/3)7r®) with respect to the radius when

the radius is r = 2?

Show that the line y = mx + b is its own tangent line at any 0|

‘point (xp, mxy + b). NO VERTICAL TANGENT AT ORIGIN

4. Find the slope of the tangent to the curve y = 1/ V/x at the point | ~ 37. Does the graph of .

~where x = 4. 1 oy
-1, x

t

iment,
n that
' um-

’;'estm‘g for Tangents f@y)=¢g 0, x=0
. Does the graph of 1, x>0

2.
f(x) = {x sin(1/x), x#0 have a vertical tangent at the origin? Give reasons for your answer.
” 0, x=0 38. Does the graph of
-have a tangent at the origin? Give reasons for your answer. 0. x<0
3 nDoesthegraphof U()={1, =0
g = {x sin(1/x), x#0 have a vertical tangent at the point (0, 1)? Give reasons for your
; 0, x=0 answer.
243, hgvé a tangent at the origin? Give reasons for your answer. Graph the curves in Exercises 39—48.
tive- ical Tangents a. Where do the graphs appear to have vertical tangents?
00d- e say that a continuous curve y = f(x) has a vertical tangent at the b. Confirm your findings in part (a) with limit calculations. But
point where x = xo if the limit of the difference quotient is 00 or —00, before you do, read the introduction to Exercises 37 and 38.
For example, y = x1/3 has a vertical tangent at x = 0 (see accompa- 39, y = x5 40. y = 25
Aying ﬁgurc): i . . 41, y = x1/ 42 y=x5
}llix%f( }: f()-—'}in})h h_o 43 y = 45 — 4. y = x> — 5
) 45. y = X3 — (x — D2 46. y = x'3 + (x — 1!
= lim—— = o0, —-\/ <0
h_,0h2/3 47 — { |x ’ X = 48 — /—_
i Vi, x>0 Y 14 xl
COMPUTER EXPLORATIONS
ng? Use a CAS to perform the following steps for the functions in Exer-
cises 49-52:
a. Plot y = f(x) over the interval (x; ~ 1/2) = x = (x + 3).
at 0 x b. Holding x, fixed, the difference quotient
ies
fGo + h) — flxo)
glh) = =———
2 at x, becomes a function of the step size h. Enter this function
into your CAS workspace.
VERTICAL TANGENT AT ORIGIN ¢. Find the limit of gas h—0.
the .
. d. Define the secant lines y = +g(x—xy)forh = 3,2,
OWever, y = x*/* has no vertical tangent at x = 0 (see next figure): and 1. Graph them tog:therfv(v?t; f :nd( the tz(;l)gent line over
an- ' . g0 +h -0 . pA-0 the interval in part (a).
im = lim
h—0 h =0 h 5
1 49. f)=x>+ 2, x%=0 50. f)=x+3% x=1
= lim 1—/3
h=0h 51. f() = x + sin(2x), xp = 7/2

52, fx) =cosx + 4sin(2x), =7
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3.2 The Derivative as a Function

ing Derivative Functions and Values
ng the definition, calculate the derivatives of the functions in
ses 1-6. Then find the values of the derivatives as specified.

0 =4 =% 3, FO. P
0= G- 1P+ 1 FED,FO),FQ)
50 =5 £CD.82),8(V3)

> 1 -
*z) = 2z <

0) = V30; p'(1),p'3), p'(2/3)
) = V2s + 1; r(0), r(1), r'(1/2)
ercises 7-12, find the indicated derivatives.

dr
ds

;KD k), K (V2)

if y=2x3 8. if r=s—-29+3

P dv . _ .1
if S = 10. ar if v=t '

if p=g¥ 12. if z=

TI&

we— 1

i Exercises 17-18, differentiate the functions. Then find an equation

1y the tangent line at the indicated point on the graph of the function.

=) = —2, (my) = (6.4)

Vi -2
w=g@=1+Vi-z @w=G32

xercises 19-22, find the values of the derivatives.

. . 1
if s=1-32% 20. — if y=1-5

x=V3
2 dw .

= . = _ = +

Vi 22 dz|z'4 if w=z+ V2

@ —~ f(x)

’ - 1'
fi@) = im=——5—
d the derivative of the functions in Exercises 23—26.

1

f(x)=‘- 24. fx)=x2—3x+ 4

26. g(x) =1+ Vx

Graphs
Match the functions graphed in Exercises 27-30 with the derivatives

graphed in the accompanying figures (a)—-(d).

y y
A
t 0 'x
0 -> X ;
() (b)
y ¥
A / \\/ \ /\

(© @
27. 28.

y = fitx) y = f2(%)

29, 30.

y
/\ y =f3(? \ ’ y =ﬁ‘(xy
VARV s
31. a. The graph in the accompanying figure is made of line seg-

ments joined end to end. At which points of the interval
[—4, 6] is f' not defined? Give reasons for your answer.

y

©,2) (6,2)

/& y =f(x) /
& § N I | L 5y
(~4,0) 0 \ 1 / 6

(,-2  @-2

b. Graph the derivative of f.
The graph should show a step function.
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32. Recovering a function from its derivative

a. Use the following information to graph the function f over
the closed interval [—2,5].

i) The graph of f is made of closed line segments joined
end to end.

ii) The graph starts at the point (=2, 3).

jii) The derivative of f is the step function in the figure
shown here.

b. Repeat part (a), assuming that the graph starts at (—2, 0)
instead of (—2, 3).

33. Growth in the economy The graph in the accompanying figure
shows the average annual percentage change y = f(f) in the U.S.
gross national product (GNP) for the years 2005-2011. Graph
dy/dt (where defined).
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34, Fruit flies (Continuation of Example 4, Section 2.1.) Popula-
tions starting out in closed environments grow slowly at first,
when there are relatively few members, then more rapidly as the
number of reproducing individuals increases and resources are
still abundant, then slowly again as the population reaches the
carrying capacity of the environment.

a. Use the graphical technique of Example 3 to graph the deriv-

ative of the fruit fly population. The graph of the population
is reproduced here.
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b. During what days does the population seem to be increasing
fastest? Slowest?

35. Temperature The given graph shows the temperature T in °F

at Davis, CA, on April 18, 2008, between 6 A.M. and 6 P.M. »
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a. Estimate the rate of temperature change at the times
i) 7aM il) 9AM. iii) 2 pP.M. iv) 4p.M. 42

b. At what time does the temperature increase most rapidly?
Decrease most rapidly? What is the rate for each of those time

" Di
¢. Use the graphical technique of Example 3 to graph the deri Fa
ative of temperature T versus time f. ck

36. Weightloss Jared Fogle, also known as the “Subway Sandwij
Guy,” weighed 425 1b in 1997 before losing more than 240 1b i
12 months (http://en.wikipedia.org/wiki/Jared_Fogle). A chad
showing his possible dramatic weight loss is given in the accon§
panying figure.

w
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a. Estimate Jared’s rate of weight loss when
=1 ii) t=4 iii) + =11

b. When does Jared lose weight most rapidly and what is this 4
rate of weight loss? S

¢. Use the graphical technique of Example 3 to graph the de
ative of weight W.

One-Sided Derivatives
Compute the right-hand and left-hand derivatives as limits to show th
the functions in Exercises 37-40 are not differentiable at the point

37. 38.
y y

)

y=fx)

P(0, 0) 0 1



at

‘Exercises 41 and 42, determine if the piecewise-defined function is
fifferentiable at the origin.

x=0
x<0

Ifferentlablllty and Continuity on an Interval
: h figure in Exercises 43—48 shows the graph of a function over a

osed interval D. At what domain points does the function appear to be

"" 8. differentiable?

i :b. continuous but not differentiable?

o

-¢.~neither continuous nor differentiable?

reasons for your answers.

44,

.—2;_
. 46.
’ y
y=fx —
< y=fx)
: “3=x=3 D: -2=x=<3
30
1_
S -2-1 0] 1 * .
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Theory and Examples
In Exercises 49-52,
a. Find the derivative f'(x) of the given function y = f(x).
b. Graph y = f(x) and y = f'(x) side by side using separate
sets of coordinate axes, and answer the following questions.
¢. For what values of x, if any, is f' positive? Zero? Negative?
d. Over what intervals of x-values, if any, does the function
y = f(x) increase as x increases? Decrease as x increases?
How is this related to what you found in part (c)? (We will
say more about this relationship'in Section 4.3.)

49. y = —x* 50. y=-1/x

51, y=x*/3 52, y = x*/4

53. Tangent to a parabola Does the parabola y = 2x* — 13x + 5
have a tangent whose slope is —17 If so, find an equation for the
line and the point of tangency. If not, why not?

54. Tangentto y = Vx Does any tangent to the curve y = Vi
cross the x-axis at x = —1? If so, find an equation for the line and
the point of tangency. If not, why not?

55, Derivative of —f Does knowing that a function f(x) is differ-
entiable at x = x, tell you anything about the differentiability of
the function —f at x = x,7? Give reasons for your answer.

56. Derivative of multiples Does knowing that a function g(¢) is
differentiable at ¢ = 7 tell you anything about the differentiabil-
ity of the function 3g at t = 7? Give reasons for your answer.

§7. Limit of a quotient Suppose that functions g(r) and h(r) are
defined for all values of ¢ and g(0) = h(0) = 0. Can
lim,—q (g(£))/(h(£)) exist? If it does exist, must it equal zero?

_ Give reasons for your answers.
58. a. Let f(x) be a function satisfying | f(x)| = x?for—1 = x < 1.
Show that f is differentiable at x = 0 and find f'(0).

b. Show that

xzsin)l—C, x#0

o) =
0, x=0
is differentiable at x = 0 and find £'(0).

59. Graph y = 1/(2\/;) in a window that has 0 = x =< 2. Then, on
the same screen, graph

_ Vit h-Vx
h

for h = 1,0.5,0.1. Then try & = —1,—0.5,—0.1. Explain what
is going on.

60. Graph y = 3x? in a window that has —2 = x 2,0 =y = 3.
Then, on the same screen, graph

x+h? -
S
for h = 2,1,0.2. Then try h = —2,—1,—0.2. Explain what is
going on.
61. Derivative of y = |x| Graph the derivative of f(x) = |x].

Then graph y = (|x| — 0)/(x — 0) = |x|/x. What can you
conclude?
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62. Weierstrass’s nowhere differentiable continuous function ¢, Substitute various values for x larger and smaller than x; into§
The sum of the first eight terms of the Weierstrass function the formula obtained in part (c). Do the numbers make sense
fx) = S el /3)'cos(9"mx) is with your picture? 3

g(x) = cos(mx) + (2/3)' cos(9mx) + (2 /3)? cos (9%7x) f. Graph the formula obtained in part (c). What does it mean

+ 2/3Pcos(Pmx) + -+ + (2/3) cos (9" mx).

Graph this sum. Zoom in several times. How wiggly and bumpy
is this graph? Specify a viewing window in which the displayed 63 fy=x>+x—x x=1

portion of the graph is smooth.

COMPUTER EXPLORATIONS 65. f(x) = 4x X =2
Use a CAS to perform the following steps for the functions in Exer- 2 +1
cises 63—-68. x—1
a. Plot y = f(x) to see that function’s global behavior. 66. f(x) = 2+ 1 X =-1
b. Define the difference quotient g at a general point x, with 67. f(x) = sin2x, x = /2

general step size h.

c. Take the limit as # — 0. What formula does this give?

d. Substitute the value x = xg and plot the function y = f(x)
together with its tangent line at that point.

3 . 3 Differentiation Rules

when its values are negative? Zero? Positive? Does this make h
sense with your plot from part (2)? Give reasons for your
answer.

64. f(x) = x13 4+ x23, x=1

68. f(x) = x*cosx, x = /4

c (x,¢) (x+ h,0) —c

w -
B ESE . ——

0 h

=

FIGURE 3.9 Therule (d/dx)(c) =0
is another way to say that the values of
constant functions never change and that
the slope of a horizontal line is zero at
every point. :

This section introduces several rules that allow us to differentiate constant functio
power functions, polynomials, exponential functions, rational functions, and certain co
binations of them, simply and directly, without having to take limits each time.

Powers, Multiples, Sums, and Differenées

A simple rule of differentiation is that the derivative of every constant function is zero.

Derivative of a Constant Function
If f has the constant value f(x) = ¢, then

af _d . _
E—dx(c)—o.

Proof We apply the definition of the derivative to f(x) = c, the function whose output
have the constant value ¢ (Figure 3.9). At every value of x, we find that
fox +h) — f(x)

ey — T €T C oy o
7o = T — e = o =0

From Section 3.1, we know that

d(1 1 _ _
3(3‘-):—;5’ or %(x ) =—x72

From Example 2 of the last section we also know that

%(\/;) = ﬁ, or %(xl/z) = %x“/z.

These two examples illustrate a general rule for differentiating a power x”. We first pro :
the rule when r is a positive integer. i
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How to Read the Symbols for
Derivatives

’ o . ” n

y ypume Yo = iy(n—l) _4y _ DYy

y"  *“y double prime” dx dx"

dy denoting the nth derivative of y with respect to x for any positive integer z.

—  “dsquared y dx squared”

y”  “ytriple prime”

y»  “y super n”

dy
P “d to the n of y by dx to the n”
D" “Dtothen” EXAMPLE 10

All polynomial functions have derivatives of all orders. In this example, the fifth and late
derivatives are all zero.

If y" is differentiable, its derivative, y” = dy"/dx = d’/ dx?, is the third derlvatlve
of y with respect to x. The names continue as you 1magme, with

We can interpret the second derivative as the rate of change of the slope of the tangen
to the graph of y = f(x) at each point. You will see in the next chapter that the seco
derivative reveals whether the graph bends upward or downward from the tangent line as
we move off the point of tangency. In the next section, we interpret both the second an
third derivatives in terms of motion along a straight line.

The first four derivatives of y = x> — 3x? + 2 are

First derivative: y' =3x% - 6x
Second derivative: y" = 6x — 6
Third derivative: y" =6
Fourth derivative:  y® = 0.

Derivative Calculations
In Exercises 1-12, find the first and second derivatives.

1L.y=-x*+3 2.y=x*+x+8
3.5=508-3° 4, w =137 — 72 + 212
_ & SRS L
S.y—3 x + 2¢ 6.y——3 2+e
a2 1 a1, 4
T.w=32-3 8. s =-2¢ +;§

9. y=6x2 — 10x — 5x72 10, y =4 — 2x — x73

L_3 2 =24, 1

11. r = 32 2 9 pER

In Exercises 13-16, find y' (a) by applying the Product Rule and
(b) by multiplying the factors to produce a sum of simpler terms to
differentiate.

13 y= B-F-x+ 1)’14. y=(2x + 3)(5x2 - 4x)

15. y = (£ + 1)<x +5+ %) 16. y = (1 + 2)(x¥* — x73)

Find the derivatives of the functions in Exercises 17—40.

_2x+35 _ 4 —3x
17.y—3x_2 18'z—_3x2+x
_x-4 - -1
19 80 =370 0.50=517 2
21, v=(1—t)(l+t2)—1 2. w=2x -7 x+5)
— 1 5x + 1
23, f(s 24, y=2"-~
) = 4u= 2

Find the derivatives of all orders of the functions in Exercises 4144

2s.u=li)-c'—f‘—\é 26.r=2(—1—+\/5)
: Vo
S 1 Gt HE+2
VT E- DR+ Y TG -DGE -
2
= 7p7% 3x = x° + 3¢
29, y=2*+e 30. y 25— x
. y= i 2. w=re’
Boy=xM+e% Moy=x3+ 7
385, 5 =202 4 3.2 36.w=;—11j;+—\7;—2
3. y= Vi -x 8. y = Vx%S + 2¢13
39, r= e?s 40. r = ee(lz + 9"”/2)
6

5
2 _ =X
x 42, y 120

3. y=x-DEx+2)x+3) 44 y=@4+32 - x)x

‘ 4
41.y=%—%x

Find the first and second derivatives of the functions in Exercise$
45-52. N

3 2 —
a5, y=%3+7 46.s=£-t5—2‘———1
®-DO*+6+1) P+ —x+1)
47, r= =
93 x*
_ 1+3z) B g +3
49.w—( )3~ 9 50.p——(q_1)3+(q+1)3



sw = 3726 52 w=e(z - D@+ 1)
. Suppose u and v are functions of x that are differentiable at
x = 0 and that

u©0) =5, w0 =-3, v(0) = -1, v'(0)=2.

ve

ind the values of the following derivatives at x = 0.

a. %(uv) b. %(%) c. g_x(%) d. 5;(71) - u)

Suppose » and v are differentiable functions of x and that

) =2, w'1)=0, v =5 v)=-L

Find the values of the following derivatives at x =
du dfv d _
b. Ex—<5> C. dx(“) d. e (Tv — 2u)

pes and Tangents

3. Normaltoacurve Findan equation for the line perpendicular
. tothe tangent to the curve y = 3 — 4x + 1 atthe point (2, 1).
Smallest slope  What is the smallest slope on the curve? At
what point on the curve does the curve have this slope?

"¢, Tangents having specified slope  Find equations for the tan-
gents to the curve at the points where the slope of the curve is 8.
Horizontal tangents Find equations for the horizontal tan-
gents to the curve y = x° — 3% ~ 2. Also find equations for
the lines that are perpendicular to these tangents at the points
-..of tangency.

Smallest slope  What is the smallest slope on the curve? At
what point on the curve does the curve have this slope? Find
an equation for the line that is perpendicular to the curve’s
tangent at this point.

“Find the tangents to Newton's serpentine (graphed here) at the
Lorigin and the point (1, 2).

Find the tangent to the Witch of Agnesi (graphed here) at the point
2,1

H)

Quadratic tangent to identity function The curve y=

wax? + bx + c passes through the point (1, 2) and is tangent to the

3. line y = x at the origin. Find a, b, and c.

.)- Quadratics having a common tangent The curves y =
%2 + ax + b and y = cx — x* have a common tangent line at

: the point (1, 0). Find a, b, and c.

145

3.3 Differentiation Rules

61. Find all points (x, y) on the graph of f(x) = 3x2 — 4x with tan-
gent lines parallel to theliney = 8x + 5.

62. Find all points (x, y) on the graph of g(x) = 1 = 3x? + 1 with
tangent lines parallel to the line 8x — 2y = L.

63. Find all points (x, y) on the graph of y = x/(x — 2) with tangent
lines perpendicular to the liney = 2x + 3.

64. Find all points (x, y) on the graph of f(x) = x* with tangent lines
passing through the point (3,8).

)
wf 207
= y JCRY
6_
B 16801
2.—
] 1 1 J__;x
/2 4
__2_

65. a. Find an equation for the line that is tangent to the curve
y = x* — x at the point 1,0).

b. Graph the curve and tangent line together. The tangent inter-
sects the curve at another point. Use Zoom and Trace to esti-
mate the point’s coordinates.

Confirm your estimates of the coordinates of the second
intersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

Find an equation for the line that is tangent to the curve

y = x* — 6x? + 5x at the origin.

Graph the curve and tangent together. The tangent intersects
the curve at another point. Use Zoom and Trace to estimate
the point’s coordinates.

e

66. a.

[T]b.

Confirm your estimates of the coordinates of the second
intersection point by solving the equations for the curve and
tangent simultaneously (Solver key).

e

Theory and Examples ;
For Exercises 67 and 68 evaluate each Jimit by first converting each to

a derivative at a particular x-value.

- P
67. Lm = 68. lim T

69. Find the value of a that makes the following function differentia-
ble for all x-values.

g = {‘”"

xr — 3x,

ifx <0
ifx=0

70. Find the values of a and b that make the following function dif-
ferentiable for all x-values.

_ fax + b,
@ = {be—s,

71. The general polynomial of degree 7 has the form

x> -1
x=-1

P(x) = a,x" + a,,_lx"'1 4 e ot ax + ay

where a, # 0. Find P'(x).
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72. The body’s reaction to medicine The reaction of the body to a
dose of medicine can sometimes be represented by an equation of

the form
(g1,

where C is a positive constant and M is the amount of medicine
absorbed in the blood. If the reaction is a change in blood pres-
sure, R is measured in millimeters of mercury. If the reaction is a
change in temperature, R is measured in degrees, and so on.

Find dR/dM. This derivative, as a function of M, is called the
sensitivity of the body to the medicine. In Section 4.5, we will see
how to find the amount of medicine to which the body is most
sensitive.

73. Suppose that the function v in the Derivative Product Rule has a
constant value c. What does the Derivative Product Rule then say?
What does this say about the Derivative Constant Multiple Rule?

74. The Reciprocal Rule

a. The Reciprocal Rule says that at any point where the function
v(x) is differentiable and different from zero,
ldv

dafly_ _
dx\V vidx’

Show that the Reciprocal Rule is a special case of the Deriva-
tive Quotient Rule.

b. Show that the Reciprocal Rule and the Derivative Product
Rule together imply the Derivative Quotient Rule.

Generalizing the Product Rule The Derivative Product Rule
gives the formula

75

o

_ v, du
(uv) udx+vdx

for the derivative of the product uv of two differentiable func-
tions of x.

a. What is the analogous formula for the derivative of the prod-
uct uvw of three differentiable functions of x?

b. What is the formula for the derivative of the product u;u, 314
of four differentiable functions of x?

¢. What is the formula for the derivative of a product u w3 " * - u,
of a finite number » of differentiable functions of x?

3 4 The Denvatlve as a Rate of Change

76. Power Rule for negative integers Use the Derivative Quotien

71.

78

Rule to prove the Power Rule for negative integers, that is,

E(x"") = —mx~"!
where m is a positive integer. :
Cylinder pressure If gas in a cylinder is maintained at a con4

stant temperature T, the pressure P is related to the volume V by
formula of the form

nRT an®
V - nb

in which a, b, n, and R are constants. Find dP/dV. (See accompe
nying figure.) §

P:

The best quantity to order One of the formulas for invento !‘
management says that the average weekly cost of ordering, pa
ing for, and holding merchandise is

A(q)—li-m—+cm+h2q,
where g is the quantity you order when things run low (shoeg '
TVs, brooms, or whatever the item might be); k is the cost ¢
placing an order (the same, no matter how often you order); ¢ »‘
the cost of one item (a constant); m is the number of items sold '
each week (a constant); and A is the weekly holding cost per iter
(a constant that takes into account things such as space, utilitie
insurance, and security). Find dA/dg and d’A /dq>.

In Section 2.1 we introduced average and instantaneous rates of change. In this section w
study further applications in which derivatives model the rates at which things change. It i
natural to think of a quantity changing with respect to time, but other variables can b4
treated in the same way. For example, an economist may want to study how the cost €
producing steel varies with the number of tons produced, or an engineer may want ‘
know how the power output of a generator varies with its temperature. '

Instantaneous Rates of Change

If we interpret the difference quotient (f(x + h) —
in f over the interval from x to x + h, we can interpret its limit as #—> 0 as the rate
which f is changing at the point x.

f(x))/h as the average rate of chang
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on Along a Coordinate Line
ises 1-6 give the positions s = f(f) of a body moving on a coor-
line, with s in meters and ¢ in seconds.
- Find the body’s displacement and average velocity for the
. given time interval.
b. Find the body’s speed and acceleration at the endpoints of the
3 > interval.
When, if ever, during the interval does the body change direction? .

=6t—1 0=t=6
=+ 323, 0=1r=3
- (4/4) - P+, 0=<r=<3
5;, =t=5
=t=0

Particle motion At time ¢, the position of a body moving along
the s-axisis s = 2 — 612 + 9¢rm.

a. .Find the body’s acceleration each time the velocity is zero.

b. Find the body’s speed each time the acceleration is zero.

‘¢ Find the total distance traveled by the body from ¢t = Oto ¢t =

Particle motion At time ¢ = 0, the velocity of a body moving
along the horizontal s-axisis v = £ — 4t + 3.

a. Find the body’s acceleration each time the velocity is zero.
b. When is the body moving forward? Backward?

‘. When is the body’s velocity increasing? Decreasing?

-Fall Applications

ree fall on Mars and Jupiter The equations for free fall at
the surfaces of Mars and Jupiter (s in meters, ¢ in seconds) are
s = 1.86¢2 on Mars and s = 11.44¢? on Jupiter. How long does it
take a rock falling from rest to reach a velocity of 27.8 m/sec
:(about 100 km /h) on each planet?

Lunar projectile motion A rock thrown vertically upward
Arom the surface of the moon at a velocity of 24 m /sec (about
86 km /h) reaches a height of s = 24t — 0.8¢> m in t sec.

. Find the rock’s velocity and acceleration at time t. (The accel-
eration in this case is the acceleration of gravity on the moon.)

. How long does it take the rock to reach its highest point?

How high does the rock go?

. How long does it take the rock to reach half its maximum

height?

v2. How long is the rock aloft?

“Finding g on a small airless planet Explorers on a small airless
lanet used a spring gun to launch a ball bearing vertically upward

from the surface at a launch velocity of 15 m/sec. Because the accel-

~eration of gravity at the planet’s surface was g, m/ sec?, the explorers

sexpected the ball bearing to reach a height of s = 151 — (1 /2)g:> m

ol sec later. The ball bearing reached its maximum height 20 sec after

being launched. What was the value of g,?

12. Speeding bullet A 45-caliber bullet shot straight up from the
surface of the moon would reach a height of 5 = 8321 — 2,68 ft
after t sec. On Earth, in the absence of air, its height would be
s = 832¢ — 1612 ft after ¢ sec. How long will the bullet be aloft in
each case? How high will the bullet go?

13. Free fall from the Tower of Pisa Had Galileo dropped a can-
nonball from the Tower of Pisa, 179 ft above the ground, the
ball’s height above the ground ¢ sec into the fall would have been
s =179 — 16¢%. ‘

a. What would have been the ball’s velocity, speed, and acceler-
ation at time ¢?

b. About how long would it have taken the ball to hit the ground?

¢. What would have been the ball’s velocity at the moment of
impact?

Galileo’s free-fall formula Galileo developed a formula for a
body’s velocity during free fall by rolling balls from rest down
increasingly steep inclined planks and looking for a limiting for-
mula that would predict a ball’s behavior when the plank was
vertical and the ball fell freely; see part (a) of the accompanying
figure. He found that, for any given angle of the plank, the ball’s
velocity ¢ sec into motion was a constant multiple of . That is, the
velocity was given by a formula of the form v = &t. The value of
the constant k depended on the inclination of the plank.

In modern notation—part (b) of the figure—with distance in
meters and time in seconds, what Galileo determined by experi-
ment was that, for any given angle 6, the ball’s velocity  sec into
the roll was

14

v = 9.8(sin)t m/sec.
Free-fall

position

(@ ()

a. What is the equation for the ball’s velocity during free fall?
b. Building on your work in part (a), what constant acceleration
does a freely falling body experience near the surface of Earth?

Understanding Motion from Graphs
15. The accompanying figure shows the velocity v = ds/dt = f(t)
(m/sec) of a body moving along a coordinate line.

v (m/sec)

3 v =f(®

N
FRW AL

a. When does the body reverse direction?
b. When (approximately) is the body moving at a constant speed?

> t (sec)
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¢. Graph the body’s speed for 0 = ¢ = 10.
d. Graph the acceleration, where defined.

16. A particle P moves on the number line shown in part (a) of the
accompanying figure. Part (b) shows the position of P as a func-
tion of time ¢.

P
N Emve—-————— A Y (0. )]

0
(a)
s (cm)
1
1 |
0 1 2
_2 -
__4 -

()

a. When is P moving to the left? Moving to the right? Standing
still?
b. Graph the particle’s velocity and speed (where defined).

Launching a rocket When a model rocket is launched, the pro-
pellant burns for a few seconds, accelerating the rocket upward.
After burnout, the rocket coasts upward for a while and then
begins to fall. A small explosive charge pops out a parachute
shortly after the rocket starts down. The parachute slows the
rocket to keep it from breaking when it lands.

The figure here shows velocity data from the flight of the
model rocket. Use the data to answer the following.

a. How fast was the rocket climbing when the engine stopped?

17

b. For how many seconds did the engine burn?

200

|

1
I

I
!
|
I

1
)
|
i
!

150 4=

T
{
N\
5

7

100

b

50 -H !

Velocity (ft/sec)

=50

7

I
N
I

‘ i
- ; I [
1000 2 4 6 8 10 12

Time after launch (sec)

¢. When did the rocket reach its highest point? What was its
velocity then?

d. When did the parachute pop out? How fast was the rocket
falling then?

e. How long did the rocket fall before the parachute opened?
f. When was the rocket’s acceleration greatest?

g. When was the acceleration constant? What was its value then
(10 the nearest integer)?

19. Two falling balls The muitiflash photograph in the accompa';

18. The accompanying figure shows the velocity v = f(£) of a particle § :‘ 20. A
moving on a horizontal coordinate line. E S5
v n‘ e
1 a
v=Af(n)
\ 1 | | I/l\l e 5t (SCC)
ol N234/56 7 89

b

a. When does the particle move forward? Move backward?

Speed up? Slow down? :
b. When is the particle’s acceleration positive? Negative? Zero
¢. When does the particle move at its greatest speed? ;
d. When does the particle stand still for more than an instant?

nying figure shows two balls falling from rest. The vertical rule
are marked in centimeters. Use the equation s = 49012 (the fre
fall equation for s in centimeters and ¢ in seconds) to answer the
following questions. (Source: PSSC Physics, 2nd ed., Reprinted
by permission of Education Development Center, Inc.)

a. How long did it take the balls to fall the first 160 cm? Wha
was their average velocity for the period?

b. How fast were the balls falling when they reached the 160
mark? What was their acceleration then?

¢. About how fast was the light flashing (flashes per second)?. 3
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.iA traveling truck  The accompanying graph shows the position
5 of a truck traveling on a highway. The truck starts at t = 0 and

returns 15 h later at ¢+ = 15.

. Use the technique described in Section 3.2, Example 3, to

graph the truck’s velocity v = ds/ds for 0 = ¢ < 15. Then

repeat the process, with the velocity curve, to graph the

truck’s acceleration dv/dt.

Suppose that s = 1512 — £3. Graph ds/dt and d’s/ds* and

compare your graphs with those in part (a).

500
5400—
AR
P/ \

TS T N T T T OO W 1
0 5 10 15
Elapsed time, ¢ (hr)

The graphs in the accompanying figure show the position s,
velocity v = ds/dr, and acceleration a = d’s/df* of a body
moving along a coordinate line as functions of time 7. Which
-graph is which? Give reasons for your answers.

y

The graphs in the accompanying figure show the position s, the
velocity v = ds/dt, and the acceleration a = d’s/dr* of a body
moving along a coordinate line as functions of time f. Which
- graph is which? Give reasons for your answers.

y

®
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Economics

23.

24.

Marginal cost Suppose that the dollar cost of producing x
washing machines is c(x) = 2000 + 100x — 0.1x%

a. Find the average cost per machine of producing the first 100
washing machines.

b. Find the marginal cost when 100 washing machines are
produced.

¢. Show that the marginal cost when 100 washing machines are

produced is approximately the cost of producing one more
washing machine after the first:100 have been made, by cal-
culating the latter cost directly.

Marginal revenue Suppose that the revenue from selling x
washing machines is

) = 20,000(1 - ,l—c)

dollars.

a. Find the marginal revenue when 100 machines are produced.

b. Use the function 7'(x) to estimate the increase in revenue that
will result from increasing production from 100 machines a
week to 101 machines a week.

¢. Find the limit of '(x) as x — 0. How would you interpret
this number?

Additional Applications

25.

26.

27.

28.

Bacterium population When a bactericide was added to a
nutrient broth in which bacteria were growing, the bacterium
population continued to grow for a while, but then stopped grow-
ing and began to decline. The size of the population at time ¢
(hours) was b = 10° + 10* — 10°%. Find the growth rates at

a. t = 0hours.
b. t = 5 hours.
¢. t = 10 hours.

Body surface area A typical male’s body surface area § in
square meters is often modeled by the formula § = & Vwh,
where # is the height in cm, and w the weight in kg, of the person.
Find the rate of change of body surface area with respect to
weight for males of constant height # = 180 cm (roughly 5'9").
Does S increase more rapidly with respect to weight at lower or
higher body weights? Explain.

Draining a tank It takes 12 hours to drain a storage tank by
opening the valve at the bottom. The depth y of fluid in the tank ¢
hours after the valve is opened is given by the formula

AV
y—6<1—-~1—5> m.

a. Find the rate dy/dt (m/h) at which the tank is draining at
time ¢.

b. When is the fluid level in the tank falling fastest? Slowest?
What are the values of dy/dt at these times?

¢. Graph y and dy/dt together and discuss the behavior of y in
relation to the signs and values of dy/dt.

Draining a tank The number of gallons of water in a tank ¢
minutes after the tank has started to drain is Q(f) = 200(30 — )%
How fast is the water running out at the end of 10 min? What is the
average rate at which the water flows out during the first 10 min?
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29. Vehicular stopping distance Based on data from the U.S.
Bureau of Public Roads, a model for the total stopping distance of
a moving car in terms of its speed is

s = 1.1v + 0.0542,

where s is measured in ft and v in mph. The linear term 1.1v
models the distance the car travels during the time the driver per-
ceives a need to stop until the brakes are applied, and the qua-
dratic term 0.054v? models the additional braking distance once
they are applied. Find ds/dv at v = 35 and v = 70 mph, and
interpret the meaning of the derivative.

30. Inflating a balloon The volume V = (4/3)7r® of a spherical

balloon changes with the radius.

a. At what rate (ft3/ft) does the volume change with respect to
the radius when r = 2 ft?

b. By approximately how much does the volume increase when
the radius changes from 2 to 2.2 ft?

31. Airplane takeoff Suppose that the distance an aircraft travels
along a runway before takeoff is given by D = (10/9)¢?, where D is
measured in meters from the starting point and ¢ is measured in sec-
onds from the time the brakes are released. The aircraft will become
airborne when its speed reaches 200 km/h. How long will it take to
become airbome, and what distance will it travel in that time?

32. Volcanic lava fountains Although the November 1959 Kilauea
Iki eruption on the island of Hawaii began with a line of fountains

along the wall of the crater, activity was later confined to a single

3.5 Derivatives of Trigonometric Functions

Exercises 33-36 give the position function s = f(r) of an object moy-

vent in the crater’s floor, which at one point shot lava 1900 ft
straight into the air (a Hawaiian record). What was the lava’s exit 4
velocity in feet per second? In miles per hour? (Hint: If vy is the
exit velocity of a particle of lava, its height ¢ sec later will be.
s = vyt — 1672 ft. Begin by finding the time at which ds/dt = 0.
Neglect air resistance.)

Analyzing Motion Using Graphs

ing along the s-axis as a function of time ¢. Graph f together with the
velocity function v(f) = ds/dt = f'(t) and the acceleration function
a(t) = ds/d? = f"(t). Comment on the object’s behavior in relation
to the signs and values of v and 4. Include in your commentary such
topics as the following:

a. When is the object momentarily at rest?

b. When does it move to the left (down) or to the right (up)?
¢. When does it change direction?

d. When does it speed up and slow down?

e. When is it moving fastest (highest speed)? Slowest?

f. When is it farthest from the axis origin?

33. 5 =200t — 1634, 0 =<t =< 12.5 (a heavy object fired straigh
up from Earth’s surface at 200 ft / sec)

M, s=1P-3%+2 0=:=5
.s=12—-62+7, 0s1=<4
. s=4-Ttt+6r*-7, 0s1=4

Many phenomena of nature are approximately periodic (electromagnetic fields, heart rhythms
tides, weather). The derivatives of sines and cosines play a key role in describing periodi

changes. This section shows how to differentiate the six basic trigonometric functions.

Derivative of the Sine Function

To calculate the derivative of f(x) = sin x, for x measured in radians, we combine the limits
in Example 5a and Theorem 7 in Section 2.4 with the angle sum identity for the sine function

If f(x) = sin x, then

sin(x + h) = sinx cos h + cos x sin A.

fG+h) = fx)
m = lim

sin(x + h) — sinx

')

h—0

(sinxcos & + cos xsin h) — sinx

Derivative definition
h A0 h

= 1um
h—0

sinx(cosh — 1) + cosxsinh
m

h

h—0

= sin x* lim
h—0

i . cosh —1 . sin &
im|{ sinxs———— ] + lim| cos x+ —
h—0 h h—0 h

h

cosh— 1 . sinh . ‘
————— + cosx* lim——— = sinx*0 + cosx*1 = cos x.

h h—0 h
Example 5a and

limit 0 limit 1 Theorem 7, Section 2.4
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EXAMPLE 6  Find y"ify = secx.

Solution Finding the second derivative involves a combination of trigonometricr
derivatives.

y = secx

y = secxtanx Derivative rule for secant function
d
y' = E(secxtanx)
d d -
= secx e (tan x) + tan xa (sec x) Derivative Product Rule

= sec x(sec’x) + tan x(sec xtanx)  Derivative rules
secd x + sec x tan® x

The differentiability of the trigonometric functions throughout their domains gived
another proof of their continuity at every point in their domains (Theorem 1, Section 3.2
So we can calculate limits of algebraic combinations and composites of trigonometri
functions by direct substitution.

EXAMPLE 7  We can use direct substitution in computing limits provided there is ng
division by zero, which is algebraically undefined. ‘

V2+secx _ V2+secO0 _ V2+1 ___\/___3_=_\/§

o cos(m — tanx)  cos(w — tan0) cos(r — 0) -1

Derivatives In Exercises 23-26, find dr/d6.

In Exercises 1-18, find dy/dx. 23. r=4 — #%in#0 24. r =0sin® + cos O
1y =—10x + 3cosx 2.y=?—c+55inx 25. r = secfcsc @ 26. r = (1 + sec8)sin @
3. y=xlcosx 4. y=Vrxsecx +3 In Exercises 27_::2’ find dp/dg.

2. p=5+—— 28. p=(1 +
5. y=cscx——4\/§+% 6. y=x2cotx—)% p cotg p=( csc g)cos ¢
) _sing + cosq 0. p= tan ¢
7. f(x) = sinxtanx 8. g(x)=% P cos q “P T T+tng
sin® x
gsing 3g + tang
9, y = xe*secx 10. y = (sinx + cos x)sec x 3. p= 71 2. p= Tgsecq
cotx ‘ cos x oo PR
Ly = X Ly = — 33. Find y" if
1Ly 1+ cotx 12. y 1+ sinx mey
4 : : a. y = csCx. b. y = secx.
cos X x

13. y= CcOosS x + tan x 14. y = X + Ccos X 34. Find y(4) = d4 y/dx“ if

15. y = (secx + tan x)(sec x — tan x) a. y=-isinx. b. y = 9cosx.

16. y = x*cos x — 2xsinx — 2 cos x Tangent Lines

17. f(x) = x*sinx cos x 18. g(x) = (2 — x) tan’x In Exercises 35-38, graph the curves over the given intervals, togeth

with their tangents at the given values of x. Label each curve and ta
In Exercises 19-22, find ds/dt. gent with its equation.

19. s =tant — €™ 20. s = 1> — sect + 5¢ 35. y=sinx, —3m/2<x<2m

21, 5= LT osct 2. 5 = _.sint x=—m,0,3m/2
1 —csct 1 —cost



sy = tanx, w2 <x<m/2

~/3,0,7/3

secx, —m/2<x<m/2

x=~-m/3, /4

y=1+cosx, —3m/2=x=2m

= —7/3,31/2

he graphs of the functions in Exercises 39-42 have any horizontal

ts in the interval 0 < x < 27? If so, where? If not, why not?
ize your findings by graphing the functions with a grapher.

d all points on the curve y = tanx, —7/2 < x < /2, where
e tangent line is parallel to the line y = 2Zx. Sketch the curve
d tangent(s) together, labeling each with its equation.

ind all points on the curve y = cotx,0 < x < a, where the
gent line is parallel to the line y = —x. Sketch the curve and
gent(s) together, labeling each with its equation.

y=4+cotx — 2cscx

y=1+\/§cscx+cotx

rigonometric Limits
d the limits in Exercises 47-54.

1_}111117/6 1 + cos (7 csc x)

m ——= . lim e
9—>m/6 0—’6—r g—>mr/4 0—%

- nlimsec[e" + wtan(
=0

tanx — 2secx

54. lim cos( 76
-0
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Theory and Examples

The equations in Exercises 55 and 56 give the position s = f(f) of a
body moving on a coordinate line (s in meters, ¢ in seconds). Find the
body’s velocity, speed, acceleration, and jerk at time ¢ = /4 sec.

55.
57.

58

59.

60

61.

62.

s=2—2sint §6. s = sint + cost
Is there a value of ¢ that will make

sin? 3x

fo=4¢ ¥

c, o x=0

x#*0

continuous at x = 0? Give reasons for your answer.
Ts there a value of b that will make

® {x+b, x<0
x=
g cosx, x=0

continuous at x = 0? Differentiable at x = 0? Give reasons for
your answers.

By computing the first few derivatives and looking for a pattern,
find d%%°/dx* (cos x).

Derive the formula for the derivative with respect to x of

a. secx. b. cscx. c. cotx.

A weight is attached to a spring and reaches its equilibrium posi-
tion (x = 0). It is then set in motion resulting in a displacement of

x = 10cos ¢,

where x is measured in centimeters and ¢ is measured in seconds.
See the accompanying figure.

- —10

Equilibrium
-0 position
ax=0

10

|
X
a. Find the spring’s displacement when r = 0,1 = 7 /3, and
t=3m/4
b. Find the spring’s velocity when t = 0,7 = /3, and
t=3m/4
Assume that a particle’s position on the x-axis is given by
x = 3cdst + 4siny,
where x is measured in feet and ¢ is measured in seconds.
a. Find the particle’s position when t = 0,t = /2, and
t = .
b. Find the particle’s velocity when ¢t = 0,¢ = /2, and
t= .
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63. Graph y = cos x for —7 < x < 2m. On the same screen, graph
_ sin(x + h) — sinx
r= h
for h=1,0.503, and 0.1. Then, in a new window, try
h = —1,~0.5, and —0.3. What happens as A — 0*? As h —>07?
What phenomenon is being illustrated here?

. Graph y = —sin x for —7 =< x = 2. On the same screen, graph

cos{x + h) — cosx
y= A

for h=1,0.5,0.3, and 0.1. Then, in a new window, try
h = —1,-0.5, and —0.3. What happens as A — 0*? As h—>07?
What phenomenon is being illustrated here?

Centered difference quotients The centered difference quotient

fa+h) — fx — k)
2h

65.

is used to approximate f'(x) in numerical work because (1) its
limit as & — 0 equals f'(x) when f'(x) exists, and (2) it usually
gives a better approximation of f’(x) for a given value of A than
the difference quotient

fx+h) - f&)
7 .

See the accompanying figure.

y
Slope = f'(x)
_ fx+h) = fx)
c Slope———————h
.//:
i |
| l
| | \ fo+ B == h)
Slope = ——m——————
L &z
=) | i l
| I |
] i i
| I i
T N
0 x—h x x+h

a. To see how rapidly the centered difference quotient for
f(x) = sin x converges to f'(x) = cos x, graph y = cos x
together with

_sin{x + h) — sin(x — h)
- . 2h
over the interval [—, 27] for h = 1, 0.5, and 0.3. Com-

pare the results with those obtained in Exercise 63 for the
same values of A.

b. To see how rapidly the centered difference quotient for
f(x) = cos x converges to f'(x) = —sin x, graph y = —sinx

together with

_cos(x + h) = cos(x — h)
B 2h

over the interval [—ar, 2] for A = 1, 0.5, and 0.3. Compare
the results with those obtained in Exercise 64 for the same
values of h.

66.

[T]67.

68.

69.

70.

A caution about centered difference quotients (Continuation

of Exercise 65.) The quotient
fex+ h)y —
2h

fx — h)

may have a limit as A — 0 when f has no derivative at x. As aj
case in point, take f(x) = |x| and calculate
[0+ k| — |0 — A
m h .

h—0

As you will see, the limit exists even though f(x) = |x| has noi
derivative at x = 0. Moral: Before using a centered difference
quotient, be sure the derivative exists.

] : C: yti

Slopes on the graph of the tangent function Graph y = tan 4 FIGUF

and its derivative together on (— /2, 7/2). Does the graph of thel e

tangent function appear to have a smallest slope? A largest slopcgil ’(‘: ak
- m

Is the slope ever negative? Give reasons for your answers.

Slopes on the graph of the cotangent function Graph y = cot o
and its derivative together for 0 < x < . Does the graph of the

cotangent function appear to have a smallest slope? A largesy for ea
slope? Is the slope ever positive? Give reasons for your answers, -4 three t
Exploring (sin kx)/x Graph y = (sinx)/x, y = (sin 2x)/x, and ‘ Th“s;i
y = (sin 4x)/x together over the interval —2 < x =< 2. Whers (dy/d

does each graph appear to cross the y-axis? Do the graphs really
intersect the axis? What would you expect the graphs of
y = (sin 5x)/x and y = (sin(—3x))/x to do as x— 0? Why]
What about the graph of y = (sin kx)/x for other values of kf
Give reasons for your answers. :

Radians versus degrees: degree mode derivatives What hap
pens to the derivatives of sin x and cos x if x is measured i
degrees instead of radians? To find out, take the following steps;

a. With your graphing calculator or computer grapher in degred"
mode, graph

sm h

fny =

and estimate lim,_,, f(h). Compare your estimate with
/180. Is there any reason to believe the limit should be
/1807

b. With your grapher still in degree mode, estimate

. cosh—1
lim ———,
=0 h

¢. Now go back to the derivation of the formula for the deriva:
tive of sin x in the text and carry out the steps of the deriv
tion using degree-mode limits. What formula do you obtain-
for the derivative?

d. Work through the derivation of the formula for the derivativé
of cos x using degree-mode limits. What formula do you
obtain for the derivative?

¢, The disadvantages of the degree-mode formulas become
apparent as you start taking derivatives of higher order. T!
it. What are the second and third degree-mode derivatives o
sin x and cos x?
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y

y = sin(x°) = sin

TN

mX

180

LA

FIGURE 3.27 The function sin (x°) oscillates only /180 times as often as sin x

y=sinx

T AL,
TTITITITIRA |

oscillates. Its maximum slope is 7 /180 at x = 0 (Example 9).

Derivative Calculations
In Exercises 1-8, given y = f(u) and u = g(x), find dy/dx =

f'(g(x))g ().

Ly=6u—9 u=(1/2x" 2 y=2? u=8-—1
3. y=sinu, u=3x+1
5. y=\/;, u = sinx

4, y=cosu, u=e"’

7. y=tanu, u=mx’

In Exercises 9-22, write the function in the form y = f(u) and

% = g(x). Then find dy/dx asa function of x.
9. y=x+ 1y 10. y = (4 — 3x)°

-7 -10
11.y=<1—’7—‘> 12.y=(—\{5—1>
2 4
l3.y=<%+x—}—c) 14, y =

15. y = sec(tanx) 16. y = cot (77 - )1_c>

3x2 —4x + 6

17, y = tan’x 18. y = Scos™x
19, y=¢€> 20. y = 3
20, y=¢&" 22, y = el4Va+s)

Find the derivatives of the functions in Exercises 23-50.

23. p=V3-1t 24, q=V2r—r

25. s = —%sin 3t + icoé 5t 26. s = sin (3—2@) + cos (m

3 S

27. r = (csc 6 + cot 0)_1: 28. r = 6(sec O — tan 0)*/2

29. y = x*sin*x + xcos2x 30. y= %sin’5x - §c0s3x

-1
31y = g0x— 2+ (4 - Exl—Z)

_ 5, 1(2 ¢
32.y—(5—-2x)3+§(§+1)

33y = (4x + P*x + 1)
35, y =xe* + &
3. y= (-2 +2)?

36. y = (1 + )™
38, y = (9x2 — 6x + 2)e*

6. y=sinu, u=Xx—COSX

8. y=—secu, u=)1—c+7x

34, y = (2x — 571(x2 - 5x)°

39. h(x) = xtan(2Vx) + 7

41.

43.

45.

47.

49.

In Exercises 51-70, find dy/dt.

51,
53.
55.
57.

59.

61.

63.

69.

fx) = V7 + xsecx

_ sing \
16 = (1 + cose)

r = sin{6%)cos(26)

= sin( ! )
1 Vie+1
y= cos(e"’z)

y = sin?(rt — 2)
y=(1+ cos2t)™
y = (ttan 9)'°
y = gos (m=1)

- (%)

y = sin(cos (2t — 3))

r= (1))

.y = V1 + cos(t)

. y = tan?(sin®r)

y=3t(2F - 5)*

Second Derivatives
Find y" in Exercises 71-78.

71.

73.

75.
77.

13
(1)

=1 _
y—9cot(3x 1)
y=x2x+ 1*
y=e"l+5x

42.

44,

46.

48.

50.

52.

56.

72. y = (1 - V)™
_ x
74. y = 9tan(3)
76. y = x2(2 — 1)°
78. y = sin(x%")

. k(x) = x* sec (%)

.y = (esin(t/2))3

_ (3t -4\’
"y TS+ 2
. y = cos (5 sin (%))

. y=4sin(\/1 + W)

. y = cos*(sec?3t)

tan 3x
x+ 7

1+ sin3r\™"
0 = (15252)

r= sec\/étan <%)

o 22
g = cot{ —

y = %P cos 50

g =

y = sec?mt
y = (1 + cot(t/2))>
y = (¥ sin 1)*?

y %(1 + c052(7t))3

y=V3i+ V2tV



ding Derivative Values
Exercises 79-84, find the value of (f © g)' at the given value of x.

W= +1, u=g0)=Vy x=1

1 _ _ - _
—uv u_g(x)_l—.x’x 1

x f® g f'(x) g'kx)

2 8 2 1/3 -3
3 3 —4 2 5

ind the derivatives with respect to x of the following combina-
ions at the given value of x.

b. f(x) + glx), x=3

26 fx)gx), x=3 d. fx)/gx), x=2

e fglx), x=2 f. Vi, x=2

1/g%x), x=3 h. VF2(x) + g2x), x=2

-Suppose that the functions f and g and their derivatives with
respect to x have the following values at x = 0 and x = 1.

x  fx) g(x) f(x) g'(x)

0 1 1 5 1/3
1 3 -4 -1/3  -8/3

“Find the derivatives with respect to x of the following combina-
tions at the given value of x.

Lo 5f() — glx), x=1

o f
c. g(xﬁ)():)-_l’ x=1 d fgx), x=0

b. fXgx), x=0

-~ 1l

& g(fx), x=10

& fx+g), x=0
“Find ds/dt when § = 37 /2 if s = cos6 and d6/dr = 5.

W, Find dy/dr when x = 1if y = x> + 7x — 5 and dx/dt = 1/3.

f. M+ fEy? x=1

3.6 TheChainRule 169

Theory and Exampies
What happens if you can write a function as a composite in different
ways? Do you get the same derivative each time? The Chain Rule
says you should. Try it with the functions in Exercises 91 and 92.
91. Find dy/dx if y = x by using the Chain Rule with y as a comps-
ite of
a y=(u/5+7 and u=5x—-35
b. y=1+ (l/u) and u=1/(x— 1.
92. Find dy/dx if y = x*/% by using the Chain Rule with y as a com-
posite of
a. y=u and u=Vx
b. y=Vu and u=x%
93. Find the tangentto y = ((x — 1)/(x + 1)) atx = 0.
94. Find the tangenttoy = Vx? — x + Tatx = 2.
95, a. Find the tangent to the curve y = 2 tan(wx/4) atx = 1.
b. Slopes on a tangent curve What is the smallest value the

slope of the curve can ever have on the interval
—2 < x < 27 Give reasons for your answer.

96. Slopes on sine curves

a. Find equations for the tangents to the curves y = sin 2x and
y = —sin(x/2) at the origin. Is there anything special about
how the tangents are related? Give reasons for your answer.

b. Can anything be said about the tangents to the curves
y = sinmx and y = —sin(x/m) at the origin
(m a constant % 0)? Give reasons for your answer.

¢c. For a given m, what are the largest values the slopes of the
curves y = sin mx and y = —sin(x/m) can ever have? Give
reasons for your answer.

d. The function y = sin x completes one period on the interval
[0, 27], the function y = sin 2x completes two periods, the
function y = sin(x/2) completes half a period, and so on. Is
there any relation between the number of periods y = sin mx
completes on [0, 27 ] and the slope of the curve y = sin mx
at the origin? Give reasons for your answer.

97. Running machinery too fast Suppose that a piston is moving
straight up and down and that its position at time ¢ sec is

s = Acos(2mhi),

with A and b positive. The value of A is the amplitude of the
motion, and b is the frequency (number of times the piston moves
up and down each second). What effect does doubling the fre-
quency have on the piston’s velocity, acceleration, and jerk?
(Once you find out, you will know why some machinery breaks
when you run it too fast.)

98. Temperatures in Fairbanks, Alaska The graph in the accom-
panying figure shows the average Fahrenheit temperature in
Fairbanks, Alaska, during a typical 365-day year. The equation
that approximates the temperature on day x is

= 37sin| 2T (x —
y—37s1n[365(x 101)]+25

and is graphed in the accompanying figure.
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a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increas-
ing when it is increasing at its fastest?

y
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99, Particle motion The position of a particle moving along a
coordinate line is s = V1 + 4¢, with s in meters and ¢ in sec-
onds. Find the particle’s velocity and acceleration at ¢t = 6 sec.

100. Constant acceleration Suppose that the velocity of a falling
body is v = kVs m/sec (k a constant) at the instant the body
has fallen s m from its starting point. Show that the body’s

acceleration is constant.

101. Falling meteorite The velocity of a heavy meteorite entering
Earth’s atmosphere is inversely proportional to Vs when it is
s km from Earth’s center. Show that the meteorite’s acceleration
is inversely proportional to 5.

102. Particle acceleration A particle moves along the x-axis with
velocity dx/dt = f(x). Show that the particle’s acceleration is
fOf' ().

Temperature and the period of a pendulum For oscillations
of small amplitude (short swings), we may safety model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

T= 211\/%,

where g is the constant acceleration of gravity at the pendulum’s
location. If we measure g in centimeters per second squared, we
measure L in centimeters and T in seconds. If the pendulum is
made of metal, its length will vary with temperature, either
increasing or decreasing at a rate that is roughly proportional to
L. In symbols, with « being temperature and k the proportional-
ity constant,

103.

dL _
s kL.

Assuming this to be the case, show that the rate at which the
period changes with respect to temperature is k77/2.

104. Chain Rule Suppose that f(x) = x? and g(x) = |x|. Then the
composites
(Fo)) = |x|2=x' and (o) = || =

are both differentiable at x = O even though g itself is not dif-
ferentiable at x = 0. Does this contradict the Chain Rule?
Explain.

105. The derivative of sin 2r Graph the function y = 2cos 2 for:
—2 =< x = 3.5. Then, on the same screen, graph

sin 2(x + A) — sin 2x
y= A
for h = 1.0,0.5, and 0.2. Experiment with other values of ki

including negative values. What do you see happening ag
h — 0? Explain this behavior.

106. The derivative of cos(x?) Graph y = —2xsin(x?) for —2 5

x =< 3. Then, on the same screen, graph
_cos((x + n? — cos(x?)
B h

for h = 1.0, 0.7, and 0.3. Experiment with other values of
What do you see happening as 2 — 0? Explain this behavior.

Using the Chain Rule, show that the Power Rule (d /dx)x* = nx"™
holds for the functions x” in Exercises 107 and 108. ]

107. x4 = Vvx

COMPUTER EXPLORATIONS
Trigonometric Polynomials 3
109. As the accompanying figure shows, the trigonometric “polyng

mial” ]

108. x¥/* = VxVax

s = f(&) = 0.78540 — 0.63662 cos 2t —
—0.02546¢cos 10t —

0.07074 cos 6¢
0.01299cos 14¢

gives a good approximation of the sawtooth function s = 2l
on the interval [—, w]. How well does the derivative of#
approximate the derivative of g at the points where dg/dt
defined? To find out, carry out the following steps.

a. Graph dg/dt (where defined) over [—, 7 ].
b. Find df/dt.

¢. Graph df/d:. Where does the approximation of dg/dt §
df /dt seem to be best? Least good? Approximations by trif
onometric polynomials are important in the theories of hej
and oscillation, but we must not expect too much of them, ,
we see in the next exercise. :

= g(»)

110. (Continuation of Exercise 109.) In Exercise 109, the trigonom#
ric polynomial f(f) that approximated the sawtooth function g
on [—, 7] had a derivative that approximated the denva
of the sawtooth function. It is possible, however, for a tngo 0
metric polynomial to approximate a function in a reasona ‘A
way without its derivative approximating the function’s de

tive at all well. As a case in point, the trigonometric “polyn

s = h(f) = 1.2732sin 2t + 0.4244 sin 6¢ + 0.25465 sin 10¢
+ 0.18189 sin 14¢ + 0.14147 sin 18¢ i
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- graphed in the accompanying figure approximates the step func-
tion s = k(r) shown there. Yet the derivative of & is nothing like b. Find dh/dt.

+the derivative of k.
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a. Graph dk/dt (where defined) over [—m, 7]

¢, Graph dh/dt to see how badly the graph fits the graph of

- k) dk/dt. Comment on what you see.

s = h(t)

I

A
7 Implicit Differentiation

]

ed into separate arcs that are the graphs

Most of the functions we have dealt with so far have been described by an equation of the
form y = f(x) that expresses y explicitly in terms of the variable x. We have learned rules
for differentiating functions defined in this way. Another situation occurs when we encoun-

ter equations like
B+y -9y =0, y:—x=0, or

(See Figures 3.28, 3.29, and 3.30.) These equations define an implicit relation between the
variables x and y. In some cases we may be able to solve such an equation for y as an
explicit function (or even several functions) of x. When we cannot put an equation
F(x,y) = 0 in the form y = f(x) to differentiate it in the usual way, we may still be able
to find dy/dx by implicit differentiation. This section describes the technique.

x +y?—-25=0.

Implicitly Defined Functions

We begin with examples involving familiar equations that we can solve for y as a function of
x to calculate dy/dx in the usual way. Then we differentiate the equations implicitly, and find
the derivative to compare the two methods. Following the examples, we summarize the steps
involved in the new method. In the examples and exercises, it is always assumed that the
given equation determines y implicitly as a differentiable function of x so that dy/dx exists.

EXAMPLE 1 Find dy/dx if > = x.

2 = y defines two differentiable functions of x that we can actu-

Solution The equation y
-Vx (Figure 3.29). We know how to calculate the

ally find, namely y; = Vx and y, =

derivative of each of these for x > 0:
dx  2Vx dx 2Vx'

ly that the equation y? = x defined y as one or more differen-

But suppose that we knew on
0 without knowing exactly what these functions were. Could

tiable functions of x for x =

we still find dy/dx?
The answer is yes. To find dy/dx, we simply differentiate both sides of the equation

y? = x with respect to X, treating y = f(x) asa differentiable function of x:

IGURE 3.2
# 3 8 The Furve }’2 =x The Chain Rule gives £1“'(\'3) =
y> — 9xy = 0 is not the graph of any 7 © EVEN
e functi Y Iv
- on of x. The curve can, however, be Zyd—x = ztil_\ L] = 2ff = 2\‘11‘\

 functions of . This particular curve, called dy _ 1
- = AL
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erentiating Implicitly
implicit differentiation to find dy/dx in Exercises 1-16.

Ay + = 2. 2+ y =18y
4. 2 —-xy+y =1

2 y? 6. Bxy + T =6y
-y
e A
8 x T x+ 3y

10. xy = cot(xy)
12. x* + siny = x*?

. in( L 1—2xy 14. xcos(2x + 3y) = ysinx

B 16, &7 =2x + 2y

18. r - 2Vo = %ow + 4303/4

20. cosr + cotd = ¢

22, 23+ y3 =1

24, ¥ —2x=1-2y

, 26. xy +y* =1

J. If x* + y* = 16, find the value of d?y/dx? at the point (2, 2).
If xy + y2 = 1, find the value of d%/dx? at the point (0, —1).

‘l’Exercises 29 and 30, find the slope of the curve at the given points.
y+d=y-2% at (-2, Dand(-2,-1)
W+ =@=-y? at (1,00 and (1,-1)

opes, Tangents, and Normals
A Exercises 3140, verify that the given point is on the curve and find
lines that are (a) tangent and (b) normal to the curve at the given

2rxy-yr=1 (2,3

#+y =125 (3,49

V=9, (-1,3)

P -u—-4y-1=0, (2,1

ﬁx2 +3y+ 2P+ 17y -6=0, (-1,0)
2~ Vay + 2 =5 (V3,2)

2y + wsiny =2m, (1,7/2)

“xsin2y = ycos 2x, (w/4,7/2)

¥ =2sin(mx —y), (1,0)

cos’y — siny =0, (0, )

41. Parallel tangents Find the two points where the curve
x% + xy + y* = 7 crosses the x-axis, and show that the tangents
to the curve at these points are paraliel. What is the common
slope of these tangents?

42. Normals parallel to a line Find the normals to the curve
xy + 2x — y = 0 that are parallel to the line 2x + y = 0.

43. The eight curve Find the slopes of the curve y* = y* — x* at
the two points shown here.

y
J (3[3:@)
4’ 2
623)
4’2
—_ X
y4=y2—x2
-1

44. The cissoid of Diocles (from about 200 B.c.) Find equations
for the tangent and normal to the cissoid of Diocles y2(2 — x) = x3

at (1, 1).

y
YQ@-xn=x
~
ARV (B
- X
0 1

45. The devil’s curve (Gabriel Cramer, 1750) Find the slopes of
the devil’s curve y* — 4y? = x* — 9x* at the four indicated

points.
y
! Y4 — dy? = x* — oz
(-3,2) 2 (3.2)
—_ X
3 3
(—3,-2) 3 3,-2)




176 Chapter 3: Derivatives

46. The folium of Descartes (See Figure 3.28.)
a. Find the slope of the folium of Descartes x> + y* — 9xy = 0
at the points (4, 2) and (2, 4).
b. At what point other than the origin does the folium have a
horizontal tangent?

c. Find the coordinates of the point A in Figure 3.28 where the
folium has a vertical tangent.

Theory and Examples

47. Intersecting normal The line that is normal to the curve
x4+ 2xy — 3y? = 0 at (1, 1) intersects the curve at what other
point?

48. Power rule for rational exponents Let p and g be integers
with g > 0. If y = xP/4, differentiate the equivalent equation
y? = «? implicitly and show that, for y # 0,

d P _
— / =< xo/9-1
7 xPla g~ .

49. Normals to a parabola Show that if it is possible to draw three
normals from the point (g, 0) to the parabola x = y? shown in the
accompanying diagram, then a must be greater than 1/2. One of
the normals is the x-axis. For what value of a are the other two
normals perpendicular?

y

0 (@, 0)

50. Is there anything special about the tangents to the curves y? = x3

and 2x* + 3y? = 5 at the points (1, £ 1)? Give reasons for your
answer.

— e

Wi+ 3yP=5

51. Verify that the following pairs of curves meet orthogonally.

a. x2+y2=4, x2=3y2

{1,-1)

b. x=1-3%% x=%y2

In Exercises 53 and 54, find both dy/dx (treating y as a differentiah

4

52. The graph of y* = x3 is called a semicubical parabola and ig§
shown in the accompanying figure. Determine the constant b sg
that the line y = —%x + b meets this graph orthogonally.

function of x) and dx/dy (treating x as a differentiable function of y§

How do dy/dx and dx/dy seem to be related? Explain the relationsh

geometrically in terms of the graphs.

53. P +xly=6

54. X3 + y? = sin’y

55. Derivative of arcsine Assume that y = sin~! x is a differenti
ble function of x. By differentiating the equation x = sin
implicitly, show that dy/dx = 1/V1 — x%.

56. Use the formula in Exercise 55 to find dy/dx if

b. y = sin”! (i—) .
COMPUTER EXPLORATIONS :
Use a CAS to perform the following steps in Exercises 57-64.

a. Plot the equation with the implicit plotter of a CAS. Check«

see that the given point P satisfies the equation.

a. y = (sin™!x)?

b. Using implicit differentiation, find a formula for the deriva:
tive dy/dx and evaluate it at the given point P. '

¢. Use the slope found in part (b) to find an equation for the
gent line to the curve at P. Then plot the implicit curve and
tangent line together on a single graph. ‘

57. ® —xy+y* =1, P21
58 X +tyxtwtty =4, P

2+ x
1-x

60. y* + cosxy = x%, P(1,0)

Y T
6l. x + tan(;c> =2, P(l,z)

62. x* + tan(x +y) = 1, P(%:-, o)

63. 2 + ()P =4x24+2 P11
64. xV1+2y+y=x% P(1,0)

5. ¥ +y= PO, 1)



3.8 Derivatives of Inverse Functions and Logarithms

Because f'(1) = 1, we have
ln[li_q(l)(l + x)’/"] =1.

Therefore, exponentiating both sides we get

lim (1 + x)!/* = e.
x—0

See Figure 3.39 on the previous page.

185

Approximating the limit in Theorem 4 by taking x very small gives approximations to e.
Its value is ¢ = 2.718281828459045 to 15 decimal places.

ives of Inverse Functions
ises 1-4:

ph f and f 1 together.

Evaluate df /dx at x = a and df ' /dx at x = f(a) to show that
t these points df ™! /dx = 1/(df /dx).

x) = 2x + 3, 2. fx) = 1/5x + 17,
=5-4x, a=1/2 4 fx =% x=0,
how that f(x) = x° and g(x) = /% are inverses of one another.

a=-1 a=-1

a=>5

“Graph f and g over an x-interval large enough to show the
~graphs intersecting at (1, 1) and (=1, —1). Be sure the picture
«shows the required symmetry about the line y = x.

“Find the slopes of the tangents to the graphs of f and g at

(1, 1) and (—1, —1) (four tangents in all).

. What lines are tangent to the curves at the origin?

Show that h(x) = x/4 and k(x) = (4x)"/* are inverses of one
another.

me-
sat-

Graph h and k over an x-interval large enough to show the
- graphs intersecting at (2, 2) and (—2, —2). Be sure the picture
shows the required symmetry about the line y = x.

" Find the slopes of the tangents to the graphs at / and k at
(2,2) and (-2,-2).

" What lines are tangent to the curves at the origin?

. t f(x) = x> — 322 — 1, x = 2. Find the value of df !/dx at
the point x = -1 = f(3).

f(x) = x> ~ 4x — 5,x > 2. Find the value of df~!/dx at
e point x = 0 = f(5).

uppose that the differentiable function y = f(x) has an inverse
d that the graph of f passes through the point (2, 4) and has a
of 1/3 there. Find the value of df ™! /dx at x = 4.

uppose that the differentiable function y = g(x) has an inverse

nd that the graph of g passes through the origin with slope 2.
ind the slope of the graph of g™! at the origin.

itive,

vatives of Logarithms
ercises 1140, find the derivative of y with respect to x, ¢, or 6,

13. y = In(#?)

15. y = ln?—c

17.y=In@+1)—¢
19. y=nx
21, y = t(lns)?

4
23.y=%lnx—x—

16
2. y =1t

_ Inx
27. Y 1 ¥Ix

29, y=In(nx)

14.
16.

18.
20.
22.

24,

26.

28.
30.

31. y=6(sin(InB) + cos (In 6))

32. y = In(sec 8 + tan 6)

1

B.y=In———
Y xVx +1

_ 1+ 1In:

3 Y T =t

37. y = In (sec (In 6))

(o + 1)5>

39. =ln(
Y V1-—1x

Logarithmic Differentiation

34.

36.

38.

y=(A?) + Vi
y = In (sin x)

y = (cos 8) In (26 + 2)

y = (Inx)?
y= tln Vi
y = (x*In x)*
y = _
Vint
_ _Xlnx
Y 1+ Inx
y = In (In (In x))

=lln
Y= T =%

y=VhVt

=In Vsin 6 cos 0
y T+2In6

-1 x+ 1)y
T NG+ 2

In Exercises 41-54, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

41. y= Vx(x + 1)

[t
43y =4+

45, y = (sin9)VvVe + 3
47. y=1tt + D + 2)

_68+5
49'y_0c050
_xVxi+ 1
51, y =22
(x+ 1)

42.

44.
46.
48.

50.

52.

y =V + D - 1)

- 1
Y w+ 1)

y = (tan §)V20 + 1

_ 1
YT F D+ 2)

_ 0 sin §

sec @

e+
YN+ 1y

y



186  Chapter 3: Derivatives

_3x(x—2) _3x(x+1)(x—2)
YTV E V2 + D2x +3)
Finding Derivatives

In Exercises 55-62, find the derivative of y with respect to x, ¢, or 8,
as appropriate.

55. y = In (cos? 6) 56. y = In(30e7%)

57. y = In(3te’™) 58. y = In(2e*sin¢)
é ) ( Ve )

.y =1 60. y =1

.y n<l+e" 0.y "\1+V6

61. y = e(cost-Hnt) 62. y= esint(ln t2 + 1)

In Exercises 63—66, find dy/dx.

63. Iny = sinx 64. lnxy = &

65. X’ = y* 66. tany = ¢* + Inx

In Exercises 67-88, find the derivative of y with respect to the given
independent variable.

67. y =2 68. y = 3~
69. y = 5V 70. y = 269
71y =x7 72, y = l7e
73, y = log; 50 74, y = logz(1 + 6In3)
75. y = logsx + log,x? 76. y = logyse* — logsVx
77. y = log,r-log,r 78. y = logyreloggr

In3 ns
79. y = log3((ii }) ) 80. y = logs (3773‘5)
81. y = 6sin (log;6) 82. y = log; (%)

83. y = logse 84. y=

- log (_xigz__)
2
2Vx + 1
85. y = 3bo&! 86. y = 3logg(log,?)
87. y = log,(8:"?) 88. y = tlog, (etin i)
Logarithmic Differentiation with Exponentials

In Exercises 89-96, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

89. y=(x+ 1y 90. y = x&*th

91, y = (Vi) 92 y=1"
93, y = (sinx)* 94, y = xsinx
95, y = xin* 96. y = (In x)I"*

Theory and Applications
97. If we write g(x) for f~ 1();), Equation (1) can be written as

' __1 : PN —
g'(f@) = @y & 8 (fa)-f'@@ = 1.
If we then write x for a, we get
g f'x) =

The latter equation may remind you of the Chain Rule, and indeed
there is a connection.

Assume that f and g are differentiable functions that are
inverses of one another, so that (g ¢ f)(x) = x. Differentiate both

sides of this equation with respect to x, using the Chain Rule tg
express (go f)'(x) as a product of derivatives of g and :
What do you find? (This is not a proof of Theorem 3 becausg
we assume here the theorem’s conclusion that g = ™! f§
differentiable.) 3

98. Show that lim,,_..w(l + i—i) = ¢ forany x > 0.

99. If f(x) = x",n = 1, show from the definition of the derivativ§
that f'(0) = 0. A
100. Using mathematical induction, show that for n > 1

n— !

4= (1! =

dx"

COMPUTER EXPLORATIONS

In Exercises 101108, you will explore some functions and
inverses together with their derivatives and tangent line approxims
tions at specified points. Perform the foliowing steps using your C 4

a. Plot the function y = f(x) together with its derivative over th
given interval. Explain why you know that f is one-to-one ov
the interval.

b. Solve the equation y = f(x) for x as a function of y, and name
resulting inverse function g.

¢. Find the equation for the tangent line to f at the specified point;
(x0, F(x0))-
d. Find the equation for the tangent line to g at the point (f(xp), xo
located symmetrically across the 45° line y = x (which is the
graph of the identity function). Use Theorem 3 to find the slope
this tangent line.

e. Plot the functions f and g, the identity, the two tangent lines, an
the line segment joining the points (xp, f(xp)) and (f(xp), Xp)-
Discuss the symmetries you see across the main diagonal.

101. y = V3x - 2, 2< x=4, x=3

3
102.y=23;_+121, 2=x=2 x=1/2
4x
= = =< =
103. y 211 lsx=1, x=1/2
I
104. y = 57 “1=x=1, x%=1/2
105. y=x>—322-1, 2=x=35, x0=%—(7)
- 3 =3
106. y=2 —x—x°, —2=x=2, X =5

107. y=¢, -3=x=5,
108. y = sinx, —%st

In Exercises 109 and 110, repeat the steps above to solve for the
tions y = f(x) and x = f!(y) defined implicitly by the given &
tions over the interval.

109, /3 ~1=(x+2P -5=x=85 x=-3/2
110. cosy = x5, 0sx=1, x=1/2
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Common Values
Use reference triangles in an appropriate quadrant, as in Example 1, to
find the angles in Exercises 1-8.

b. tan”!(-V3)

1. a. tan™!1

c. tan’! (%)
2. a. tan”'(-1) b. tan™'V/3 c. tan™! (—_\7_15)

c. sin! <_ \6)

. ) .
4, a. sin™! 1 b. sin”! -1 c. sin™! —\/——2
2 o) 2
-1 (V3
-1 -1~ 1| Y3
Sacos(> b.cos(\/i) c.cos(2>
6. a. csc’'V2 b. csc! ;2§> c. csc12
7. a. sec‘l(—\/f) b. sec”! (%) c. sec”l(-2)
-1
8. a. cot™!(—1 b. cot™' (V3 c. cot™! (—)
(G )] ) V3
Evaluations

Find the values in Exercises 9-12.

9. sin (cos‘l (%)) 10. sec (cos‘%)
11. tan <sin’1 (— %))

12. cot <sin‘l (— %))
Limits

Find the limits in Exercises 13-20. (If in doubt, look at the function’s
graph.)

13. lim sinlx 14. lim cos™'x
x—1" x——1*

15. lim tanlx 16. lim tan'x
X—00 1

17. lim sec”lx 18. lim sec”'x
Xx—00 x——00

19. lim csc!x 20. lim csc’lx
xX—00 x—>-00

Finding Derivatives
In Exercises 21-42, find the derivative of y with respect to the appro-
priate variable, ‘

2L y = cos'(x?) : 22, y = cos!(1/x)
23, y = sin'V21¢ 24. y =sin”!(1 - 1)
25, y =sec”!(2s + 1) 26. y = sec”15s
27. y=cscl(x®*+ 1), x>0
28. y = csc"‘)z—c

41 . 13
29.y=sec‘7, 0<t<l1 30.y=sm1t—2
31 y = cot! Vi 32, y=cot'Vr—1
33, y = In(tan"'x) 4. y=tan(Inx)

35, y = csci(e) 36. y = cos™!(e™

3. y=sV1—-s+cos's 38 y=Vs —1—secls
39, y=tan'Vx® ~ 1 +csclx, x> 1

41, y = xsin"lx + V1 — x2

40, y = cot‘l% —tan"'x

42. y=In(x* + 4) — xtan™ (’2—‘)

Theory and Examples #
43. You are sitting in a classroom next to the wall looking at
blackboard at the front of the room. The blackboard is 12 ft l
and starts 3 ft from the wall you are sitting next to. Show t}§
your viewing angle is 1

= a1 X 1%
a = cot 15 cot 3

if you are x ft from the front wall.

Blackboard

44. Find the angle a.

65°

21
so B

45. Here is an informal proof that tan™'1 + tan™!2 + tan™!3
Explain what is going on.




wo derivations of the identity sec™!(—x) = 7 — sec”1x

(Geometric) Here is a pictorial proof that sec”l(—x) =
- qr — sec”!x. See if you can tell what is going on.

'b {(Algebraic) Derive the identity sec}(—x) = 7 — sec”lx by
* combining the following two equations from the text:

Eq. (4), Section 1.6
Eq. (1)

cos(—x) = m — cos'x

_-sec”lx = cos!(1/x)

tan”12 b. cos!2
e8¢ (1/2) b. csc'2
sec1 0 b. sin"'V2
cot™(—1/2) b. cos” (—5)

Vse the identity

-1, =7 ~1
csclu =7 —secTu

to rive the formula for the derivative of csc™ u in Table 3.1
from the formula for the derivative of sec™! u.
Derive the formula

dy __1
dx 1+ x?

ifor the derivative of y = tan"'x by differentiating both sides of
the equivalent equation tany = x.
QUse the Derivative Rule in Section 3.8, Theorem 3, to derive

d_ 1
Lsecly = ——=—=, || >1
dx |x|Vxt =1 b

4. Use the identity

cotlu = % — tan'u

derive the formula for the derivative of cot™ u in Table 3.1
om the formula for the derivative of tan™ u.
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55. What is special about the functions
f&x) = sin";; i x=0, and g(x) = 2tan! Vx?
Explain.

56. What is special about the functions

1

F(x) = sin™! \/—ﬁ and g(x) = tan™! Jl—c?
Explain.
57. Find the values of .
a. sec’!1.5 b. csc! (-1.5) ¢ cot!2
58. Find the values of
a. sec”i(—3) b. csc™'1.7 c. cot™!(=2)

In Exercises 59-61, find the domain and range of each composite
function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers. Com-
ment on any differences you see.

59. a. y = tan"!(tan x)
60. a. y = sin"!(sinx)
61. a. y = cos !(cos x)

b. y = tan (tan"!x)
b. y = sin (sin”'x)
b. y = cos (cos”!x)

Use your graphing utility for Exercises 62-66.
62. Graph y = sec (sec™! x) = sec (cos™'(1/x)). Explain what you
see.
Newton’s serpentine Graph Newton’s serpentine, y =4x/(x* + 1).
Then graph y = 2sin (2tan"'x) in the same graphing window.
What do you see? Explain.
Graph the rational function y = (2 ~ x?)/x*. Then graph y =
cos (2sec™x) in the same graphing window. What do you see?
Explain.
Graph f(x) = sin™'x together with its first two derivatives. Com-
ment on the behavior of f and the shape of its graph in relation to
the signs and values of f' and f".
. Graph f(x) = tan™'x together with its first two derivatives. Com-
ment on the behavior of f and the shape of its graph in relation to
the signs and values of f' and f".

63.

65

1 0 Related Rates

In this section we look at problems that ask for the rate at which some variable changes
when it is known how the rate of some other related variable (or perhaps several variables)
changes. The problem of finding a rate of change from other known rates of change is
called a related rates problem.




