Math 21C

Kouba

Discussion Sheet 1

1.) Graph each of the following equations in two-dimensional space.

a.)
$$y = 3$$

b.)
$$x = -2$$

c.)
$$y = x$$

a.)
$$y = 3$$
 b.) $x = -2$ c.) $y = x$ d.) $y = 3 - x$ e.) $y = x^3$

e.)
$$y = x^3$$

f.)
$$y = e^x$$

g.)
$$y = \ln x$$

f.)
$$y = e^x$$
 g.) $y = \ln x$ h.) $y = \sqrt{x}$ i.) $x = y^2$ j.) $y = \frac{1}{x}$

i.)
$$x = y^2$$

j.)
$$y = \frac{1}{x}$$

2.) Determine the center and radius of each of the following spheres.

a.)
$$x^2 + y^2 + z^2 = 16$$

b.)
$$x^2 + y^2 + z^2 = 16x$$

c.)
$$x^2 + (y-3)^2 + (z+7)^2 = 4/9$$

c.)
$$x^2 + (y-3)^2 + (z+7)^2 = 4/9$$
 d.) $2x^2 - 4x + 2y^2 + 4y + 2z^2 - 12z = 28$

e.)
$$(x-1)^2 + 2y^2 + (z-3)^2 = (y+1)^2$$

3.) A diameter of a sphere has endpoints (0,1,-1) and (4,-3,1/2). Determine an equation of this sphere.

4.) A rectangular box of length A, width B, and height C is inscribed in the sphere $x^2 + y^2 + z^2 = 1$. Show that $A^2 + B^2 + C^2 = 4$.

5.) Sketch the level curves for each of the following equations (surfaces) using the following values of z: -3, -2, -1, 0, 1, 2, 3

a.)
$$z = y$$

b.)
$$z = 1 - x - y$$

c.)
$$z^2 = x^2 + y^2$$

a.)
$$z = y$$
 b.) $z = 1 - x - y$ c.) $z^2 = x^2 + y^2$ d.) $x^2 + y^2 + z^2 = 9$

6.) Sketch all three coordinate plane traces (i.e., x = 0, y = 0, and z = 0) for each of the following equations (surfaces).

a.)
$$x + 2y + 3z = 6$$
 b.) $z = x^2 + y^2$ c.) $z = y^2 - x^2$ d.) $z^2 = x^2 + y^2$

b.)
$$z = x^2 + y^2$$

c.)
$$z = y^2 - x^2$$

d.)
$$z^2 = x^2 + y^2$$

7.) Sketch in three-dimensional space each of the following equations (surfaces). Use traces and/or level curves if necessary.

a.)
$$y = 3$$

b.)
$$x = -2$$

c.)
$$y = x$$

a.)
$$y = 3$$
 b.) $x = -2$ c.) $y = x$ d.) $y = 3 - x$ e.) $y = x^3$

e.)
$$y = x^3$$

$$f.) y = e^x$$

g.)
$$y = \ln x$$

h.)
$$y = \sqrt{x}$$

i.)
$$x = y^2$$

f.)
$$y = e^x$$
 g.) $y = \ln x$ h.) $y = \sqrt{x}$ i.) $x = y^2$ j.) $y = \frac{1}{x}$

k.)
$$x^2 + y^2 + z^2 = 4$$
 l.) $x + 2y + 3z = 6$ m.) $z = x^2 + y^2$ n.) $z^2 = x^2 + y^2$

l.)
$$x + 2y + 3z = 6$$

m.)
$$z = x^2 + y^2$$

n.)
$$z^2 = x^2 + y^2$$

o.)
$$z^2 = x^2 + y^2 - 1$$
 p.) $z^2 = x^2 + y^2 + 1$ q.) $z = y^2 - x^2$

$$(2) z^2 = x^2 + y^2 + 1$$

q.)
$$z = y^2 - x^2$$

THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY.

8.) A circus is witnessed by 120 people who have paid a total of \$120. The women paid \$5 each, the men paid \$2 each, and the children paid 10 cents each. How many women and children went to the circus?