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’ Alternating Harmonic Series Sum

It can be shown that the series also converges to tan™'x at the endpoints x = * ] but o

omit the proof.

Notice that the original series in Example 5 converges at both endpoints of the Orig
nal interval of convergence, but Theorem 22 can guarantee the convergence of the 4;

entiated series only inside the interval.

EXAMPLE 6

The series

o s +2_f3+“'
Ik P

converges on the open interval —1 < 1 < 1. Therefore,

]n{'l+Jc)_/.l [ dr—r——-!-L Eogt v | I 2
= eorem 228
1+t 2 3 4 6

O . My

*T273 7%
or

o _]]n—l_n

En(1+x)=2(—n—r. =1 <<k
n=1

It can also be shown that the series converges at x = 1 to the number In 2, but that was i

guaranteed by the theorem.
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ercises 37-40, find the series’ radius of convergence.
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: ing the Geometric Series

+ In Example 2 we represented the function f(x) = 2/x as a power
series about x = 2. Use a geometric series to represent f(x) as a
¢ Power series about x = 1, and find its interval of convergence.

b Use o geometric series to represent each of the given functions as a
| POWer series about x = 0, and find their intervals of convergence.

ST R

" Repregeny the function g(x) in Exercise 50 as a power series about
¥=5, and find the interval of convergence.

& Find the interval of convergence of the power series

0
2: 8 it
u4n+2 %
n=

* Represent the power series in part (a) as a power series about
* = 3 and identify the interval of convergence of the new
eries. (Later in the chapter you will understand why the new
"Merval of convergence does not necessarily include all of the
Mmbers in the original interval of convergence.)
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Theory and Examples

53.

54

55.

56.

57

.

58.

For what values of x does the series

S P L cgipns gifadYe  awi
1 2(.:: 3]+4(_r 3P + +(2)(x 3) +

converge? What is its sum? What series do you get if you differ-
entiate the given series term by term? For what values of x does
the new series converge? What is its sum?

If you integrate the series in Exercise 53 term by term, what new
series do you get? For what values of x does the new series con-
verge, and what is another name for its sum?

The series

285 0 18 g

1 = —~—+-——'_+_""‘_‘— RIAT
TRty TRt g -igt

converges to sin x for all x,

a. Find the first six terms of a series for cos x, For what values
of x should the series converge?

b. By replacing x by 2x in the series for sin x, find a series that
converges to sin 2x for all x.

¢. Using the result in part (a) and series multiplication, calculate
the first six terms of a series for 2 sin x cos x. Compare your
answer with the answer in part (b).

The series

2 3 4 5
Y T T LB R

S TR T A

converges to e* for all x.

a. Find a series for (d/dx)e". Do you get the series for &*?
Explain your answer. '

b. Find a series for f e* dx. Do you get the series for ¢*? Explain
your answer.

¢. Replace x by —x in the series for ¢* to find a series that con-
verges to e* for all x. Then multiply the series for e* and ™
to find the first six terms of a series for ¢ - ¢*,

The series

7 9

converges to tan x for —7 /2 < x < 7/2.

a. Find the first five terms of the series for In | sec x|. For what
values of x should the series converge?

b. Find the first five terms of the series for sec’x. For what val-
ues of x should this series converge?

¢. Check your result in part (b) by squaring the series given for
sec x in Exercise 58.

The series
= 2.5 4, 61 ¢ 2 4
secx—l+2+24x +7201 T8064x +

converges to sec.x for =7 /2 < x < 7/2,

a. Find the first five terms of a power series for the function
In|sec x + tan x|. For what values of x should the series
converge?
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b. Find the first four terms of a series for sec x tan x. For what
values of x should the series converge?

¢. Check your result in part (b) by multiplying the series for
sec x by the series given for tan x in Exercise 57.

59. Uniqueness of convergent power series

a. Show that if two power series S gax" and 3,—qb,x" are
convergent and equal for all values of x in an open interval
(¢, ¢), then a, = b, for every n. (Hint: Let
flx) = E::na,,f’ = 3 ,b,x". Differentiate term by term
to show that a, and b, both equal f*(0)/(n!).)

108 Taylor and Maclaurin Series

b. Show that if 3,-a,x" = 0 for all x in an open interyy
(—¢, ¢), then a, = 0 for every n.

The sum of the series X7"_4(n?/2") To find the sum o .

series, express 1/(1 — x) as a geometric series, differentiy, ol

sides of the resulting equation with respect to x, multiply

sides of the result by x, differentiate again, multiply by y ..
and set x equal to | /2. What do you get? 5

We have seen how geometric series can be used to generate a power series for a few fung
tions having a special form, like f(x) = 1/(1 — x) or g(x) = 3/(x — 2). Now we expan
our capability to represent a function with a power series. This section shows how fung
tions that are infinitely differentiable generate power series called Taylor series. In marg
cases, these series provide useful polynomial approximations of the generating functions
Because they are used routinely by mathematicians and scientists, Taylor series are cog
sidered one of the most important themes of infinite series.

Series Representations

We know from Theorem 21 that within its interval of convergence / the sum of a powd
series is a continuous function with derivatives of all orders. But what about the other W
around? If a function f(x) has derivatives of all orders on an interval, can it be expressed®
a power series on at least part of that interval? And if it can, what are its coefficients?

We can answer the last question readily if we assume that f(x) is the sum of a powe
series about x = a,

fo) = Dax = a)
n=0

1]

Gptax—a)+ax—ai+t - tax—a+-

with a positive radius of convergence. By repeated term-by-term differentiation within
interval of convergence I, we obtain

flx)=a; +2ax —a) +3a3(x —a’ + -+ + nax—ay '+,
f'(x) = 1+2a, + 2+3a3(x —a) + 3+4a,(x —a)* + -+,
f"x) =1+2+3a; + 2+3+4a4x —a) + 3+4+5as(x —a)* + -+,
with the nth derivative, for all n, being
f"(x) = nla, + asum of terms with (x — a) as a factor.

a, we have

Since these equations all hold at x
f'(a) = a, (@) = 1+2a,, f"a) = 1+2-3a,,
and, in general,

f"(a) = nla,.
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EXAMPLE 4

1 1 1 I
-2 )] 0 1 2

FIGURE 10.19 The graph of the con-
tinuous extension of y = ¢ /%" is so flat
al the origin that all of its derivatives there
are zero (Example 4). Therefore its Taylor
series, which is zero everywhere, is not the
function itself.

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generg

ing function?

2. How accurately do a function’s Taylor polynomials approximate the function on

given interval?

The answers are provided by a theorem of Taylor in the next section.

Exeréisé's_m

Finding Taylor Polynomials
In Exercises 1-10, find the Taylor polynomials of orders 0, 1, 2, and 3

generated by f at a.
L fy=¢e* a=0 . f(x) =sinx, a=0
J)=Inx, a=1 . f)=In(1 +x), a

2
3 4
5. f)=1/x, a=2 6. f)=1/(x+2), a=10
7 8
9

]
=

]

. f(x) =sinx, a=m/4 . flx) =tanx, a=mw/4
. f@) =V, a=4 10. f)=V1—-2x a=0

Finding Taylor Series at x = 0 (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises 11-22.

1. 12. xe
i 18, 21 x

I +:x T=x
15. sin 3x 16. sin %
17. 7cos (=x) 18. Scos mx
19. coshx = €€ 20, i = 5
21 x*— 2% - 5x + 4 2. _“"_

x+1

Finding Taylor and Maclaurin Series
In Exercises 23-32, find the Taylor series generated by f at x = a.

23, f(x)=x*—2x+4, a=2
24, fy=24+x2+3x—8, a=1

It can be shown (though not easily) that

(Figure 10.19) has derivatives of all orders at x = 0 and that f™(0) = 0 for 4 n i
means that the Taylor series generated by f at x = 0 is

" {HJ
§0) + Fox + 52 4. 4 20

The series converges for every x (its sum is 0) but converges to f(x) only at x = (, T4
the Taylor series generated by f(x) in this example is not equal to the function f(z) gd
the entire interval of convergence.

0, x=10
f(t) - {E’ -if.\:' X ?é 0

Ii+.._

n!
=0+0x+0x2+ - +0:x"+ ...

= [) =0 s Qe

285, f)=x*+x2+1, a=-2

26 f(x) =3 -x*+23+x-2, a=-1
2% ) =1/22 a=1

28. f{)=1/0-x), a=0

29, f(x)=¢€, a=2

30. fx) =2, a=1

31. f(x) = cos (2x + (w/2)), a=m/4

2 f)=Vx+1, a=0

In Exercises 33-36, find the first three nonzero terms of the Maclaii

series for each function and the values of x for which the series ¢
verges absolutely. s

33, fix) =cosx — (2/(1 — x))
M. fx) = (1 —x+ %)

35, f(x) = (sinx) In(l + x)
36. f(x) = xsin’x

Theory and Examples
37. Use the Taylor series generated by ¢* at x = a to show thal
x—= a}'
et = e“l+(x—a}+—2l + e

38. (Continuation of Exercise 37.) Find the Taylor series generd'
e" at x = 1. Compare your answer with the formula in EX

39. Let f(x) have derivatives through order n at x = a. Show theg i
Taylor polynomial of order n and its first n derivatives have
same values that f and its first n derivatives have at x = 4



o Approximation properties of Taylor polynomials Suppose
" pat f(x) is differentiable on an interval centered at x = a and that
. g{X) = bt+tbhx—a)+ - +b(x—a)lisa polynomial of
degree n Wwith constant coefficients by,. . ., b, Let E(x)=
. fx) — g(x). Show that if we impose on g the conditions

y i) E@ =0 The approximation error is zero at x = a.
: ! E(x) The error is negligible when
il if) E_l_ﬂ (x — a) = compared to (x — a)”,
._ then
: f'(a)

L s = f@ + f@x—a) + @ —ap + -

nl(

- f 'a) (x — a).
ni

09 Convergence of Taylor Series
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Thus, the Taylor polynomial P,(x) is the only polynomial of
degree less than or equal to n whose error is both zero at
= a and negligible when compared with (x — a)".

Quadratic Approximations The Taylor polynomial of order 2 gen-
erated by a twice-differentiable function f(x) at x = a is called the
quadratic approximation of f at x = a. In Exercises 41-46, find the
(a) linearization (Taylor polynomial of order 1) and (b) quadratic
approximation of fat x = 0.
41, f(x) = In(cos x)

443 fo=1/VIlI-2

45. f(x) = sinx

42. f(x) = &
44. f(x) = coshx
46. f(x) = tanx

ing theorem.

In the last section we asked when a Taylor series for a function can be expected to con-
verge to that (generating) function. We answer the question in this section with the follow-

b such that

L

THEOREM 23—Taylor's Theorem  If f and its first n derivatives G S, .
are continuous on the closed interval between a and b. and f™ is differentiable
on the open interval between a and b, then there exists a number ¢ between a and

. f(a) 3
fb) = f(a) + f'(a)b — a) + o b =ay+---
()] . o T 0e) .
+ o (b_a)+(n+l)!(b-aJ L

Taylor’s Theorem is a generalization of the Mean Value Theorem (Exercise 45). There is a
proof of Taylor’s Theorem at the end of this section.

When we apply Taylor’s Theorem, we usually want to hold a fixed and treat b as an
independent variable. Taylor's formula is easier to use in circumstances like these if we
change b to x. Here is a version of the theorem with this change.

Taylor’s Formula

where

R(x) =

If f has derivatives of all orders in an open interval / containing a, then for each
positive integer n and for each x in /,

f(x) = fla) + f'(a)x — a) + fz{:? (x—aP+---
[nJ(
N ntaJ @ — a)" + R,(x), )
n+ 1) -
Sy (x —a)"*!"  for some c between a and x. 2)

(n + 1)!
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We dﬁ
s any
a. That 4
inding Taylor Series
se substitution (as in Example 4) to find the Taylor series at x = (
€ with \l the functions in Exercises 1-10.
. 2. 2 3. Ssin(—x)
o 4 sin (%}) 5. cos 5x? 6. cos (x*/V2)
! I
| + x%) 8. tan™! (3x%) 9.
& In 1+ 33
E L
2 ==
Inction _ )
Use power series operations to find the Taylor series at x = 0 for the
1d both 1 ctions in Exercises 11-28. 1
1. xet 12. *sinx 13. % — 1+ cosx
3
14, sinx — x + ;C—' 15. xcos mx 16. x*cos (x2)
e know: 07, cos’x (Hint: cos’x = (1 + cos 2x)/2.)
I8, sin’x 19. —— 20. xIn(1 + 2v)
| 2
X L, ——— 2, —— 23, xtantx?
of (L= (1 - e
4, sin x+ cos x 25. & + - 26. cosx — sinx
l +x
. 21 + ) 28, In(l +x) - @l = x)

md the first four nonzero terms in the Maclaurin series for the func-

H0ns in Exercises 29-34.

) In(l + x)

0 e AL
1 —x

33, gqin x

31. (tan~'x)?

34. sin(tan”' x)

101 Estimates

2 Estimate the error if Py(x) = x — (x'/6) is used to estimate the
Yalue of sin x at x = 0.1,

g Estimate the error if Py =1+ x + (x/2) + (x3/6) + (x*/24)
8 Used to estimate the value of * at x = 1/2.
" For dpproximately what values of x can you replace sin x by

; é ~ (x%/6) with an error of magnitude no greater than 5 X 1047
Ve reasons for your answer.

Equations (6) and (9) give

This concludes the proof.

10.9 Convergence of Taylor Series 637

£+ e

(n + ])!(b —ayl

f(b) = P(b) +

38. If cos xis replaced by 1 — (x?/2) and |x| < 0.5, what estimate
can be made of the error? Does 1 — (x?/2) tend to be too large,
or too small? Give reasons for your answer,

39. How close is the approximation sinx = x when |x| < 10739
For which of these values of x is x < sin x?

40. Theestimate V1 + x = 1 + (x/2) is used when x is small. Esti-
mate the error when |x| < 0.01.

41. The approximation e* = 1 + x + (x?/2) is used when x is small.
Use the Remainder Estimation Theorem to estimate the error
when [x| < 0.1.

42. (Continuation of Exercise 41.) When x < 0, the series for ¢* is
an alternating series. Use the Alternating Series Estimation Theo-
rem to estimate the error that results from replacing ¢* by
I + x + (x*/2) when —0.1 < x < 0. Compare your estimate
with the one you obtained in Exercise 41.

Theory and Examples

43. Use the identity sin’x = (1 — cos 2x)/2 to obtain the Maclaurin
series for sin’x. Then differentiate this series to obtain the
Maclaurin series for 2 sin x cos x, Check that this is the series for
sin 2x.

44. (Continuation of Exercise 43.) Use the identity cos’x =
cos 2x + sin’x to obtain a power series for cos®x.

45

Taylor’s Theorem and the Mean Value Theorem Explain
how the Mean Value Theorem (Section 4.2, Theorem 4) is a spe-
cial case of Taylor’s Theorem.

46. Linearizations at inflection points Show that if the graph of a
twice-differentiable function f(x) has an inflection point at
x = a, then the linearization of f at x = a is also the quadratic
approximation of f at x = a. This explains why tangent lines fit
so well at inflection points,

47. The (second) second derivative test Use the equation

: fe)
f0) = f@) + fa)x = ) + =

(x — a)?

to establish the following test.
Let f have continuous first and second derivatives and sup-
pose that f'(a) = 0. Then

a. f hasalocal maximum at a if f* < 0 throughout an interval
whose interior contains a;

b. f has alocal minimum ata if f* = 0 throughout an interval
whose interior contains a.
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48. A cubic approximation Use Taylor’s formula with @ = 0 and
n =3 to find the standard cubic approximation of f(x) =
1/(1 — x) at x = 0. Give an upper bound for the magnitude of
the error in the approximation when |x| = 0.1.

49. a. Use Taylor’s formula with n = 2 to find the quadratic approx-
imation of f(x) = (1 + x)* at x = 0 (k a constant).
b. If k = 3, for approximately what values of x in the interval
[0, 1] will the error in the quadratic approximation be less
than 1/100?
50. Improving approximations of =
a. Let P be an approximation of 7 accurate to n decimals. Show
that P + sin P gives an approximation correct to 3n deci-
mals. (Hint: Let P = 7 + x.)
[ﬂ b. Try it with a calculator.

51. The Taylor series generated by f(x) = E:’:o a,x" is Soa,x"
A function defined by a power series X,-pa,x" with a radius of
convergence R > 0 has a Taylor series that converges to the
function at every point of (—R, R). Show tml;:is by showing that the
Taylor series generated by f(x) = X,-0a,x" is the series
Dn—0a,x" itself.

An immediate consequence of this is that series like

4 6 i
TYRTRE U AN AN, 2 T
Xsmx =x 3 + 51 7 +
and
4 -]
g 29 B Mg Ko oa
xeE=x+x +2!+31+ v

obtained by multiplying Taylor series by powers of x, as well as
series obtained by integration and differentiation of convergent
power series, are themselves the Taylor series generated by the
functions they represent.

52, Taylor series for even functions and odd functions (Conrinu-
ation of Section 10.7, Exercise 59.) Suppose that f(x) = E(:;n a,x"
converges for all x in an open interval (—R, R). Show that

a. If fiseven, thena; = a; = a; = -+ = 0, i.e., the Taylor
series for f at x = 0 contains only even powers of x.
b. If fisodd, then gy = @, = a4 = -+ = 0, i.e., the Taylor

series for f at x = 0 contains only odd powers of x.

COMPUTER EXPLORATIONS
Taylor's formula with n = 1 and @ = 0 gives the linearization of a
function at x = 0. With n = 2 and n = 3 we obtain the standard

10. 10 The Binomial Series and Applications of Taylor Series

quadratic and cubic approximations. In these exercises we eXploge gl
errors associated with these approximations. We seek answerg by
questions:

a. For what values of x can the function be replaced by gqy
approximation with an error less than 10727

b. What is the maximum error we could expect if we replacq -
» - ¥ . il
function by each approximation over the specified interyg)y -

Using a CAS, perform the following steps to aid in angyyg, 8

questions (a) and (b) for the functions and intervals in Exepge:
53-58. ]
Step 1: Plot the function over the specified interval,
Step 2: Find the Taylor polynomials P(x), Py(x), and P g
ot g
Step 3: Calculate the (n + 1)st derivative f”* (¢} associ.
ated with the remainder term for each Taylor polynomial, |
Plot the derivative as a function of ¢ over the specified inters
val and estimate its maximum absolute value, M.

Step 4: Calculate the remainder R,(x) for each polynomial |
Using the estimate M from Step 3 in place of f**'(¢), plot'
R, (x) over the specified interval. Then estimate the values of
x that answer question (a).
Step 5: Compare your estimated error with the actual errorj
E,(x) = |f(x) = P(x)| by plotting E,(x) over the specified
interval. This will help answer question (b).
Step 6. Graph the function and its three Taylor approxima

tions together. Discuss the graphs in relation to the informas
tion discovered in Steps 4 and 5.

1 3
8. Sl = ;==

foy= = b=}
54. f(x) = (1 + 02, —% <x=2
55, e o =2

f@ =g hkl=

56. f(x) = (cosx)(sin2x), |x| =2
57. f(x) = e*cos2x, |x| =1
58. fix) = ¢Psin2x, |x| =2

We can use Taylor series to solve problems that would otherwise be intractable. For ©*%
ple, many functions have antiderivatives that cannot be expressed using familiar functions :
this section we show how to evaluate integrals of such functions by giving them as **22
series. We also show how to use Taylor series to evaluate limits that lead to indete
forms and how Taylor series can be used to extend the exponential function from
complex numbers. We begin with a discussion of the binomial series, which comes fro
Taylor series of the function f(x) = (1 + x)™, and conclude the section with Table
which lists some commonly used Taylor series.

r X4

o i
10



_.'5_1 jal Series
ind the first four terms of the binomial series for the functions in
i

sin 8, ercises 1-10.

(1 + 97 2. (142" .0-n7
g 4
.I (1 2z Zr}l;’z 5- (] 35 %) 6. (1 s %)
"; (1 +xi)A 8, (1 + %)
1) X
?.(|+x) 10. o

the binomial series for the functions in Exercises 11-14.
(1 +0* 12. (1+ 22

x\?!
14, (l — i)

Approximations and Nonelementary Integrals
i Exercises 15-18, use series to estimate the integrals’ values with an
o of magnitude less than 1075, (The answer section gives the inte-
grals' values rounded to seven decimal places.)

! L6 0.4 S !
/ sin x? dx 16. / e——x—dx
0 1]

0.5 | 0.35
1, f = dx 18.
0 1+ x* 0

V1 + 2 dx
Use series to approximate the values of the integrals in Exercises
19-22 with an error of magnitude less than 1075,

0.1
20. / e~ dx
1]
COos X

X |
1 —
22, —_—
" / 2

dx

3 ) i : . 4 8
Estimate the error if cos /2 is approximated by | — % + ;;—Iin the
integral | cos £2 dt. ‘

. o P ; Ll

" Bstimate the error if cos V1 is approximated by 1 — ] + 4 6

in the integral fnl cos Vz dt.

Exercises 25-28, find a polynomial that will approximate F(x)
o ghout the given interval with an error of magnitude less than

._|.‘ u
o= (e, f0.1]

<10
% X
b 0= [ 2ot [0,1]
0

18 By < / tan"'t dr, (a) [0, 05] (b) [0, 1]

0

e [0,
1] f -

(@ [0,05] (b) [0,1]

645

10.10 The Binomial Series and Applications of Taylor Series

Indeterminate Forms
Use series to evaluate the limits in Exercises 2940,

e — (1 + Yo,k
- T s L | 30. lim&—¢
a— X 0
.1 —cost— (£/2) sinf — 6 + (687/6)
3L lim—————— = lim——m8m8 ™~
passr I -0 63
y — tan'y tan'y — siny
33 Y 3 e D
=0y =0 ylcosy
: 2( 1/ _ : *
35, }er;jt (e 1) 36. lergc{.t - l)bu'lJr T
In(1 + »2 2 _
5 fig b 38, lim X —4_
—0 1 — cosx —=2In(x = 1)
in 3x? In(l + x*
39, lim 303" 40, iy DAL +)

—0 1 — cos 2x =0 x-sinx?

Using Table 10,1 .
In Exercises 41-52, use Table 10.1 to find the sum of each series.

1,11
A% 1\ A% 1\6
42'(4)*(4)* g) T\a) t
3? 3¢ 36
®1-23 4441 4.6
11 1 1
Uri-mt——a g
2 222 7 3.23 4.p¢
®_w @ @l |
w3 FEETIAE T eri
2 P 2 2
“% F-—E_4 T . & .
3 3.3 3.5 3.9
9. 2+ +5 4210 +...
322 34):4 36x6
Gl ey
49. 2 — 2 + 17— % 4yl — ..
2 235 4
= N 3 Lt L =R
Ll s B e
5L =1+ 2t =32 + 4 — 554 4 ...
x, x2 B8
52.l+2+3+4+5+ v

Theory and Examples

53. Replace x by —x in the Taylor series for In (1 + x) to obtain a
series for In(1 — x). Then subtract this from the Taylor series for
In (1 + x) to show that for |x| < 1,

I+% R o
ln]_'r—Z(x+3+5+ )
54. How many terms of the Taylor series for In(1 + x) should you

add to be sure of calculating In (1.1) with an error of magnitude
less than 10 'ﬂ? Give reacone for vonr aneirae
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55. According to the Alternating Series Estimation Theorem, how
many terms of the Taylor series for tan' | would you have to add
to be sure of finding 7 /4 with an error of magnitude less than
10737 Give reasons for your answer.

56. Show that the Taylor series for f(x) = tan™
|x| > 1.

@ 57. Estimating Pi  About how many terms of the Taylor series for

tan"' x would you have to use to evaluate each term on the right-
hand side of the equation

'x diverges for

1 ! .y ]
= -1 e NN 7 e U S
7 = 48 tan T + 32tan 57 20 tan 339
with an error of magnitude less than 1077 In contrast, the con-
vergence of 3,—,(1/n?) to /6 is so slow that even 50 terms
will not yield two-place accuracy.

58

Use the following steps to prove that the binomial series in Equa-
tion (1) converges to (1 + x)™.

a. Differentiate the series

foy =1+ i(m)x*
=Ei\k

to show that

flo)y=——, -l<x<l.

mf(x)
I+ %

b. Define g(x) = (1 + x)™™ f(x) and show that g'(x) = 0.
¢. From part (b), show that

fx) = (1 +xm

59. a. Use the binomial series and the fact that

d. .\ _ (1 _ 2p
gysin'x (1-2x2)

to generate the first four nonzero terms of the Taylor series
for sin™' x. What is the radius of convergence?

b. Series for cos'x  Use your result in part (a) to find the first
five nonzero terms of the Taylor series for cos™' x.

60. a. Series for sinh”'x Find the first four nonzero terms of the
Taylor series for

_— odt
smhlx:fi.
{:\11+f2

m b. Use the first rhree terms of the series in part (a) to estimate
sinh™'0.25. Give an upper bound for the magnitude of the
estimation error,

61. Obtain the Taylor series for 1/(1 + x)? from the series for

-1/(1 + x).
62. Use the Taylor series for 1/(1 — x?) to obtain a series for
/(1 — )
63. Estimating Pi The English mathematician Wallis discovered
the formula
T _2:4-4:6°6-8 -
47 303050577+

Find 7 to two decimal places with this formula.

64. The complete elliptic integral of the first kind is the integry)

wil
K= / diﬁ, :
o VI - k“sin“f
where 0 < k < 1 is constant,
a. Show that the first four terms of the binomial series for

1/V1 — xare .-?3
o eI ) 13, 1:3:5 4 ) '
£l=x) ]+2:r+2.4x +2-4'6x 4

b. From part (a) and the reduction integral Formula 67 at the
back of the book, show that

_m 1V, o (123 o (12325,
K‘z[“’(z)k +(2-4)" +(2-4-6)k & }

=1

65. Series for sin"'x Integrate the binomial series for (1 — 42)-12
to show that for |x| < 1,
1:3:5¢«--+(2n— 1) ynt
2:4:6----+(2n) 2n+ 1

66. Series for tan 'x for |x| > 1 Derive the series

T 1 1 I k3.
tan" == — = —— = ——F e, B ;
T2 T30 s )
.
< D - TR SR T
e 2 x 3 5° R .
by integrating the series
6,
N WSO R W [ S B

L+ 2 1+(1/2) 2 ¢ 6 P

in the first case from x to 00 and in the second case from —0¢ to &

Euler’s Identity i
67. Use Equation (4) to write the following powers of e in the o : 9,
a + bi. y
a. eim b. 7/4 c. e T2
68. Use Equation (4) to show that [
it —ifl 0 _ —if L
cos0=ET€ and s = 2
2 2i

69. Establish the equations in Exercise 68 by combining the form&
Taylor series for ¢ and ¢ .
70. Show that
a. coshif = cos 6, b. sinh i# = isin 6.

71

By multiplying the Taylor series for ¢* and sin x, find the ©®
through x5 of the Taylor series for e'sinx. This series 18 =
imaginary part of the series for

et et = glltik

. ul

Use this fact to check your answer. For what values of ¥ shog
the series for ¢*sin x converge? :

72. When a and b are real, we define ¢ with the equation

glatibiy = par . pibt = @¥(cag by + isin bx).
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d

9 la+iblx — -y (a+ ikl
€ = (a + ib)e :
dx :

* Thus the familiar rule (d/dx)e™ = ke holds for k complex as
- el as real.

' Use the definition of ¢ to show that for any real numbers 6, 8,
I; g_nd 91,

5 e;'!heiﬁg = ea{ﬂ,fﬂ;}‘ b. E-EB - l/ei'ﬂ_

What is an infinite sequence? What does it mean for such a
g sequence to converge? To diverge? Give examples.

What is a monotonic sequence? Under what circumstances does
such a sequence have a limit? Give examples.

3. What theorems are available for calculating limits of sequences?
Give examples,

4, What theorem sometimes enables us to use |'Hépital's Rule to

calculate the limit of a sequence? Give an example.

5, What are the six commonly occurring limits in Theorem 5 that

arise frequently when you work with sequences and series?

6. What is an infinite series? What does it mean for such a series to

converge? To diverge? Give examples.

" 7. What is a geometric series? When does such a series converge?
ol Diverge? When it does converge, what is its sum? Give examples.

g g p
8. Besides geometric series, what other convergent and divergent
series do you know?

9, What is the nth-Term Test for Divergence? What is the idea
behind the test?

convergent series? About constant multiples of convergent and
divergent series?

L. What happens if you add a finite number of terms to a convergent
series? A divergent series? What happens if you delete a finite
number of terms from a convergent series? A divergent series?
How do you reindex a series? Why might you want to do this?

13 ; ; B : :

% Under what circumstances will an infinite series of nonnegative
: terms converge? Diverge? Why study series of nonnegative terms?
" What is the Integral Test? What is the reasoning behind it? Give
: in example of its use.
£ When do p-series converge? Diverge? How do you know? Give
- EXamples of convergent and divergent p-series.

* What are the Direct Comparison Test and the Limit Comparison

€st? What is the reasoning behind these tests? Give examples of
their yge,

3 ,whal are the Ratio and Root Tests? Do they always give you the

i : . :
nfﬁnnatlon you need to determine convergence or divergence?
Ve examples.
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74. Two complex numbers a + ib and ¢ + id are equal if and only if
a = c and b = d. Use this fact to evaluate
/e‘“cos bx dx and fé“sin bx dx
from
f dorivn gy = A= javine 1 ¢,
a* + b

where C = C, + iC, is a complex constant of integration.

: ) erm Questions to Guide Your Review

18. What is absolute convergence? Conditional convergence? How
are the two related?

19. What is an alternating series? What theorem is available for
determining the convergence of such a series?

20. How can you estimate the error involved in approximating the
sum of an alternating series with one of the series’ partial sums?
What is the reasoning behind the estimate?

21. What do you know about rearranging the terms of an absolutely
convergent series? Of a conditionally convergent series?

22. What is a power series? How do you test a power series for con-
vergence? What are the possible outcomes?

23. What are the basic facts about
a. sums, differences, and products of power series?
b. substitution of a function for x in a power series?
c. term-by-term differentiation of power series?
d. term-by-term integration of power series’
Give examples.

24. What is the Taylor series generated by a function f(x) at a point
x = a? What information do you need about f to construct the
series? Give an example.

25

26, Does a Taylor series always converge to its generating function?
Explain.

What is a Maclaurin series?

27
28

What are Taylor polynomials? Of what use are they?

What is Taylor's formula? What does it say about the errors
involved in using Taylor polynomials to approximate functions?
In particular, what does Taylor's formula say about the error in a
linearization? A quadratic approximation?

29. What is the binomial series? On what interval does it converge?
How is it used?

30. How can you sometimes use power series to estimate the values
of nonelementary definite integrals? To find limits?

31. What are the Taylor series for 1/(1 — x), 1/(1 + x), &, sinx,
cosx, In(1 + x), and tan™'x? How do you estimate the errors
involved in replacing these series with their partial sums?



