f(x' y] = Iz + .l‘_\,"i
5. £(0.0)
e f(2.3)

b. f(=1,1)
d. f(=3,-2)
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14.1 Functions of Several Variables

2L f(x,y) = xy 22. f(x,y) = y/x

23 fx,y) = — 24, f(x,y) = V9 —x? — y?

o P
V16 -2 - 2

25. f(xy) = In(x* + y?) 26. f(x,y) = e &)

28. f(x,y) = tan"! (i)

29. fe,y) =In(x® +» = 1) 30. fx,y) = In(9 — x> — y?)

27. flx,y) = sin"'(y — x)

Matching Surfaces with Level Curves
Exercises 31-36 show level curves for the functions graphed in (a)~(f)

d. f(2,2, 100)

L fo-10)

fx,,0) = VA9 — x2 — y7 = 22

a. f(0,0,0) b. f(2,-3,6)
4 5 6
b f-1,2,3) d. ;(—,—‘—:)
V2'V2' V2
Exercises 5-12, find and sketch the domain for each function,

finy)=Vy-x-2
fny) = In(& + y* — 4)

! x— 1)y +2)
(x,y) = =
(y— x)(y — 25
sin(xy)

T T
/() Z4y— 125

flx.y) = cosI(y — %)
fooy) =In(xy+x—-y—1)

l
Hflx,y) = —
" In(4-x2—H?)
ercises 13-16, find and sketch the level curves f(x, y) =con
Pime set of coordinate axes for the given values of c. We refer to
¥ level curves as a contour map.
Moy =x+y—1, ¢=-3,-2,—-1,0,1.2.3
Hny) =22+ 32 ¢=0,1,4,9, 16,25
flx, y) = xy, ¢=-9-4-1,0149
Py = Vis— a2 =2, ¢=0,1,2,3,4
_". “ICises 17-30, (a) find the function’s domain, (b) find the func-
1} fange, (c) describe the function’s level curves, (d) find the
E of the function’s domain, (e) determine if the domain is an
£ "“Bion, a closed region, or neither, and (f) decide if the domain

£0ded or unbounded.
iz, y)

i, y)

1]

¥i— X
4x* + 9?

18. flx,y)=Vy—x
20. f(x,y) = x* — y?

on the following page. Match each set of curves with the appropriate

function.

31.

32.

¥

\_Hd_ﬂ_'_ﬂ__,d;
. —

36.
—

=)

|
=

—
| “\n\t::

E

=
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Functions of Two Variables _
Display the values of the functions in Exercises 37-48 in two ways
() by sketching the surface z = f(x, y) and (b) by drawing an asseg
ment of level curves in the function’s domain. Label each leve] ¢ .L'
with its function value.

3. flx,y) = »* 38. f(x,y) = Vx 1
39. flx,y) =x*+ ¥ 0. fx,y) = Vil + 2
41, flx,y) =x* -y 42 fix,y)=4—-x2 -y
43. flx,y) = 4x? + 2 4. fix,y)=6—2x— 3y
45, f,y) =1~y 46, fry)=1-|x| = |yl

47. fx, )=V +y2 +4 48 fxy)= Ve +y -4

Finding Level Curves .
In Exercises 49-52, find an equation for and sketch the graph of i
level curve of the function f(x, y) that passes through the given poill

9. f(x,y) = 16 - x* — y2, (2V2,V2)
50. f(x,y) = Vx* -1, (1,0
51, f(r.y) = Vx+ 32 -3, (3,-1)

r —

52. flx,y) = =11

-i-y+]

Sketching Level Surfaces :
In Exercises 53-60, sketch a typical level surface for the funcuonu 1.

8. fand =X +y+2 S fyp) =P +7 T4
5 fy,)=x+z 56. f(x,y,2) =z

57. fxr,y,2) = x* + ¥ 58. f(x,y,2) = y*+ 7
5. fy,0)=z—-x* -y

60. f(x,y,z) = (x*/25) + (y*/16) + (£2/9)

Finding Level Surfaces
In Exercises 61-64, find an equation for the level surface of the {58
tion through the given point. :

6L f(x,y.2) = Vx—y—1Inz, (3,—1,1)

62. fx,y,)=Iln(x*+y+2), -1,2,1)



B (3D = VY + 2, (1,-1, V2)

xX—y+tz

B, g(x )2 = o+ y =2

(1,0,-2)

P pxercises 65-68, find and sketch the domain of f. Then find an
* wation for the level curve or surface of the function passing through
ke given point.

b5, f(x.y) = > (5)" (1,2)

n=0

) 0 (v 4 _,)n

(@t
B s(x.0.0) = %W— (In4,1n9,2)

. f(x,y) =/ :/I_d-t-;-—ﬂz ©, 1)

- " Yo
g = + o e % | * 1\/§
8 2(x.7.2) /X T /u = (0,1,V3)

Jse a CAS to perform the following steps for each of the functions in
Frercises 69-72.

2, Plot the surface over the given rectangle.

b. Plot several level curves in the rectangle.

¢, Plot the level curve of f through the given point.

9, f(x.y) =xsin§ +ysin2y, 0=x<5m 0<y<5nm
P(3m, 3m)

. f(x,y) = (sin x)(cos y)e"?”f"’-’a. 0=<x=5m

0=y=5m P@m4nm)

14.2 Limits and Continuity in Higher Dimensions 801

7L f(x,y) = sin(x + 2cosy), —27 < x =< 2=,
“2r=y=2m P(m 7w

72. f(x,y) = €' Vsin(x* +y?), 0 =<x<2m,
—2r=y=m Plm—m

Use a CAS to plot the implicitly defined level surfaces in Exercises
73-76.

73, 42+ + ) = |
BBox+y—-32=1

76. sin (;) — (cosy)Vxl + 2 =2

4 2+ 2=

Parametrized Surfaces Just as you describe curves in the plane
parametrically with a pair of equations x = f(r), y = g(f) defined on
some parameter interval /, you can sometimes describe surfaces in
space with a triple of equations x = f(u, v),y = g(u, v), z = h(u, v)
defined on some parameter rectangle a < u < b,c = v < d. Many
computer algebra systems permit you to plot such surfaces in para-
metric mode. (Parametrized surfaces are discussed in detail in Section
16.5.) Use a CAS to plot the surfaces in Exercises 77-80. Also plot

several level curves in the xy-plane.

77. x=ucosv, y=usinv, z=u, 0<us2,
=v=2r

78. x =ucosv, y=usinv, z=v, 0=u=<2
=v=2r

(2 4+ cosu)cosv, y=(2+ cosu)sinv, z=sinu,
u=2r, 0=v=12r

IA

80.

=2cosucosv, y=2cosusinv, z=2sinu,

X
0
X
0
79 x
0
x
O=u=2m Osv=r7

1A

-: 4.2 Limits and Continuity in Higher Dimensions

ideas.

lowing the definition.

This section treats limits and continuity for multivariable functions. These ideas are analo-
gous to limits and continuity for single-variable functions, but including more independent
variables leads to additional complexity and important differences requiring some new

Limits for Functions of Two Variables

If the values of f(x, y) lie arbitrarily close to a fixed real number L for all points (x, y) suf-
ficiently close to a point (xy, y,), we say that f approaches the limit L as (x, y) approaches
(o, ¥o)- This is similar to the informal definition for the limit of a function of a single vari-
able. Notice, however, that if (xg, yp) lies in the interior of f’s domain, (x, v) can approach
(X0, Yo) from any direction. For the limit to exist, the same limiting value must be obtained
whatever direction of approach is taken. We illustrate this issue in several examples fol-
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Whenever it is correctly defined, the composite of continuous functions is also con-
tinuous. The only requirement is that each function be continuous where it is applied. The
proof, omitted here, is similar to that for functions of a single variable (Theorem 9 in Sec-
tion 2.5).

Continuity of Composites

If f is continuous at (xp, yy) and g is a single-variable function continuous at
f(xg, o), then the composite function h = gof defined by h(x, y) = g(f(x, y))
is continuous at (xg, yp).

For example, the composite functions

Xy
e, cos ———, In(1 + x%»?2
xr+ 1 ( ¥)

are continuous at every point (x, y).

Functions of More Than Two Variables

The definitions of limit and continuity for functions of two variables and the conclusions
about limits and continuity for sums, products, quotients, powers, and composites all
extend to functions of three or more variables. Functions like

ysinz
x—1

In(x+y+2 and

are continuous throughout their domains, and limits like

&te eI—] .l.

lim =
P—=(10-D 22 + cos \/x_} (—1)* + cos 0

where P denotes the point (x, y, z), may be found by direct substitution.

Extreme Values of Continuous Functions on Closed, Bounded Sets

The Extreme Value Theorem (Theorem 1, Section 4.1) states that a function of a single
variable that is continuous throughout a closed, bounded interval | a, b | takes on an abso-
lute maximum value and an absolute minimum value at least once in [a, b]. The same
holds true of a function z = f(x, y) that is continuous on a closed, bounded set R in the
plane (like a line segment, a disk, or a filled-in triangle). The function takes on an absolute
maximum value at some point in R and an absolute minimum value at some point in R.
The function may take on a maximum or minimum value more than once over R.

Similar results hold for functions of three or more variables. A continuous function
w = f(x, y, z), for example, must take on absolute maximum and minimum values on any
closed, bounded set (solid ball or cube, spherical shell, rectangular solid) on which it is
defined. We will learn how to find these extreme values in Section 14.7.

1 'ts with Two Variables g g 4 i L, 1Y
A TR 3 i SR X y
the limits in Exercises 1-12. & (x ‘_I.I_I’T}H]V.T v I ' '-"<"I_I‘r‘r§-—31 xF Y
lim B = 2 li = 24y
By AT S . i i ec ' i 205
00 Xyt 2 04 \/-"I S n',_n]—]-liﬂ.rr--il e L r:._rlyﬂlm,m e X+ v+ 1
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7. lim & 8. lim In|l+ x*y?
(%, ¥)—*(0,In 2) (x, y—=(11)
; e’ sin x . b
9. lim —— 10. lim  cosV xy
(x, y)—(0,0) A (x, y)—=(1/27, 7))
. xsiny cosy + 1
11. lim e 12. im =
(L=, =6 x° + | fx, )—(=/20) ¥ SN X

Limits of Quotients

Find the limits in Exercises 13-24 by rewriting the fractions first.

-y t+y o =y

13. lim ———— i i ———

(x, y)—(1,1) X y (x, ¥)—{1.1) X J
X7y x#y

xy—y—2u&+2

15. lim ——
(x, y)—=(L1) x=1
x|
16 li gg
3 im R
xy—2-4) x%y = xy + 4x* — 4x
x4 x#Fr
5 B x—y+2Vx—2Vy
A im
(x, ¥)—(0,0) \/_ - \/;
¥y =
) x+y—4 s Vax—y—2
L Ty W b
2D \Vy +y— 2 @y 2x—y—4
x+y#4 d 2e—y#E4
o Va-Vy+1
20. lim R T
-y x=y—1
xey+]
~ sin(a? +y?) . 1 — cos (xy)
2k, hw ————r—— 2. lm ——m—
xy)—=00  x°+ y° tx, ¥)—>(0,0) /
3 3
; x +y : X =y
2% . im0 4. lim ——p
y—(-n X +¥ )= xt — y

Limits with Three Variables
Find the limits in Exercises 25-3(.

2xy + yz
25. lim (}r + i + l) 26. lim e

1
P—(1,3.4) z P={l-1-1) x% + 22

27. lim (sin?x + cos?y + sec?z)
1

P—(mr,m )

28. lim  tan'xyz 29. lim _ze ¥ cos2x
P—=1/a,m/22) P—(m,03)

0., lim Va2 + 32 + 2
—(2,~3.6) :

Continuity for Two Variables

At what points (x, y) in the plane are the functions in Exercises 31-34

continuous?
31. a. f(x,y) = sin(x + y) b. f(x,y) = In (22 + ?)

L_oxty y
32. a. f[X. y) = P b. flx, y) = = -

. X+ 1
_— £ ¥
3. a. g(x,y) = sin 5 b. ) =
3 8! 4 8(x, ) 2 + cosx
O+ _\'3 |

3. a g, V=5_ .5 b glxy=——

Continuity for Three Variables
At what points (x, ¥, z) in space are the functions in Exercises 3540
continuous? J
3 a frpy)=x+y -2

b. f(x,y.2) = V¥’ + ¥ -1

36. a. f(x,y,2) = Inxyz b. f(x,y,2) = € cos:
3. & h(x,y,2) = xysin ; b. h(x,y,2) = 5 —
< x <+ zt =1
38. a hix,y,2) = L b A =
bl + I ol + 1
39. a hix,y2) =ln(z—x* =y —1)
1

B Wy ——————
J z— Va2 +y

40. a. h(x,y,2) = V4 —x* -y = 2

b. hix,y,2) = ————————
J 4_\.-"x'2+}.2+::'._

No Limit Exists at the Origin
By considering different paths of approach, show that the functions i
Exercises 41-48 have no limit as (x, y) — (0, 0).

X xt

xl ¥ }2 42' f(xl “) = x4 + )}2

41. f(x,y) = -

ot o=t

Z

] . X

4

ta

L X =y Xy
. LY = — 44_ LAY =
4. f(x,y) p Jrw flx,y) )
xX—y -y o0
T J & ¥ :
45, glx,y) = Tty 46. glx,y) = = y
2+y Xy
47. hix,y) = —5— 48. hix,y) = 2+ 5

Theory and Examples

In Exercises 49 and 50, show that the limits do not exist.
x? =1 . xy+ 1

50. lim =

m -
o= y— 1 =, —1 22 —

49,

1, y=x
51, Let fx,y) =1, y=0
0, otherwise.

Find each of the following limits, or explain that the Jimit 688
not exist. .

a. lim  f(x,y)
(x, y)—=(0,1)

b. i X,y
(x, \-]1—r'r:2’..jl ey
e (x \'1IT’-}l].1]I ey



xsq) = X, x=0
5. Let f(x.y) = P
Find the following limits,

a. lim  f(x,y)

(x, ¥)—=2(3,=2)

b. lim  f(x,y)

o —(-2, 1)

lim :
o g [y

"3. Show that the function in Example 6 has limit 0 along every
b siraight line approaching (0, 0).

4. If f(xg, o) = 3, what can you say about
lim  f(x,y)

(%, ¥)—(xq. yo)

if f is continuous at (xy, ¥o)? If f is not continuous at (xp, y,)?
Give reasons for your answers.

(v, y) = f(x,y) = h(x, y) for all (x,y) # (xy, yp) in a disk centered
it (%, Yo) and if g and k have the same finite limit L as (x, y) — (%04 Yo)y

lim  f(x,y) = L.

(2, y)y—=(xg. yo)

55-58.
85. Does knowing that

m
=0 Y

Give reasons for your answer.
6. Does knowing that
2.2

Xy
2xy| - 5 <4~ 4cos Vg < 2|xy|

tell you anything about

4 ~ 4cos V]xy|

im ?
(x, ¥)—=(0,0) ny|

Give reasons for your answer,

" Does knowing that [sin (1/x)| < 1 tell you anything about
lim ysm l?

(x5 Y)—(0.0)" o

L Give reasons for your answer.

: Doeg knowing that |cos (1/y)] =1 tell you anything about

. |
lim xcos<?
(x, ¥)—(0,0) y

Give reasons for your answer.
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59. (Continuation of Example 5.)
a. Reread Example 5. Then substitute m = tan  into the formula

_ 2m
B 2
sme Ltm

flx,y)

and simplify the result to show how the value of f varies with
the line’s angle of inclination.

b. Use the formula you obtained in part (a) to show that the limit
of f as (x,) = (0, 0) along the line y = mx varies from —1
to 1 depending on the angle of approach.

60. Continuous extension Define £(0, 0) in a way that extends
1 5ol

X =y
f(x‘ ) = xy ———
y J’xl T2
to be continuous at the origin.

Changing Variables to Polar Coordinates

If you cannot make any headway with lim, 00y f(x. y) in rectan-

gular coordinates, try changing to polar coordinates. Substitute

x=rcosf,y = rsinf, and investigate the limit of the resulting

expression as r— (. In other words, try to decide whether there exists

a number L satisfying the following criterion:

Given € > 0, there exists a & > 0 such that for all  and 6,

rl<é = |fro) -L| <e. (1)

If such an L exists, then

li Ly = i .rsinf) = L.
(x.;-}]—l'T}fi.DJ flx, y) r1_1310}"(:' cos @, rsin 6)

For instance,
x r cos® #

lim ——— = lim
(3 )=0.0) x° + y° r—0 r

= limrcos’d = 0,
r—{

To verify the last of these equalities, we need to show that Equation
(1) is satisfied with f(r, 8) = rcos’ # and L = (. That is, we need to
show that given any e > 0, there exists a & > 0 such that for all r
and 6,

lrl <8 = |rcos’d -0 <e

Since

[rcos 8] = |r||cos’ 6] =< |r

)|

the implication holds for all 7 and @ if we take § = .
In contrast,

IF

¥ _ rcos’d

- = cos™ #
12 ne },2 r2

takes on all values from 0 to 1 regardless of how small |r| is, so that
lim, )00, X%/ (x% + y?) does not exist.

In each of these instances, the existence or nonexistence of the
limit as r— 0 is fairly clear. Shifting to polar coordinates does not
always help, however, and may even tempt us to false conclusions.
For example, the limit may exist along every straight line (or ray)
6 = constant and yet fail to exist in the broader sense. Example 5
illustrates this point. In polar coordinates, f(x, y) = (2%) /(x* + y?)
becomes

_reosfsin26

0,7 sin6) =
§(rcos8.rsin6) r’cos*d + sin’ @
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for r # 0. If we hold @ constant and let r— 0, the limit is 0. On the
path y = x? however, we have rsin 8 = r* cos® f and

rcos f sin 26
Feos 0 S = i e
f Eani) 2 cost § + (rcos® 6)°

2r cos® B sin rsin f
s T = 4_ — = 5 - _2_ = l
2r°cos' 0 recos 0

In Exercises 61-66, find the limit of f as (x, y) — (0, 0) or show that
the limit does not exist.

¥ - x? (r’ -y
6l. f(x,y) =—— 62. f(x,y) = cos| — 1)
flx. 2 flxy 73 P
& fioy = =2 64. f(x,y) =
. 5LY) = 5 - . Y] =5 a5
o xé< ¥ b s o s 230
(x+ y
65. flx,y)=tan ' —
! 2+
66 W i
. floy) = R

In Exercises 67 and 68, define f(0, 0) in a way that extends f to be
continuous at the origin.

Al — xH? + 3y?
67. fix,y)=In(————
22 P
3y
2 + I\.:-'

68. flx.v) =

X

]. 4 . 3 Partial Derivatives

Using the Limit Definition

Each of Exercises 69-74 gives a function f(x, y) and a positive NUen

In each exercise, show that there exists a 8 = 0 such that for 4)) (r “"-:
a5

Vi +yr<é = |fx,y) — f(0,0)] < e

69. f(x,y) ==x*+y, €=001

70. f(x,y) = y;’{.rz +1), € =005

7. fx.y) = (x + /(x> + 1), €=001
72 f(x,y) = (x + y)/(2 + cosx), € =002

-
1=

Xy
T3 flx, W)==—

: +—qandf(0. 0)=0, € =004

x° y
04y

74, f(x,y) = 5 and f(0,0) = 0, € =002
x* y

+

Each of Exercises 75-78 gives a function f(x, y, 2) and a posity
number €. In each exercise, show that there exists a & > 0 such (i
for all (x, y, 2),

VE+y +22<86 = |[f(xy.2— f0,0,0) <e
75. f(x,y,2) = x>+ 3y + 25 €=0015
76. f(x,y.2) = xyz, € = 0.008

At ol
ety @ =LOLS
Ly it |

78. f(x,y,2) = tan’x + tan’y + tan’z, € = 0.03

71. f(z,,

a
—
I

79. Show that f(x,y,z) = x + y — z is continuous at every pol
(%0, Yo» 20)-
80. Show that f(x, y,z) = x* + y? + z? is continuous at the origik

The calculus of several variables is similar to single-variable calculus applied to se¥e8
variables one at a time. When we hold all but one of the independent variables of a ful
tion constant and differentiate with respect to that one variable, we get a “partial” dCTE
tive. This section shows how partial derivatives are defined and interpreted geometrichs
and how to calculate them by applying the rules for differentiating functions of a8
variable. The idea of differentiability for functions of several variables requires more
the existence of the partial derivatives because a point can be approached from 50
different directions. However, we will see that differentiable functions of severa
behave in the same way as differentiable single-variable functions, so they are con
and can be well approximated by linear functions.

Partial Derivatives of a Function of Two Variables

If (xg, o) is @ point in the domain of a function f(x, y), the vertical plane y = Yo
the surface z = f(x, y) in the curve z = f(x, yo) (Figure 14.16). This curve is the grap
function z = f(x, ¥o) in the plane y = y,. The horizontal coordinate in this plane 1S ¥
vertical coordinate is z. The y-value is held constant at y,, so y is not a variable.
We define the partial derivative of f with respect to x at the point (xq, Yo) 3
nary derivative of f(x, y,) with respect to x at the point x = x;. To distinguish
derivatives from ordinary derivatives we use

" de : I:;' i

| vart :
tin y :Es..

will 8

ihe O

the symbol @ rather than the 4 preVies

2 B g P LY | (P W
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As we can see from Corollary 3 and Theorem 4. a function f(x, y) must be continuous at a
point (xy, yp) if f, and f, are continuous throughout an Open region containing (X0, o).
Remember, however, that it is still possible for a function of two variables to be discon-
tinuous at a point where its first partial derivatives exist, as we saw in Example 8. Exis.
tence alone of the partial derivatives at that point is not enough, but continuity of the par-
tial derivatives guarantees differentiability.

'?%jﬁmlliliil

.alcufating First-Order Partial Derivatives
;. Exercises 1-22, find df /dx and af /ay.

1. flr.y) = 2% — 3y — 4
1, f(xy) = (2 - 1)y +2)
B4, FO ) =Sty =T — 2 4 30— 6y + 2

5. f(r,y) = (y — 1)? 6. f(x,y) = (2x — 3y)}

17, fn ) = Va2 + 2 8 fr,y) = (x* + (y/2))3
9. flx,y) = 1/(x+y) 10. f(x,y) = x/(x* + y?)
L f(x,y) = (x +y)/(xy = 1) 12. f(x,y) = tan™! (y/x)

3. f(x.y) = etrtD) 14. f(x,y) = e*sin(x + y)
5. fx,y) = In(x + y) 16. f(x.y) = ¢’ Iny

17, f(x,y) = sin® (x — 3y) 18. f(x,y) = cos? (3x — y?)
P fxy) = x 20. f(x,y) = log, x

2 foey) =xr—xy+)?

ell

¥
21, flx,y) = / &(t dr (g continuous for all 1)
X

B2, f(x,y) = i”(xy)" (o <1
=

Ih Exercises 23-34, find fufyoand f,.

. flr,y,2) =1 + xy? — 272

4 oy ) =xy + yz2 4 12

55, f(r,y,2) = x — Vyr + 2

2 foy ) = (22 + ¥+ 2)1n

1. f(x,y,2) = sin”! (xyz)

3. f(-T.Jr‘. 2) = sec”! (x+ y2)

B 65,0 = In(x+ 2y + 3)

" f,y,2) = yzIn (xy)

PL f(x, y, 2) = 24y4d)

P2 f(x, V7)) = e

P £(5,%,2) = tanh (x + 2y + 3g)

M. £ ¥.z) = sinh (xy — 22)

| "<t 10 each variable.

* ft,a) = cos (20t — a)

:" 8lu, v) = y2pl2u/v)

*hip, ¢, g) = p sin ¢ cos 6
P 80n6,2) = N1 — cos @) - 2

' EKerci.s-es 35-40, find the partial derivative of the function with

39. Work done by the heart (Section 3.1 1, Exercise 61)

W(P, V,8,v,8) = PV + %agi

40. Wilson lot size formula (Section 4.6, Exercise 53)

h
Alc,h, k,m, q) = k;? + em + Eq

Calculating Second-Order Partial Derivatives

Find all the second-order partial derivatives of the functions in Exer-
cises 41-50,

€. fir,y)=x+y+ xy 42. f(x,y) = sinxy
43. g(r,y) = x* + cosy + ysinx

4. hix,y) = xe +y + | 45. r(x,y) = In(x + y)
46. s(x,y) = tan™! (y/x) 47. w = 2 tan (xy)

48

. W= yer 49. w = xsin (z%)
x — 1
50. w= —2__}
-+ y

Mixed Partial Derivatives
In Exercises 51-54, verify that w,, = Wi

51. w=1In(2x + 3y) 2. w=¢€"+xlny + yinx
83 w=x?+13+ Xyt 54. w=xsiny + ysinx + xy
55. Which order of differentiation will calculate f,, faster: x first or y
first? Try to answer without writing anything down.
a f(x,y) = xsiny + ¢
b. f(x,y) = 1/x
¢ flxy) =y + (x/y)
d fey) =y+xy+4° —In(y? + 1)
e f(x,y) =x*+ Sxy + sinx + 7¢'
f. flx.y) = xInxy
56. The fifth-order partial derivative &°f /ax%y is zero for each of the
following functions. To show this as quickly as possible, which

variable would you differentiate with respect to first: x or y?
Try to answer without writing anything down,

a, fixr,y) =yde + 2
b. f(x,y) = y* + y(sinx — x%)
. fle.y) = X2 + Sxv + sinx + 7ef

I .7 T, R ot

I

(]
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Using the Partial Derivative Definition
In Exercises 57-60, use the limit definition of partial derivative to
compute the partial derivatives of the functions at the specified points.

af af

57, f(x,y) =1 —x+y— 3%, 3 and 3 at (1,2)
G 2 A
58. f(x,y) =4+ 2 -3y -1 and ay at (=2, 1)
P S df
5. f. ) =Vx+3y-1 = and 5 A (-2,3)
sin (2 + 1)
- ':‘— {.!‘—'- (x, ) # (0,0)
60 flx,y) = 24y
' 0, (x,y) = (0, 0),
af

af 0.0
x and 3y at (0, 0)

Let f(x,y) = 2x + 3y — 4. Find the slope of the line tangent to
this surface at the point (2,—1) and lying in the a. plane x = 2
b. plane y = —1.

62. Let f(x,y) = x* + y’. Find the slope of the line tangent to this
surface at the point (—1, 1) and lying in the a. plane x = —1
b. plane y = L.

Three variables Let w = f(x, y, z) be a function of three inde-
pendent variables and write the formal definition of the partial
derivative af /dz at (x,, ¥o. Zo). Use this definition to find df /dz at
(1,2,3) for f(x,y,2) = x*yz%

64. Three variables Let w = f(x, v, z) be a function of three inde-
pendent variables and write the formal definition of the partial
derivative df /dy at (x;, ¥g. z9). Use this definition to find df /3y at
(—1,0,3) for f(x,y,2) = —2xy2 + yz&

61

63

Differentiating Implicitly
65. Find the value of dz/dx at the point (1, 1, 1) if the equation
y+x—2z=0
defines z as a function of the two independent variables x and y
and the partial derivative exists.
66. Find the value of dx/dz at the point (1, —1,—3) if the equation
xzxt+tylnx—x2+4=0

defines x as a function of the two independent variables y and z
and the partial derivative exists,

Exercises 67 and 68 are about the triangle shown here.

67. Express A implicitly as a function of a, b, and ¢ and calculate
dA /da and dA /ob.

68. Express a implicitly as a function of A, b, and B and calculate
da /oA and da/dB.

69. Two dependent variables Express v, in terms of u and y if the
equations x = vInu and y = uln v define u and v as functions
of the independent variables x and y, and if v, exists. (Hint: Dif-
ferentiate both equations with respect to x and solve for v, by

70. Two dependent variables Find dx/du and ay/du if the equa. |

Theory and Examples

71. Let f(x,y) = {

72. Let fx, ) = "2 +y

tions u = x> — y* and v = x* — y define x and y as functip, 4
the independent variables u and v, and the partial derivatives
exist. (See the hint in Exercise 69.) Then let s = x* + y2 anq fing 8
ds /. i

3, y=0
-y%, y<O.
Find f,, f,. f.and f,., and state the domain for each parlial'
derivative. i

XZ g
Y e,

L

_x‘)!
0, if (x, y) = 0.

af af _
a. Show that & (x, 0) = x for all x, and o (0,y) = =y forally.

b. Show th ﬂl__f 0,0) # dz—f 0,0

. Show t ata_\ﬁx( .0) axﬂy( ,0).
The graph of f is shown on page 800.

The three-dimensional Laplace equation

62 62 2
i L
F ) S
is satisfied by steady-state temperature distributions 7" = f(x, y, 2}/
in space, by gravitational potentials, and by electrostatic poten
tials. The two-dimensional Laplace equation

2 2
P

0

a? oy
obtained by dropping the 3*f /dz* term from the previous equationy
describes potentials and steady-state temperature distributions ind
plane (see the accompanying figure). The plane (a) may be treatel
as a thin slice of the solid (b) perpendicular to the z-axis.

(a) /

0;

(b)




Show that each function in Exercises 73-80 satisfies a Laplace

By 7000 =22 - 3(F + )z
s, f3) = ¢ cos 2

6. fx.)) = nVx +y

7, f(x, VW=3&x+2y—4

) =

fr 2 =02+ + 2)72

Lalleys in an instant of time. We see periodic vertical motion in space,
Lith respect to distance. If we stand in the water, we can feel the rise

where w is the wave height, x is the distance variable, 1 is the time
variable, and c is the velocity with which the waves are propagated.

In our example, x is the distance across the ocean’s surface, but
in other applications, x might be the distance along a vibrating string,
distance through air (sound waves), or distance through space (light
Waves). The number ¢ varies with the medium and type of wave.

__1__4.4 The Chain Rule

14.4 TheChainRule 821

Show that the functions in Exercises 81-87 are all solutions of

the wave equation.

81.
82.
83.
84.
85.

86.
87.

89.

91.

92.

w = sin (x + ¢f)

w = cos (2x + 2ct)

w = sin (x + ¢f) + cos (2x + 2ct)

w = In(2x + 2ct)

w = tan (2x — 2ct)

w = 5cos (3x + 3ct) + &t

w = f(u), where f is a differentiable function of w, and u =

a(x + ct), where a is a constant

Does a function f(x, y) with continuous first partial derivatives
throughout an open region R have to be continuous on R? Give
reasons for your answer.

If a function f(x,y) has continuous second partial derivatives
throughout an open region R, must the first-order partial deriva-
tives of f be continuous on R? Give reasons for your answer.

The heat equation An important partial differential equation
that describes the distribution of heat in a region at time ¢ can be
represented by the one-dimensional heat equation

o
a g
Show that u(x, ) = sin (ax) - ¢ # satisfies the heat equation for

constants o and 8. What is the relationship between « and 8 for
this function to be a solution?

Jyl
o2+ y“’
0, (x,y) = (0, 0).

Show that f,(0, 0) and f,(0, 0) exist, but f is not differentiable at
(0, 0). (Hint: Use Theorem 4 and show that f is not continuous at
(0,0).)

Let f(x,y) = (xy) # (0,0

0, P¥<y<2?
Let f(x,y) = ol
1, otherwise.

Show that f,(0, 0) and f,(0, 0) exist, but f is not differentiable at
(0, 0).

The Chain Rule for functions of a single variable studied in Section 3.6 says that when
w = f(x) is a differentiable function of x and x = g(1) is a differentiable function of 1, w is
a differentiable function of 1 and dw / dt can be calculated by the formula

dw _ dwdx

dt  dx dt’

For this composite function w(r) = f(g(1)), we can think of ¢ as the independent variable
and x = g(1) as the “intermediate variable.” because r determines the value of x which in
turn gives the value of w from the function f. We display the Chain Rule in a “branch dia-
gram” in the margin on the next page.

For functions of several variables the Chain Rule has more than one form, which depends
on how many independent and intermediate variables are involved. However, once the vari-
ables are taken into account, the Chain Rule works in the same way we just discussed.
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Since F(0,0,0) = 0, F,(0,0,0) = 1 # 0, and all first partial derivatives are COntinyg,
the Implicit Function Theorem says that F(x, y, z) = 0 defines z as a differentiabe [unc"
tion of x and y near the point (0, 0, 0). From Equations (2), ]

dz /2 3x% + zye® q dz F, e — zsiny |
—_—=—_—— = - - —_— = e —_— = - - -
dx F, 2z + xye® + cos y 58 ay F, 2z + xye® + (og y ).
At (0, 0, 0) we find
& _ _0_ e _ _1__ J
By 0 and i 1

Functions of Many Variables

We have seen several different forms of the Chain Rule in this section, but each one i8 just?
a special case of one general formula. When solving particular problems, it may help tof
draw the appropriate branch diagram by placing the dependent variable on top, the inter.!
mediate variables in the middle, and the selected independent variable at the bottom, Tg.
find the derivative of the dependent variable with respect to the selected independent vari
able, start at the dependent variable and read down each route of the branch diagram to the}
independent variable, calculating and multiplying the derivatives along each route. Thep
add the products found for the different routes. '

In general, suppose that w = f(x,y,...,v) is a differentiable function of the inter-
mediate variables x, y, . .., v (a finite set) and the x, y, ..., v are differentiable functions
of the independent variables p, g, ..., (another finite set). Then w is a differentiable]
function of the variables p through 7, and the partial derivatives of w with respect to these
variables are given by equations of the form :

dw _ dwox |, owdy dw
ractld A S ..+E

o axdp dyap
The other equations are obtained by replacing p by g, . . . , t, one at a time.

One way to remember this equation is to think of the right-hand side as the dot prod-
uct of two vectors with components

waw  w
Xy

Derivatives of w with
respect (o the
intermediate variables

du
dp’

aiid ax 9y dv
ap’aop’ " tap )

Derivatives of the intermediate
variables with respect to the
selected independent variable

Chain Rule: One Independent Variable
In Exercises 1-6, (a) express dw /dt as a function of 7, both by using
the Chain Rule and by expressing w in terms of 7 and differentiating

directly with respect to r. Then (b) evaluate dw /dr at the given value
of r.

1]

Lw=x*+32 x
2. w=xt+y &

X el
Jw=z+7 x=cos’t, y=sin’t, z=1/t; t=3

cost, y=sint, r=a

Cost + sint, y=cost —sint; +t=10

dw=hn(P+y+2%), x=cost, y=sint. z=4Vs:
t=3

5 w=2¢-Inz, x=In(?+1), y=tan's, z=¢:
r=1

6. w=z—sinxy, x=1 y=1Intz, z=¢""1 t=1

Chain Rule: Two and Three Independent Variables

In Exercises 7 and 8, (a) express dz/du and dz/dv as functions Gf :

and v both by using the Chain Rule and by expressing z directly
terms of u and v before differentiating. Then (b) evaluate dz/0
dz/ov at the given point (u, v).

7.z=4¢'Iny, x=In(ucosv), y= usiny;
(w,v) = (2, 7/4)




z=tan'(x/y), x=ucosv, y=usinv;

(w,v) = (1.3, 7/6)

gxercises 9 and 10, (a) express dw/du and dw/dv as functions of u
knd v both by using the Chain Rule and by expressing w directly in
cms of u and v before differentiating. Then (b) evaluate dw /du and
by /v at the given point (&, v).

9_w=xy+yz+xz, x=u+tv, y=u—-v z=uv,
(,v) = (1/2,1)

40, w = In (& +y? + 22), x = ue’sinu, y= ue’cosu,

L 2= ue'y (hv) =(=2,0)

In Exercises 11 and 12, (a) express du/ax, du/dy, and ou/dz as func-
fions of x, y, and z both by using the Chain Rule and by expressing u
firectly in terms of x, y, and z before differentiating. Then (b) evaluate
lgu /ax, ou/dy, and du/dz at the given point (x, y, z).

1.uzg:_2~ PTET I®L g=r=y+4
L r=x+y—1z (x.y.z)=(\/3_n.2.l)

12. u = ¢"sin”' p, p =siny, g=22Iny, r=1/z
oy =(mw/4,1/2,—1/2)

Using a Branch Diagram

) Exercises 13-24, draw a branch diagram and write a Chain Rule
formula for each derivative.

13. = for z = f(x,y), x=g(t), y=ho
14, — for z = flu, v, w), =g, v=h@), w=k

aw — —_— P
15, ™ and F for w=h(x,y,2), x= f(uv), vy = glu, v),
v)

16. i% and for w= f(r,s,1), r=gxy), s=h V),

ow aw
% a and o5 for w=g(x,y), x=h(uv), y= kv
18. Z‘L; and %w for w = g(u,v), u=hixy), v=kxy
iz lid

1, o and &—; for z = f(x,y), x=g(t,s). y=hzs
D. o for y = fw), u=gr,s)

21, f}: and % for w = g(u), u = h(s,1)
dw

2, » for w=f(r,y,zv), x=4g(p.g), y= h(p, g),
2=jp,q), v=kp,g)

j w aw _ .

3, o and I for w = fx,y), x= g(r), y=his)

u i
‘o forw=g(xy), x=hlrst, y=krs0

mplicit Ditferentiation

‘SSuming that the equations in Exercises 25-28 define y as a differen-

F ulk ['f"hle function of x, use Theorem 8 to find the value of dy [ dx at the

in' §iven point.
adl B ¥t m=0 (1)
Byt —ty—3=0 LD

2. txy+y=7=0, (1,2
g

14.4 The Chain Rule 829

Find the values of dz/dx and dz/dy at the points in Exercises 29-32.
29. 7 —xyty+y-2=0 (1,11
| |

1 .
30. f+§+5_ 1=0, 23,6

L sin(x +y) +sin(y +2) + sin(x + 2) = 0, (. 7)
32. @ + ye* + 2Inx — 2 — 3ln2=0, (I,In2,In3)

Finding Partial Derivatives at Specified Points

33. Find aw/or when r=1,5=-1 if w=(x+y+ 2>
X=r—s5y=cos(r+s), z=sin@+ ).

3. Find ow/ov when w=-1y=2 if
x=vuy=u+v, z=cosu

w=xy+Ingz

35. Find dw/dv when u=0u=0 if w=ax2+ (y/x),
x=u—w+l,y=2u+v-2
36. Find dz/ou when u=0v=1 if 7= sinxy + xsiny,

x=1w+ v y = u.
37. Find dz/du and dz /v when u = In2,v = 1 if z = 5 tan"' x and
x=¢e"+ Inv.

38. Find 6z/0u and dz/év when u =1, v = -2 if 7 = Ing and
g= Vv +3tan'u

Theory and Examples

39. Assume that w = f(s* + %) and f'(x) = ¢*. Find Z—Tand (;—‘:

b

a
s e = 1(2.5), L = o 00 Lsp -
. aw ow
Find P and P

41. Changing voltage in a circuit The voltage V in a circuit that
satisfies the law V = IR is slowly dropping as the battery wears
out. At the same time, the resistance R is increasing as the resistor
heats up. Use the equation

dvV _aVdl | aVdR
de — ol dt " R dr
to find how the current is changing at the instant when R =
600 ohms, I = 0.04 amp, dR/dt = 0.5 ohm/sec, and dV/dt =

—0.01 volt/sec.
1%
oo
! Battery
I
W
R

42. Changing dimensions in a box The lengths a, b, and ¢ of the
edges of a rectangular box are changing with time. At the instant
in question, a=1m, b =2m, ¢ = 3m, da/dt = db/dr =
I m/sec, and dc/dt = —3 m/sec. At what rates are the box's
volume V and surface area S changing at that instant? Are the
box’s interior diagonals increasing in length or decreasing?

43, If f(u, v, w) is differentiable and u = y — yv=y—z and
w = z — x, show that

df af af
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44. Polar coordinates Suppose that we substitute polar coordinates

x=rcosf and y=rsinf in a differentiable function
w= flx,y)
a. Show that
aw _ . ]
% = focos 8 + fysin B
and
low _ o .
Tl f:sin@ + f, cos 8.

b. Solve the equations in part (a) to express f, and f, in terms of
dw /dr and dw /6.

¢. Show that

- A% aw )\’
G+ ()2 = (i—':) + }2(5) .

45. Laplace equations Show that if w = f(u, v) satisfies the
Laplace equation f,, + f,, = 0 and if u = (x* — »*)/2 and
v = xy, then w satisfies the Laplace equation w,, + w,, = 0.

46. Laplace equations Let w = f(u) + g(v), where u = x + iy,
v=x—iy,and i = V~1. Show that w satisfies the Laplace
equation wy, + w,, = 0 if all the necessary functions are differ-
entiable,

47. Extreme values on a helix Suppose that the partial derivatives
of a function f(x, y, z) at points on the helix x = cost,y = sin¢,
z=rare

fr=cost, f,=sint, f=£+1r-2

At what points on the curve, if any, can f take on extreme values?

48. A space curve Let w = x2%% cos 3z. Find the value of dw /dt
at the point (1,In2,0) on the curve x = cost,y = In(t + 2),
=L

49. Temperature on acircle Let T = f(x, y) be the temperature at
the point (x, y) on the circle x =cost,y = sint,0 =t = 27w
and suppose that _

T o a4y, %=8_v—4x.

]. 4. 5 Directional Derivatives and Gradient Vectors

a. Find where the maximum and minimum temperatures o,
circle occur by examining the derivatives dT / dt and dszd:! .

b. Suppose that T = dx? — dxy + 4y”. Find the maximup ,, d'
minimum values of 7 on the circle. E

50. Temperature on an ellipse Let T = g(x, ) be the temper,
at the point (x, y) on the ellipse

x=2V2cost, y=\/isinf. 0=t=2n
and suppose that
g, .
a Y oy T

a. Locate the maximum and minimum temperatures on the
ellipse by examining d7/dt and d*T/dt>. s

b. Suppose that T = xy — 2. Find the maximum and minimyp "

values of T on the ellipse.
L

Differentiating Integrals Under mild continuity restrictions, it jg
true that if :

b
Flx) = / glt, x) dt,

b [
then F'(x) = / g1, x) dt. Using this fact and the Chain Rule, wg'
a

can find the derivative of
fix)
Flx) = [ gt x)dt
a
by letting
Glu, x) = / g(t, x) dr,

where u# = f(x). Find the derivatives of the functions in Exercises 518
and 52. !

2 I
51 Fix)i= / Vit + O dt 52. F(x) = / Ve + A2d '.
0 b 2d

If you look at the map (Figure 14.26) showing contours within Yosemite National Park il
California, you will notice that the streams flow perpendicular to the contours.
streams are following paths of steepest descent so the waters reach lower elevations ¢
quickly as possible. Therefore, the fastest instantaneous rate of change in a stream’s 31_
tion above sea level has a particular direction. In this section, you will see why this d b
tion, called the “downhill” direction, is perpendicular to the contours. '

Directional Derivatives in the Plane

We know from Section 14.4 that if f(x, y) is differentiable, then the rate at which f chaf
with respect to f along a differentiable curve x = g(1), y = h(r) is 3

At any point Fy(xy, yo) = Py(g(ty), hi1y)), this equation gives the rate of change of f¥

carnact-In. ineseamnne ¢ and tharatare demends amono niker - ihinoe an e dirat e

af _of dx _of dy
dt  oxdt  oydt :
i
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Exercises :

Calculating Gradients

In Exercises 1-6, find the gradient of the function at the given point.
Then sketch the gradient together with the level curve that passes
through the point.

Chapter 14: Partial Derivatives

Lfy=y-x Q1 2 foy)=h(E+y2), 1,1
2 2
3 sy =n? (2.-1) 4. glx,y) = J;— = '% (\/ﬁ I)

5. fe,y) = V2x + 3y, (-1,2)
L Vx

6. f(x,y) = tan T

(4,-2)

In Exercises 7-10, find V at the given point.

T fxy,d =2+ =22+ zlnx, (1,1,1)

8 fy,2) =22 =30 + y)z + tan ' xz, (1,1,1)
9 fuyd = +y¥+"2 +n (w2, (—1,2,-2)

10. f(x.y,2) = e cosz+ (v + 1)sin'x, (0,0, 7/6)

=

I

Finding Directional Derivatives

In Exercises 11-18, find the derivative of the function at P, in the
direction of u.

11 f(x,y) = 20 — 3y, PRy(5.5), u=4i+3j

12, fx.y) =23+, B(-1,1), u=3i-4j

J ¥
3. g(ry) = =%, A1) uw=12+5)

4. h(x,y) = tan™ (y/x) + V3sin™' (xy/2), Pyl, 1),
u=3i-2j

15, foy,2) =xy +yz+zx, P(l,—1,2), u=3i+ 6j — 2k
16. fx, 3,20 =x+2° =32 P(L,L1), u=i+j+k
Fy(0,0,0), w=2i+j—2k

18. hi(x,y,z) = cosxy + €7 + Inzx, Py(1,0, 1/2),
u=i+2j+2k

17. g(x,y,2) = 3e* cos yz,

In Exercises 19-24, find the directions in which the functions increase
and decrease most rapidly at F,. Then find the derivatives of the func-
tions in these directions.

1. f,y) =2 +xy+y, R(-11)

20. f(x,y) = x¥y + e%siny, Pyl,0)

2. f(x,y,2) = (x/y) = yz, R4, 1,1)

22. glx,y,2) = x€ + 7%, PF(1,In2,1/2)

2 fxyy,z) =Inxy + Inyz + Inxz, Pyl,1,1)

4. h(x,y,2) =In(®+y = 1) +y+ 6z, Pyl,1,0)

Tangent Lines to Level Curves

In Exercises 25-28, skeich the curve f(x,y) = ¢ together with Vf
and the tangent line at the given point. Then write an equation for the
tangent line.

25 2 +yr=4, (V2,V2)

26 2—y=1, (\/51)

27. xy=—4, (2,-2)

2. 2—xy+y?=7 (-1,2)

Theory and Examples
29,

30.

31

32,

33

3s.

37.

38.

39,

. Changing temperature along a circle s there a direction u

« The derivative of f(x, y, z) at a point P is greatest in the dx'recti'_

. The algebra rules for gradients Given a constant k and ¥

Let f(x,y) = x* — xy + y* — y. Find the directions U and g, ;
values of D, f(1, 1) for which

a. D, f(1,—1) is largest b. D, f(1,—1) is smalles
¢ D, f(l,-1)=0 d. D, f(l,-1)=4
e D, f(1,-1)=-3

xX=y
Let f(x,y) = Ex o Find the directions u and the values of

D, f(— % %) for which

Zero directional derivative In what direction is the derivative:
of f(x,y) = xy + y* at P(3, 2) equal to zero?
Zero directional derivative In what directions is the derivative:
of f(x,y) = (x* = y?)/(x* + y?) at P(1, 1) equal to zero?

Is there a direction u in which the rate of change of f(x,y)=
= 3xy + 4*atP(1,2) equals 147 Give reasons for your answer:

which the rate of change of the temperature function T(x, y, 2) =
2xy — yz (temperature in degrees Celsius, distance in feet) af
P(1,—1,1) is —3°C/ft? Give reasons for your answer.
The derivative of f(x, y) at Fy(1,2) in the direction of i + j i
2V/2 and in the direction of —2j is —3. What is the derivative of
f in the direction of —i — 2j? Give reasons for your answer.

of v =i+ j — k. In this direction, the value of the derivativei$

2V/3.

a. Whatis Vf at P? Give reasons for your answer,

b. What is the derivative of f at P in the direction of i + j? .
Directional derivatives and scalar components How is 1
derivative of a differentiable function f(x, y, z) at a point P, it

direction of a unit vector u related to the scalar component &
(V f)p, in the direction of u? Give reasons for your answer.

Directional derivatives and partial derivatives Assumis
that the necessary derivatives of f(x, y, z) are defined, hoW
Dif, Dif, and Dyf related to f,, f,, and f,? Give reasons &
your answer.
Lines in the xy-plane Show that A(x — x;) + B( y =y 5
is an equation for the line in the xy-plane through the point (%o %%
normal to the vector N = Ai + Bj. '

gradients L ."
Y _9%. dg  og PG
Vf—arl‘l'a;_]‘l‘gk, Vg—axl-f-a;]ﬁ-azk» n

establish the aleebra rules for eradients



14.6 Tangent Planes and Differentials 845

Functions of More Than Two Variables
Analogous results hold for differentiable functions of more than two variables,

1. The linearization of f(x, y, z) at a point Folxo, Yo, 70) is

Lx,y,2) = f(R) + f(P)(x — x) + TR = yo) + f(Po)z — 2o).

2. Suppose that R is a closed rectangular solid centered at Fy and lying in an open region
on which the second partial derivatives of f are continuous. Suppose also that
|f ol sl |l | £/, and |£,.| are all less than or equal to M throughout R.

Then the error E(x,y,2) = f(x,y,2) — L(x, y, 2) in the approximation of f by L is
bounded throughout R by the inequality

L]

|
IE| = 3M(x = x| + |y = yo| + [z = g2

3. If the second partial derivatives of f are continuous and if X, ¥, and z change from x;, y,
and zy by small amounts dx, dy, and dz, the total differential

df = fAF) dx + f(Py) dy + f(Py) dz

gives a good approximation of the resulting change in f.

EXAMPLE 8 Find the linearization L(x, y, z) of

fey,2) = x* — xy + 3sinz

at the point (xy, yy, 29) = (2, 1, 0). Find an upper bound for the error incurred in replacing
f by L on the rectangular region

R |x-2/=001, |y-1|=o002 lz| = 0.01.
Solution  Routine calculations give
f2,L,0)=2, £(21,0) =3, H21L0)==2, £42,1,0)=3.
Thus,
Lix,y,2) =2+ 3(x-2) + E2(y - 1) +3(z-0) =3x — 2y + 3z - 2.
Since
fa=2  fy=0 fp=-3sinz, f,=-1, f_ =0 fia =0

and -3 sinz| < 3sin0.01 ~ 0.03, we may take M = 2 as a bound on the second par-
tials. Hence, the error incurred by replacing f by L on R satisfies

|| = 3@)0.01 + 0.02 + 0,017 = 0.0016 "

Mgent Planes and Normal Lines to Surfaces
f “Xercises 1-8, find equations for the

) tangent plane and

) formal line at the point Fy on the given surface,
M EL 223 By

2
" L-2=-0, P02

¥ty -y +2=7 BU-1.3

S.cosmx —xly + e+ yz =4, PO, 1,2)

6. *—xy—y—z=0,

T.x+y+z=1,

8. x? + 92— 2y —x + Iy —z=-4 R2,-3.18)

3 2 In Exercises 9-12, find an equation for the plane that is tangent to the
X 2~ 2= 18, p3,5,—4) 3 TEREEE nd an €q 3 g
: given surface at the given point.

9. z=1In(x? + y?), 10. z = ¢ @0,
1. z = Vv — & T2 o= Aad w2 1 T =x
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Tangent Lines to Intersecting Surfaces
In Exercises 13-18, find parametric equations for the line tangent to
the curve of intersection of the surfaces at the given point.

13. Surfaces:x + y? + 2z =4, x=1
Point:  (1,1,1)

14. Surfaces: xvz = 1,
Point: (1,1, 1)

15. Surfaces: > + 2y + 2z =4, y=1
Point:  (1,1,1/2)

16, Surfaces:x + y* +2=2, y=1
Point:  (1/2,1,1/2)

17. Surfaces: x> + 32 + y* + day — 22 =0,

K2+ y?' +7 =

Point:  (1,1.3)
18. Surfaces: 2 +y2 =4, P2+ —z=0

(V2,V2,4)

2+ 2 +32=6

Point;

Estimating Change
19. By about how much will

=InVa +y* + 7

change if the point P(x, y, z) moves from Fy(3, 4, 12) a distance of
ds = 0.1 unit in the direction of 3i + 6j — 2k?

By about how much will
fny2)

change as the point P(x, y, z) moves from the origin a distance of
ds = 0.1 unit in the direction of 2i + 2j — 2k?

21. By about how much will

fle,y,2)

20

= €"cos )z

gx,y,z) =x + xcosz— ysinz +y

change if the point P(x, y, z) moves from Fy(2, —1, 0) a distance
of ds = (.2 unit toward the point P,(0, 1, 2)?

22. By about how much will
h(x,y,z) = cos (wxy) + 1

change if the point P(x, y, z) moves from Py(—1,—1,—1) a dis-
tance of ds = 0.1 unit toward the origin?

23. Temperature change along a circle Suppose that the Celsius
temperature at the point (x, y) in the xy-plane is T(x, y) = x sin 2y
and that distance in the xy-plane is measured in meters. A particle
is moving clockwise around the circle of radius 1 m centered at
the origin at the constant rate of 2 m/sec.

a. How fast is the temperature experienced by the particle
changing in degrees Celsius per meter at the point
P(1/2,V3/2)?

b. How f_ﬂSl is the temperature experienced by the particle
changing in degrees Celsius per second at P?

24. Changing temperature along a space curve The Celsius tem-
perature in a region in space is given by T(x, y, z) = — xyz.
A particle is moving in this regmn and its position at nme ris

given by x = 2%, y = 31, z = —12_ where time is measured in
seconds and distance in meters,

Finding Linearizations :
In Exercises 25-30, find the linearization L(x, y) of the function at

a. How fast 1s the temperature experienced by the particle
changing in degrees Celsius per meter when the particle i at
the point P(8, 6,—4)?

b. How fast is the temperature experienced by the partic|e
changing in degrees Celsius per second at P?

each point,

25 f,y)=x*+y +1 at a (0,0), b. (1, 1)

26. fx,y) =(x+y+2%*a a (0,0), b. (1,2)

27, flx,y) =3x—4y+5 a a. (0,0), b. (1, 1)

28. f(x,y) = xy* al a. (1,1,  b.(0,0)

29. f(x,y) = e‘cosy at a. (0,0), b. (0,7/2)

30. f(x,y) = ¥ at a. (0,0), b. (1,2) i i

31. Wind chill factor Wind chill, a measure of the apparent ..-: /
perature felt on exposed skin, is a function of air temperature and (
wind speed. The precise formula, updated by the National Weatheg . |
Service in 2001 and based on modern heat transfer theory, g 2

(mph) | 29 [ 17 11

32.

human face model, and skin tissue resistance, is

W= W, T)=23574 + 0.6215T — 3575 %!
+ 0.4275 T+ %16,

where T is air temperature in °F and v is wind speed in mph. A
partial wind chill chart is given.

T(°F)
30 25 20 15 10 5 0
5|25 19 13 7 1 =5 =11

a. Use the table to find W(20, 25), W(30, —10), and W(15, 1

b. Use the formula to find W(10, —40), W(50, —40), and

W(60, 30). .

c. Find the linearization L(v, T) of the function W(v, T) at® '1

point (25, 5). ;

d. Use L(v, T) in part (c) to estimate the following wind ch
values.

i) W(24, 6) ii) W(27,2) 3

iii) W(5, —10) (Explain why this value is much different’ R

from the value found in the table.) s .

Find the linearization L(v, T) of the function W(v, T) in Ex =
31 at the point (50, —20). Use it to estimate the following =
chill values. :

a. W(49,-22)
b. W(53,-19)
c. W60, —30)



'_Bounding the Error in Linear Approximations

1 Exercises 33-38, find the linearization L(x, y) of the function f(x, y)
4t P Then find an upper bound for the magnitude |E| of the error in
the approximation f(x, y) = L(x, y) over the rectangle R.

33, f)) =% =3y +5 at B2, 1),

L R x-2/=01 [y-1 =01

34, fOuy) = (1/2% + xy + (1/4)* + 3x — 3y + 4 at B(2,2),
R |x=2[=01 |y-2/=o0.1

145, f(x,y) =1+ y+ xcosy at Py0,0),

R |x =02 |y =02

(Use [cos y| = I and |siny| = 1 in estimating E.)
136. f(x,y) = xy* + ycos (x — 1) at Ryl,2),

R x—1] =01, [y-2| =01

37, flx,y) = e'cosy at PBy0,0),

L R Y =01, |y =01

(Use e = 1.11 and |cos y| =< 1 in estimating E.)
48, f(r,y) =Ilnx +1Iny at By, 1)

R |x=1=02 |y-1]=02
'Linearizations for Three Variables

(Find the linearizations L(x, y, z) of the functions in Exercises 3944 at
the given points.

839, f(x,%,2) = xy + yz + xzat

& {1.1,1) b. (1,0, 0) c (0,0,0)
0. f(x,5,2) =x*+y*+ Zat
b a. (1, 1,1) b. (0,1,0) ¢ (1,0,0)
4L fr,y,2) = VX2 + y2 + Zat

a. (1,0,0) b. (1,1,0) c. (1,2,2)
4. f(x,y,2) = (sinxy)/z at

a (m/2,1,1) b. (2,0, 1)

43, f(x,y,2) = & + cos (y + 2) at

n(a%@

m T
c. (O'Z'Z)
M. f(x,y,7) = tan™! (xyz) at
a (1,0,0) b. (1,1,0) e (LL1)

' Exercises 45-48, find the linearization L(x, y, z) of the function
% ¥, 2) at Fy. Then find an upper bound for the magnitude of the
*or E in the approximation f(x, % 2) = L(x,y, z) over the region R.
445, £(x, Zwo=xx—3yuz+2 at PBy(l,1,2),
R |x—1] =001, |y-1]=001, |z-2/ =002
> fry =2+ +y+(1/42 a Ry(1,1,2),
R |x-1] =001, [y-1] =001, |z = 2| =008
7 fley ) =xy+ 20 - 3z at B 1,0),
R Jx—1] =001, |y-1| =001 |z =001
£ f(x, ¥z = \/icoaxsin{_v +2) at R0,0,7/4),
R: |l =001, |y =001, |z-=/4| <001

E t‘maﬁng Error; Sensitivity to Change

k" Esﬁmating maximum error Suppose that T is to be found
from the formula 7 = x (e¥ + e7), where x and y are found to be
2 and In 2 with maximum possible errors of |dx| = 0.1 and

847
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l[dy| = 0.02. Estimate the maximum possible error in the com-
puted value of T,

50. Variation in electrical resistance The resistance R produced
by wiring resistors of R, and R, ohms in parallel (see accompa-
nying figure) can be calculated from the formula

|

1
R, i Ry
a. Show that

_(RY R
- (8 (

b. You have designed a two-resistor circuit, like the one shown,
to have resistances of R, = 100 ohms and R, = 400 ohms,
but there is always some variation in manufacturing and the
resistors received by your firm will probably not have these
exact values. Will the value of R be more sensitive to varia-

tion in R, or to variation in R,? Give reasons for your answer.

LRI
¢. In another circuit like the one shown, you plan to change R,
from 20 to 20.1 ohms and R, from 25 to 24.9 ohms. By about
what percentage will this change R?
51. You plan to calculate the area of a long, thin rectangle from mea-
surements of its length and width. Which dimension should you
measure more carefully? Give reasons for your answer.

52. a. Around the point (1,0), is f(x, y) = xX(y + 1) more sensitive to
changes in x or to changes in y? Give reasons for your answer.

b. What ratio of dx to dy will make df equal zero at (1, 0)?

53. Value of a 2 X 2 determinant If |a| is much greater than

6], |c|, and |d], to which of a, b, ¢, and d is the value of the
determinant

=

fla,b,c,d) = ’a b'
[

d

most sensitive? Give reasons for your answer.

54. The Wilson lot size formula The Wilson lot size formula in eco-
nomics says that the most economical quantity Q of goods (radios,
shoes, brooms, whatever) for a store to order is given by the for-
mula Q = V2KM/h, where K is the cost of placing the order, M
is the number of items sold per week, and 4 is the weekly holding
cost for each item (cost of space, utilities, security, and so on). To
which of the variables K, M, and h is Q most sensitive near the
point (Ky, My, hg) = (2, 20, 0.05)? Give reasons for your answer.

Theory and Examples

55. The linearization of f(x, y) is a tangent-plane approximation
Show that the tangent plane at the point Py(xy, yy, f(xy, vp)) on the
surface z = f(x, y) defined by a differentiable function f is the
plane

[ulxo, yo)lx — xp) + j".{_tu__v{,)(_v —y) —(z - f(xnn Y =20
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or 56. Change along the involute of a circle Find the derivajy,
f(x,y) = x* + ¥* in the direction of the unit tangent Vector
the curve

2= flxg, ) + fulxg. yo)x = Xo) + F,(%0. o)y = Yo). of

Thus, the tangent plane at F, is the graph of the linearization of f (0) = (cost + tsindi + (sint — rcosnj, >0

at Fy (see accompanying figure).

57. Tangent curves A smooth curve is tangent to the surfyce at o
point of intersection if its velocity vector is orthogonal to ¥ f thema t.

Show that the curve
r(f) = Vi + Vij + (21 - Dk

is tangent to the surface x* + y* — z = 1 whent = |.

58. Normal curves A smooth curve is normal 10 a surfaee
f(x,y,z) = c at a point of intersection if the curve’s velocity
vector is a nonzero scalar multiple of V f at the point.

Show that the curve

rn) = Vi + Vij - %(: + 3)k

X is normal to the surface x> + y* — z = 3 whent = 1.

14. 7 Extreme Values and Saddle Points

Continuous functions of two variables assume extreme values on closed, bounded domains

(see Figures 14.41 and 14.42). We see in this section that we can narrow the search for these

extreme values by examining the functions’ first partial derivatives. A function of two vari

ables can assume extreme values only at domain boundary points or at interior domai

points where both first partial derivatives are zero or where one or both of the first partiak

JTISI‘ORICAL BIOGRAPHY derivatives fail to exist. However, the vanishing of derivatives at an interior point (a, b) does
Siméon-Denis Poisson not always signal the presence of an extreme value. The surface that is the graph of the
(1781-1840) function might be shaped like a saddle right above (a, b) and cross its tangent plane there. §

Derivative Tests for Local Extreme Values

To find the local extreme values of a function of a single variable, we look for poiifs
where the graph has a horizontal tangent line. At such points, we then look for local m
ima, local minima, and points of inflection. For a function f(x, y) of two variables, we |
for points where the surface z = f(x, y) has a horizontal tangent plane. At such points
then look for local maxima, local minima, and saddle points. We begin by defining M&8
ima and minima. '

FIGURE 14.41 The function DEFINITIONS Let f(x, y) be defined on a region R containing the point (a, b)
L Then

z = (cos x)(cos y)e V=Y . .
: 1. f(a, b) is a local maximum value of f if f(a, b) = f(x, y) for all domain
has a maximum value of | and a mini- points (x, y) in an open disk centered at (a, b).

mum "T“Tef;;‘/";‘ ;T“ff’;’“ the square 2. f(a, b) is a local minimum value of f if f(a, b) = f(x, y) for all domain
Fegion & = >l = 3a/2. points (x, ) in an open disk centered at (a, b).

Local maxima correspond to mountain peaks on the surface z = f(x, y) and local mifl

correspond to valley bottoms (Figure 14.43). At such points the tangent planes, when’ e

avict ara hovmtornntal T asal eavtrarma ars alcr Aallad ssalatlesrn sarkeas s o



