1.) Use what you know about converging geometric series to write each power series as an ordinary function.

a.)
$$\sum_{n=2}^{\infty} \frac{x^n}{3^n}$$
 b.)
$$\sum_{n=0}^{\infty} \frac{2^{n-1}(x+3)^{n+1}}{5^n}$$

c.)
$$x^2 - x^{5/2} + x^3 - x^{7/2} + x^4 - x^{9/2} + \cdots$$
 d.)
$$\sum_{n=0}^{\infty} (n+1)x^n$$

2.) Recall that if y = f(x) is a function and

$$a_0 + a_1(x-a) + a_2(x-a)^2 + a_3(x-a)^3 + a_4(x-a)^4 + \cdots = \sum_{n=0}^{\infty} a_n(x-a)^n$$

is the Taylor Series (or Maclaurin series if a=0) centered at x=a for y=f(x), then $a_n=\frac{f^{(n)}(a)}{n!}$. Use this formula to compute the first four nonzero terms and the general formula for the Taylor series expansion for each function about the given value of a.

a.)
$$f(x) = e^x$$
 centered at $x = 0$ b.) $f(x) = e^x$ centered at $x = \ln 2$ c.) $f(x) = \frac{1}{1-x}$ centered at $x = 0$ d.) $f(x) = \sin x$ centered at $x = 0$ e.) $f(x) = \frac{1}{x}$ centered at $x = 1$ f.) $f(x) = \sqrt{x+5}$ centered at $x = -1$

3.) Use the suggested method to find the first four nonzero terms of the Maclaurin series for each function.

a.)
$$f(x) = \frac{1}{1+x^2}$$
 (Substitute $-x^2$ into the Maclaurin series for $\frac{1}{1-x}$.)

b.) $f(x) = x^3 e^{-3x}$ (Substitute -3x into the Maclaurin series for e^x and then multiply by x^3 .)

c.)
$$f(x) = \frac{e^x}{1-x} = e^x \frac{1}{1-x}$$
 (Multiply the Maclaurin series for e^x and $\frac{1}{1-x}$ term by term and then group like powers of x .)

d.) $f(x) = \frac{e^x}{1-x}$ (Use polynomial division. Divide the Maclaurin series for e^x by 1-x .)

e.) $f(x) = 3x^2 \cos(x^3)$ (Substitute x^3 into the Maclaurin series for $\sin x$ then differentiate term by term.)

1

f.)
$$f(x) = \arctan x$$
 (Integrate the Maclaurin series for $\frac{1}{1+t^2}$ from 0 to x .)

- 4.) The Maclaurin series for $f(x) = \frac{1}{1+x}$ is $1-x+x^2-x^3+x^4-x^5+\cdots$
- a.) Show that $f(x) = \frac{1}{1+x}$ and $1-x+x^2-x^3+x^4-x^5+\cdots$ have the same value at x=0 .
- b.) Show that $f(x) = \frac{1}{1+x}$ and $1-x+x^2-x^3+x^4-x^5+\cdots$ have the same value at x=1/2.
- c.) Show that $f(x) = \frac{1}{1+x}$ and $1-x+x^2-x^3+x^4-x^5+\cdots$ do not have the same value at x=1.
 - d.) For what x-values is $f(x) = \frac{1}{1+x}$ defined?
- e.) For what x-values is the Maclaurin series $1-x+x^2-x^3+x^4-x^5+\cdots$ defined? NOTE: It can be shown that $f(x)=\frac{1}{1+x}$ and its Maclaurin series $1-x+x^2-x^3+x^4-x^5+\cdots$ are equal on the interval (-1,1).
- 5.) Determine (Use shortcuts.) the third-degree Taylor polynomial, $P_3(x;0)$, for the function $f(x) = \frac{x}{1+x}$. Use $\int_0^1 P_3(x;0) dx$ to estimate the value of $\int_0^1 \frac{x}{1+x} dx$. Now evaluate $\int_0^1 \frac{x}{1+x} dx$ directly to see how good the estimate is.
- 6.) The following definite integral cannot be evaluated using the Fundamental Theorem of Calculus. Use the Maclaurin series for $\cos x$ and the absolute error $|R_n|$ for an alternating series to estimate the value of this integral with error at most 0.0001: $\int_0^1 \cos(x^2) dx$
- 7.) Write each Maclaurin series as an ordinary function.

a.)
$$(3x) - \frac{(3x)^3}{3!} + \frac{(3x)^5}{5!} - \frac{(3x)^7}{7!} + \frac{(3x)^9}{9!} - \cdots$$
 (HINT: Use $\sin x$.)

b.)
$$x^2 - x^3 + x^4 - x^5 + x^6 - \cdots$$
 (HINT: Factor.)

c.)
$$\frac{1}{2!} + \frac{x}{3!} + \frac{x^2}{4!} + \frac{x^3}{5!} + \frac{x^4}{6!} + \cdots$$
 (HINT: Use e^x .)

d.)
$$x + 2x^2 + 3x^3 + 4x^4 + 5x^5 + \cdots$$
 (Challenging)

8.) Use any method to find the given Taylor polynomial for each function. Then estimate the Absolute Taylor Error on the indicated interval.

a.)
$$f(x) = e^{-2x}$$
, $P_3(x; 0)$, for $[-1/2, 1/3]$

b.)
$$f(x) = \sin 2x$$
, $P_5(x; 0)$, for $[0, 3/4]$

c.)
$$f(x) = \frac{x}{1-x}$$
, $P_4(x;0)$, for $[-1/3,0]$

9.) What should n be so that the nth-degree Taylor Polynomial $P_n(x;a)$ estimates the

value of the given function on the indicated interval with Absolute Taylor Error at most 0.00001?

a.)
$$f(x) = e^{-x}$$
 for $a = 1$ and $[0, 1]$
b.) $f(x) = \frac{x+3}{x+1}$ for $a = 0$ and $[0, 1/2]$

10.) (Challenging) Use shortcuts to find the first three nonzero terms in the Taylor Series centered at x = -1 for $f(x) = \frac{x}{3-x}$.

"In mathematics you don't understand things. You just get used to them." – Johann von Neumann