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EXERCISES 15.1

Finding Regions of Integration and
Double Integrals
In Exercises 1-10, sketch the region of integration and evaluate the

integral.
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In Exercises 11-16, integrate f over the given region.

11. Quadrilateral f(x, y) = x/y over the region in the first quad-
rant bounded by the lines y = x,y = 2x,x = l,x = 2

12. Square f(x,y) = 1/(xy) over the

l=y=2
13. Triangle f(x,y) = x? + y? over the triangular region with ver-
tices (0, 0), (1, 0), and (0, 1)

14. Rectangle f(x,y) = ycosxy over the rectangle 0 = x < =,
0=y=1

square | =x = 2,

I5. Triangle f(u,v) = v~ Vu over the triangular region cut
from the first quadrant of the uv-plane by the lineu + v = 1

16. Curved region f(s,7) = ¢’In¢ over the region in the first
quadrant of the st-plane that lies above the curve s = Inz from
=1tor=2

Each of Exercises 17-20 gives an integral over a region in a Cartesian
coordinate plane. Sketch the region and evaluate the integral.
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Reversing the Order of Integration

In Exercises 21-30, sketch the region of integration and write an
®quivalent double integral with the order of integration reversed.

“ dv du (the uv-plane)
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Evaluating Double Integrals

In Exercises 31-40, sketch the region of integration, reverse the order
of integralion and evaluate the integral.
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39. Square region

JJz(y — 2x*)d4 where R is the
bounded by the square |x| + |y| = 1

40. Triangular region ij xy dA where R is the region bounded
by the linesy = x,y = 2x,andx + y = 2

region

Volume Beneath a Surface z = f(x, y)

41. Find the volume of the region bounded by the paraboloid
z=1x"+ y* and below by the triangle enclosed by the lines
y=x,x=0,and x + y = 2 in the xy-plane.

42. Find the volume of the solid that is bounded above by the cylinder
z=x” and below by the region enclosed by the parabola
y =2 — x” and the line y = x in the xy-plane.

43. Find the volume of the solid whose base is the region in the xy-
plane that is bounded by the parabola y = 4 — x? and the line

¥ = 3x, while the top of the solid is bounded by the plane
z2=% 14,

44. Find the volume of the solid in the first octant bounded by the
coordinate planes,
z+y=13

the cylinder x*> + y2 = 4, and the plane
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45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane x = 3, and the parabolic cylinder
z=4-y%

46. Find the volume of the solid cut from the first octant by the
surfacez = 4 — x* — y.

47. Find the volume of the wedge cut from the first octant by the
cylinder z = 12 — 3y” and the plane x + y = 2.

48. Find the volume of the solid cut from the square column
|x| + |»] = 1 by the planes z = Oand3x + z = 3.

49. Find the volume of the solid that is bounded on the front and back
by the planes x = 2 and x = 1, on the sides by the cylinders
y = =1/x, and above and below by the planes z = x + 1 and
z=0.

50. Find the volume of the solid bounded on the front and back by
the planes x = £/3, on the sides by the cylinders y = Esecx,
above by the cylinderz = 1 + 2, and below by the xy-plane.

Integrals over Unbounded Regions

Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 5154 as iterated integrals.

o r1 VAV R
51 / f o dydx 52, / f (2 + 1)dydx
J1 Jer XY —1 -1 V1-#
53. [ [ = ‘%‘_‘ dx dy
—o0 J =00 [I' + I}( '\-"' + 1}
s & oo
54, / f xe -{x+2y) d_ld}'
JO 0

Approximating Double Integrals

In Exercises 55 and 56, approximate the double integral of f(x, y) over
the region R partitioned by the given vertical lines x = a and horizon-
tal lines y = c. In each subrectangle, use (xi, yx) as indicated for your
approximation.

//l{(x,yl dA = Y, flxx, i) Ady
=

R

§5. f(x,y) = x + y over the region R bounded above by the semicir-
cle y = V1 — x2 and below by the x-axis, using the partition
x=—1,-1/2,0,1/4,1/2,1and y = 0, 1/2, | with (xi, ys) the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. f(x,y) =x + 2y over the region R inside the circle
(x = 2)* + (v — 3)* = | using the partition x = 1,3/2,2, 5/2,
Jand y = 2, 5/2, 3, 7/2, 4 with (xg, yx) the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

Theory and Examples

57. Circular sector Integrate f(x, y) = V4 - x2 over the smaller
sector cut from the disk x* + y? = 4 by the rays 6 = 7/6 and
8 = m/2.

58. Unbounded region Integrate f(x,») = 1/[(x* = x)(y — 123
over the infinite rectangle 2 = x < 00,0 =y = 2.

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid
z = x% + y?. The cylinder’s volume is

1 py 2 fl-y
Vi= // (x? + yl}dxdy + f/ (x* + yz) dx dy.
o Jo 1 Jo

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral
2
/ (tan'mrx — tan"' x) dx.
0

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

' ffm — x2 — 2%) dA?
R

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

f (x? + y* — 9) dA?
R
Give reasons for your answer,

63. Is it possible to evaluate the integral of a continuous function f(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion f(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

oo o 2 2 b h 7 2
/ / e™ Ydxdy= lim / e ™V dxdy
=00 f =00 b—00 f_p f—b
oa . 2
= 4(/ gr dlt) :
JO

66. Improper double integral Evaluate the improper integral

i3 ‘,2
f —=——dy dx.
oJo (p— 1)
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COMPUTER EXPLORATIONS Use a CAS double-integral evaluator to find the integrals in Exercises
Il . : 71-76. Then reverse the order of integration and evaluate, again with a
d Evaluating Double Integrals Numerically CAS.
an .
Use a CAS double-integral evaluator to estimate the values of the inte- L4 3 p9 )
- grals in Exercises 67-70. T / / e dx dy 72, f/ X cos (y°) dy dx
]-] - ] Liph o JU ". E’_‘;‘\;’— JO Jx
3 o lx ) 5 = Ly . 4
67. [ / xy dy dx 68. £ £ e dy dx 7. / By — Syl
has i 0.Jy

; 1 pl e
loid 69. / / tan~' xy dy dx 74 / 2 / E e dx dy
JOJO . &
LpVied e Uz 0 5
70.// 3VI-2 - Pdyd 2.4
-1.Jo 1. Ji Jor =T Y dy dx

2 18
B i |

76. / / —————dxdy
17 ;l_z + },2

5a
ed.
15.2 Area, Moments, and Centers of Mass
[n this section, we show how to use double integrals to calculate the areas of bounded regions
in the plane and to find the average value of a function of two variables. Then we study the
physical problem of finding the center of mass of a thin plate covering a region in the plane.
ne _— — .
/ \ . .
> = - Areas of Bounded Regions in the Plane
/ [1» ik : i ; ; .
Ay T - vl If we take f(x,y) = 1 in the definition of the double integral over a region R in the pre-
{ Al | : ceding section, the Riemann sums reduce to
: 3 .' } y r n | ; ’ n
e \_\ o 1 b /'/ Sn W, ;‘E‘ f(-‘-k-yk] ‘-\Aﬂ ;;[ AA]: (1)
This is simply the sum of the areas of the small rectangles in the partition of R, and

approximates what we would like to call the area of R. As the norm of a partition of R ap-
FIGURE 15.14  As the norm of a partition  proaches zero, the height and width of all rectangles in the partition approach zero, and the

of the region R approaches zero, the sum coverage of R becomes increasingly complete (Figure 15.14). We define the area of R to
of the areas A4, gives the area of R be the limit

. defined by the double integral [, dA. "
r Area = lim E A4, = //.d/{ (2)
IPI—0 £=1 :

=

DEFINITION  Area
The area of a closed, bounded plane region R is

A:gm.

i i

As with the other definitions in this chapter, the definition here applies to a greater
variety of regions than does the earlier single-variable definition of area, but it agrees with
the earlier definition on regions to which they both apply. To evaluate the integral in the
definition of area, we integrate the constant function f(x,¥) = 1 over R.
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From these values of M, M,, and M, we find

_ M, /12 q __ M. 115 )
*TMT e 2 ™ YTMT U S
The centroid is the point (1/2, 2/5). ]

Area by Double Integration

In Exercises 1-8, sketch the region bounded by the given lines and
curves. Then express the region’s area as an iterated double integral
and evaluate the integral,

1. The coordinate axes and the line x + y = 2
. Thelinesx = 0,y = 2x,and y = 4
3. The parabola x = —p? and the line y = x + 2

L]

4. The parabola x = y — y?and the line y = —x
5. Thecurve y = e* and the lines y = 0,x = 0,and x = In2
6

. Thecurves y = Inxand y = 2 Inx and the line x = e, in the first
quadrant
2

ylandx =2y — y
2 landx=2*-2

7. The parabolas x

8. The parabolas x

Identifying the Region of Integration

The integrals and sums of integrals in Exercises 9-14 give the areas of
regions in the xy-plane. Sketch each region, label each bounding curve
with its equation, and give the coordinates of the points where the
curves intersect. Then find the area of the region.

b2y 'Y px(2-x)
9. f [ dx dy 10. ] / dy dx
0 J=x
w4 fcosx 2 fy+2
11. ] / dy dx 12. f/ dx dy
sinx -1y
' Bt
IJ./] dy dx +]/ dy dx
<=2 0.J-x2

2 70 4 PV
14, /[ Mf/ dy i
JO Jr*-4 0 Jo

Average Values
IS, Find the average value of f(x, y) = sin(x + y) over
a. therectangle0 =x =7, 0sy=s7xw

b. therectangle0 = x =7, 0=y = 7/2

16. Which do you think will be larger, the average value of
flx,y) = xyoverthesquare0 = x = 1,0 = y = |, or the aver-
age value of f over the quarter circle x? + y?
quadrant? Calculate them to find out.

< | in the first

17. Find the average height of the paraboloid z = x? + y? over the
square)0 = x=2,0=y=2

18. Find the average value of f(x,y) = 1/(xy) over the square

n2sx=2n2h2=sy=2h2

Constant Density

19. Finding center of mass Find a center of mass of a thin plate of
density 6 = 3 bounded by the lines x = 0,y = x, and the
parabola y = 2 — x* in the first quadrant.

20. Finding moments of inertia and radii of gyration Find the
moments of inertia and radii of gyration about the coordinate axes
of a thin rectangular plate of constant density & bounded by the
lines x = 3 and y = 3 in the first quadrant.

21. Finding a centroid Find the centroid of the region in the first

quadrant bounded by the x-axis, the parabola y? = 2x, and the line

x+y=4

22. Finding a centroid Find the centroid of the triangular region

cut from the first quadrant by the line x + p = 3.

23. Finding a centroid Find the centroid of the semlcucular region
bounded by the x-axis and the curve y = V1 = x°,

24. Finding a centroid The area of the region in the first quadrant
bounded by the parabola y = 6x — x* and the line y=xis
125/6 square units. Find the centroid,

25. Finding a centroid Find the centroid of the region cut from the
first quadrant by the circle x* + y? = a°.

26. Finding a centroid Find the centroid of the region between the

x-axis and the arch y = sinx, 0 < x < 7.

Finding moments of inertia Find the moment of inertia about
the x-axis of a thin plate of density 6 = 1 bounded by the circle
x* + y? = 4. Then use your result to find /, and I, for the plate.

27

28. Finding a moment of inertia Find the moment of inertia with
respect to the y-axis of a thin sheet of constant density 8§ = |
bounded by the curve y = (sin’x)/x®> and the interval
m = x = 27 of the x-axis.

29. The centroid of an infinite region Find the centroid of the
infinite region in the second quadrant enclosed by the coordinate
axes and the curve y = ¢, (Use improper integrals in the mass-
moment formulas.)
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The first moment of an infinite plate Find the first moment
about the y-axis of a thin plate of density 8(x, ) = 1 covering the

s gl ok . s f, P ¥
infinite region under the curve y = € ©/2 in the first quadrant.

Variable Density

31

3.

33.

34

35

36

3%

38

39.

40.

Finding a moment of inertia and radius of gyration Find the
moment of inertia and radius of gyration about the x-axis of a thin
plate bounded by the parabola x =y — y? and the line
x +y=0ifd(x,y) = x T

Finding mass Find the mass of a thin plate occupying the
smaller region cut from the ellipse x* + 4y* = 12 by the
parabola x = 4y* if 8(x, y) = 5x.

Finding a center of mass Find the center of mass of a thin tri-
angular plate bounded by the y-axis and the lines y = x and
y=2- xif8(x,y) = 6x + 3y + 3.

Finding a center of mass and moment of inertia Find the
center of mass and moment of inertia about the x-axis of a thin
plate bounded by the curves x = yrandx = 2y — y? if the den-
sity at the point (x,y) is 8(x,y) =y + 1.

Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin rectangular plate cut from the
first quadrant by the lines x = 6and y=1if dlx,y) =x+
y + 1.

Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin plate bounded by the line
y = 1 and the parabola y = x? if the density is 8(x,y) =y + L.
Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin plate bounded by the x-axis, the
lines x = +1, and the parabola y = x?if 8(x,y) = 7y + 1.
Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the x-axis of a thin rectangular plate bounded by
the lines x = 0,x =20,y = —1, and y = 1 if 8(x,y) =1+
(x/20).

Center of mass, moments of inertia, and radii of gyration
Find the center of mass, the moment of inertia and radii of gyra-
tion about the coordinate axes, and the polar moment of inertia
and radius of gyration of a thin triangular plate bounded by the
linesy = x,y = —x,and y = 1 ifdx,y) =y + L

Center of mass, moments of inertia, and radii of gyration
Repeat Exercise 39 for 8(x, y) = I+ 1.

Theory and Examples

41.

Bacterium population If flx,y) = (10,000e”)/(1 + |x|/2)
represents the “population density” of a certain bacterium on
the xy-plane, where x and y are measured in centimeters, find
the total population of bacteria within the rectangle
—s<xy=S5and-2=ys0.

42.

43.

44.

45,

46.

47.

Regional population If flx,y) = 100 (y + 1) represents the
population density of a planar region on Earth, where x and y are
measured in miles, find the number of people in the regiop
bounded by the curves x = y”and x = 2y — yL

Appliance design When we design an appliance, one of the
concerns is how hard the appliance will be to tip over. Whep
tipped, it will right itself as long as its center of mass lies on the
correct side of the fulcrum, the point on which the appliance is
riding as it tips. Suppose that the profile of an appliance of ap-
proximately constant density is parabolic, like an old-fashioned
radio. Tt fills the region 0 = y < a(l — x%), =1 = x = 1,inthe
xy-plane (see accompanying figure). What values of @ will guar-
antee that the appliance will have to be tipped more than 45 to
fall over?

Minimizing a moment of inertia A rectangular plate of con-
stant density 8(x,y) = 1 occupies the region bounded by the
lines x = 4 and y = 2 in the first quadrant. The moment of inef-
tia I, of the rectangle about the line y = a is given by the integral

4 2
I, = / f (y — a) dy dx.
0 Jo

Find the value of a that minimizes /,.

Centroid of unbounded region Find the centroid of the infinite
region in the xy-plane bounded by the curves y = 1/V1 — %

y=-1/V1 -?,andlhe linesx = 0,x = 1.

Radius of gyration of slender rod Find the radius of gyration

of a slender tod of constant linear density 8 gm/cm and length

cm with respect to an axis

a. through the rod’s center of mass perpendicular to the rod’s
axis.

b. perpendicular to the rod’s axis at one end of the rod.

(Continuation of Exercise 34.) A thin plate of now constant def”

sity & occupies the region R in the xy-plane bounded by the curves

x =ylandx =2y — y*.
a. Constant density Find & such that the plate has the same
mass as the plate in Exercise 34.

b. Average value Compare the value of & found in part (a)
with the average value of 8(x,») = ¥ + 1 over R.




48. Average temperature in Texas According to the Texas
Almanac, Texas has 254 counties and a National Weather Service
station in each county. Assume that at time fo., each of the 254
weather stations recorded the local temperature. Find a formula that
would give a reasonable approximation to the average temperature
in Texas at time to. Your answer should involve information that you
would expect to be readily available in the Texas Almanac.

The Parallel Axis Theorem

Let Lem. be aline in the xy-plane that runs through the center of mass
of a thin plate of mass m covering a region in the plane. Let L be a line
in the plane parallel to and A units away from L .. The Parallel Axis
Theorem says that under these conditions the moments of inertia I
and Jom. of the plate about L and Lem. satisfy the equation

‘IL = !c.m. + mhz-

This equation gives a quick way to calculate one moment when
the other moment and the mass are known.

49. Proof of the Parallel Axis Theorem

a. Show that the first moment of a thin flat plate about any line
in the plane of the plate through the plate’s center of mass is
zero. (Hint: Place the center of mass at the origin with the
line along the y-axis. What does the formula x = M,/M then
tell you?)

b. Use the result in part (a) to derive the Parallel Axis Theorem.
Assume that the plane is coordinatized in a way that makes
Le i the y-axis and L the line x = h. Then expand the
integrand of the integral for /; to rewrite the integral as the
sum of integrals whose values you recognize.

50. Finding moments of inertia

a. Use the Parallel Axis Theorem and the results of Example 4
to find the moments of inertia of the plate in Example 4 about
the vertical and horizontal lines through the plate’s center of
mass. '

b. Use the results in part (a) to find the plate’s moments of
inertia about the lines x = 1 and y = 2.

Pappus’s Formula

Pappus knew that the centroid of the union of two nonoverlapping
plane regions lies on the line segment joining their individual cen-
troids. More specifically, suppose that m, and m, are the masses of
thin plates P, and P, that cover nonoverlapping regions in the xy-
plane. Let ¢, and ¢, be the vectors from the origin to the respective
centers of mass of P, and P>. Then the center of mass of the union
Py U P; of the two plates is determined by the vector
mype; + mye;

... Bk (5)

my + my

Equation (5) is known as Pappus’s formula. For more than two
nonoverlapping plates, as long as their number is finite, the formula
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generalizes to

myep + maey + oo+ MGy

c= . (6)

my + my + o+ my

This formula is especially useful for finding the centroid of a plate of
irregular shape that is made up of pieces of constant density whose
centroids we know from geometry. We find the centroid of each piece
and apply Equation (6) to find the centroid of the plate.

51, Derive Pappus’s formula (Equation (5)). (Hint: Sketch the plates
as regions in the first quadrant and label their centers of mass as
(%1, ) and (%2, 7). What are the moments of P, U P; about the
coordinate axes?)

52. Use Equation (5) and mathematical induction to show that Equa-
tion (6) holds for any positive integer n > 2.

53, Let A, B, and C be the shapes indicated in the accompanying
figure. Use Pappus’s formula to find the centroid of

a. AUB b. AUC
e. BUC d. AUBUC.

e

Ln

B s e
T
|

t.L

o
=
>

54, Locating center of mass Locate the center of mass of the car-
penter’s square, shown here.

y (in.)

—s{|e—1.5in.

» v (in.)

55, An isosceles triangle T has base 2a and altitude k. The base lies
along the diameter of a semicircular disk D of radius a so that the
two together make a shape resembling an ice cream cone. What
relation must hold between a and / to place the centroid of TU D
on the common boundary of T and D? Inside 77

56. An isosceles triangle T of altitude & has as its base one side of a
square O whose edges have length 5. (The square and triangle do
not overlap.) What relation must hold between 4 and s to place the
centroid of 77U Q on the base of the triangle? Compare your
answer with the answer to Exercise 55.
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- EXERCISES 15,3

Evaluating Polar Integrals

In Exercises 1-16, change the Cartesian integral into an equivalent
polar integral. Then evaluate the polar integral.

I pVIed 1 rVi-g
l/[ dy dx 2./]___3!{}*{1’):
-1.Jo ~1J-V1=2
1 VI 1 V12 )
ff (x* + y?) dx dy 4.// (P + P dydx
0 Jo 1L J=V1-§#
a fVa-r 2 rVa—y?
// dy dx 6// (2 + )y’ dxdy
—a J-Vat—x? 0 Jo
6 v 2 rx
.//xdxdy s/] S
0 Jo o Jo

0 0
2
5 e 5
[n /-.v’l—zi L+ V2 + ¢
o 4Vx? + y?
10. // ———_drdy
-1J-Vi=p

l+,‘4:2+y2

n2 pVin27-,? sy
11 / / eV¥NY dxdy
0 Jo
1 pVI-E i
12. // e W) gy dy
Ofgrohi L=
2 pVI=G-1P +y
13. / 2, ad&
0 Jo x* 4y
2 pr0
14. / / X7 dx dy
0 J-Vi-(p-17

1 V12
15, [ f\/__,ln[r’ + 2 + 1) drdy
—1-J= [—yz

1 pVI-22 )
16. —_—
[l/—‘v’i-—x‘(l +2 4 R

Finding Area in Polar Coordinates

17. Find the area of the region cut from the first quadrant by the curve
r = 2(2 — sin26)"2,

18. Cardioid overlapping a circle Find the area of the region that
lies inside the cardioid » = 1 + cos § and outside the circle » = 1.

19. One leaf of a rose Find the area enclosed by one leaf of the rose
r = 12 cos 36.

20. Snail shell Find the area of the region enclosed by the positive
x-axis and spiral r = 46/3,0 < 0 < 27. The region looks like a
snail shell.

21. Cardioid in the first quadrant Find the area of the region cut
from the first quadrant by the cardioid » = | + sin#.

2. Overlapping cardioids Find the area of the region common to
the interiors of the cardioids 7 = | + cosfandr = | — cos 6.

[P

Ln

-3

o

Masses and Moments

23. First moment of a plate Find the first moment about the x-axis
of a thin plate of constant density 8(x, y) = 3, bounded below by
the x-axis and above by the cardioid » = 1 — cos 8.

24. Inertial and polar moments of a disk  Find the moment of iner-
tia about the x-axis and the polar moment of inertia about the origin
of a thin disk bounded by the circle x> + y? = 42 if the disk’s den-
sity at the point (x, y) is 8(x, y) = k2 + yz], k a constant.

25. Mass of a plate Find the mass of a thin plate covering the
region outside the circle » = 3 and inside the circle r = 6 sin 8 if
the plate’s density function is (x, y)=1/r.

26. Polar moment of a cardioid overlapping cirele Find the polar
moment of inertia about the origin of a thin plate covering the
region that lies inside the cardioid » = 1 — cos 6 and outside the
circle = 1 if the plate’s density function is 8(x, y) = 1/72,

27. Centroid of a cardioid region Find the centroid of the region
enclosed by the cardioid ¥ = 1 + cos .

28. Polar moment of a cardioid region Find the polar moment of
inertia about the origin of a thin plate enclosed by the cardioid
r =1+ cos @ if the plate’s density function is 8(x, y) = 1.

Average Values

29. Average height of a hemisphere Find the average height of the
hemisphere z = Va® — x* — y? above the disk x? + y? < g2
in the xy-plane.

30. Average height of a cone Find the average height of the (single)
conez = Vx? + y* above the disk x? + y? < a’in the xy-plane.

31. Average distance from interior of disk to center Find the av-

erage distance from a point P(x, y) in the disk x2 + y2 = 42 to
the origin,

32. Average distance squared from a point in a disk to a point in
its boundary Find the average value of the square of the dis-
tance from the point P(x, y) in the disk x> + y? < | to the
boundary point A(1, 0).

Theory and Examples
33. Converting to a polar integral Integrate f(x,y) =
[In(x? + y2))/ Vi + »? over the region | = x? + V=e

34. Converting to a polar integral Integrate  f(x,y) =
[In (x* + y9)1/(x? + »?) over the region 1 < x? + 32 < o2

35. Volume of noncircular right cylinder The region that lies in-
side the cardioid r = 1 + cos 6 and outside the circle r = 1 is
the base of a solid right cylinder. The top of the cylinder lies in the
plane z = x. Find the cylinder’s volume.




1098  Chapter 15: Multiple Integrals

36. Volume of noncircular right cylinder The region enclosed by
the lemniscate > = 2 cos 26 is the base of a solid right cylinder

whose top is bounded by the sphere z = V2 — r% Find the
cylinder’s volume.
37. Converting to polar integrals

. The u&.ual way to evaluate the improper integral
I = Io e dx is first to calculate its square:

E= ([ e d_r)(/ e d'.) = / f e W) dy dy.
Jo Jo o Jo

Evaluate the last integral using polar coordinates and solve
the resulting equation for /.

b. Evaluate

X —(“
lim erf(x) = lim / 29._ dr.
0

—00 —+00
x X ) T

38. Converting to a polar integral Evaluate the integral

g G
) {|+x +I'J'

39. Existence Integrate the function f(x,y) = 1/(1 — x* — ,1'21
over the disk x> + y? = 3/4. Does the integral of f(x, y) over
2 ] 2 ’ "
the disk x* + y* = | exist? Give reasons for your answer.
40. Area formula in polar coordinates Use the double integral in
polar coordinates to derive the formula

- 1 2
A l 5! df

for the area of the fan-shaped region between the origin and polar
curve r = f(6),a =0 = B.

41. Average distance to a given point inside a disk Let P be a
point inside a circle of radius a and let & denote the distance from

15.4

%0 to the center of the circle. Let d denote the distance from an ar-
bitrary point P to Py. Find the average value of d 2 over the region
enclosed by the circle. (Hint: Simplify your work by placing the
center of the circle at the origin and Py on the x-axis.)

42. Area Suppose that the area of a region in the polar coordinate

plane is
2sinf
A= / / rdrdf.
csc#

Sketch the region and find its area.

COMPUTER EXPLORATIONS

Coordinate Conversions

In Exercises 43-46, use a CAS to change the Cartesian integrals into
an equivalent polar integral and evaluate the polar integral. Perform
the following steps in each exercise.

a. Plot the Cartesian region of integration in the xy-plane.

b. Change each boundary curve of the Cartesian region in part
(a) to its polar representation by solving its Cartesian
equation for » and 6.

¢. Using the results in part (b), plot the polar region of
integration in the rf-plane.

d. Change the integrand from Cartesian to polar coordinates.
Determine the limits of integration from your plot in part (c)
and evaluate the polar integral using the CAS integration
utility.

S y 1 px2
43. // T b 44, // 2’_‘ Sdvds
45, // )duh 46. // Vax + '.dxdl
/3 \ x* 4y

Triple Integrals in Rectangular Coordinates

Just as double integrals allow us to deal with more general situations than could be handled
by single integrals, triple integrals enable us to solve still more general problems. We use
triple integrals to calculate the volumes of three-dimensional shapes, the masses and
moments of solids of varying density, and the average value of a function over a three-
dimensional region. Triple integrals also arise in the study of vector fields and fluid flow
in three dimensions, as we will see in Chapter 16.

Triple Integrals

If F(x, y, z) is a function defined on a closed bounded region D in space, such as the region
occupied by a solid ball or a lump of clay, then the integral of  over D may be defined in
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Lad
h

Properties of Triple Integrals
If F = F(x,y,z) and G = G(x, y, z) are continuous, then

1. Constant Mufrfpfe:MdeV = kf[[FdV (any number )
D D
2. Sum andD.ﬁrence:///(Fi G)dVv = [//FdVi ///GdV
D' D' D

Domination:

(a)/]/FdVEO ifF=0onD
D
[b)/ﬂFdVE[[/GdV if F= GonD
b
4. Additivity: /[/FdV— ///EdV+MFdV

if D is the union of two nonoverlappmg regions D and D,.

Evaluating Triple Integrals in Different
Iterations

. Volume enclosed by paraboloids

Evaluate the integral in Example 2 taking F(x, y,z) = | to find

the volume of the tetrahedron.

. Volume of rectangular solid Write six different iterated triple

integrals for the volume of the rectangular solid in the first octant
bounded by the coordinate planes and the planes x = 1,y = 2,
and z = 3. Evaluate one of the integrals.

. Volume of tetrahedron Write six different iterated triple inte-

grals for the volume of the tetrahedron cut from the first octant by
the plane 6x + 3y + 2z = 6. Evaluate one of the integrals.

- Volume of solid Write six different iterated triple integrals for

thn. voiume of the region in the first octant enclosed by the cylinder
2 + z? = 4.and the plane y = 3. Evaluate one of the integrals.

Let D be the region bounded
by the paraboloids z = 8 — x? — y?and z = x? + ¥, Write six
different triple iterated integrals for the volume of D. Evaluate
one of the integrals.

- Volume inside paraboloid beneath a plane Let D be the re-

gion bounded by the paraboloid z = x? + y? and the plane
z = 2y. Write triple iterated integrals in the order dz dx dy and
dz dy dx that give the volume of D. Do not evaluate either integral.

Evaluating Triple Iterated Integrals

Evaluate the integrals in Exercises 7-20.

R S R
» /// (* + y? + 2%) dzdy d
o Jo
V2 8—x7—y? e fe fe 1
/ / / dz dx dy 9. / / / vz dx dy dz
v 437 J1J1L S T
3-3x pfI3-3x-y I fmpw
10. f/ / dz dy dx 11. /// ysinzdxdyd:z
0 Jo 0 0 Jo Jo
1 £1of1
12. / / / (x+y+z)dvdxd:
J-1J-1J-1
3 VO VO 2 PVa- ¥ 2x+y
13. [/ / dzdydx 14, // / dz dx dy
Jo Jo Jo Va2
| f2-x f2-x—y I-x
s [ o [
0 Jo 0 0
17. ] // cos(u + v+ w)dudvdw (uvw-space)
0 JO 1]
18. / -/ ] Inrinsinrdidrds (rst-space)
1 i
w4 flnsecv p2r
19. / f / e“drdtdv (tux-space)
J0 (1] of X

dz dy dx

rd~ dy dx




702 pVA-4? q
20. / / / ——dpdqdr (pgr-space)
Jo Jo Jo r+1

Volumes Using Triple Integrals
21. Here is the region of integration of the integral

L ol B '
f / [ dz dy dx .
-1.Jx* Jo

L Top: y+z=1
Side: LU/

NS > (-1,1,0)
h"""‘---\_.

x (1,1,0)
Rewrite the integral as an equivalent iterated integral in the order
a. dydzdx
c. dxdydz
e. dzdxdy.

22. Here is the region of integration of the integral

1oy
/ / [ dz dy dx.
Jo J-1Jo

b. dy dx dz
d. dx dz dy

Rewrite the integral as an equivalent iterated integral in the order
a. dydzdx b. dy dx dz

c. dedyd:z d. dx dz dy

e. dzdxdy.

Find the volumes of the regions in Exercises 2336,

23. The region between the cylinder z = y? and the xy-plane that is
bounded by the planes x = 0,x = 1,y = =1,y = |

1107

15.4 Trple Integrals in Rectanqular Coordinates

24. The region in the first octant bounded by the coordinate planes
andtheplanesx +z= 1,y + 2z = 2

25. The region in the first octant bounded by the coordinate planes,
the plane y + z = 2, and the cylinder x = 4 — »?

26. The wedge cut from the cylinder x* + y* = | by the planes
z=—yandz =0

27. The tetrahedron in the first octant bounded by the coordinate
planes and the plane passing through (1, 0, 0), (0, 2, 0), and
(0, 0, 3).

| =

i
(1,0,0)/,7
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28. The region in the first octant bounded by the coordinate planes,
the plane y=1—x and the surface 2z = cos(mx/2),
=x=1

29. The region common to the interiors of the cylinders x* + y? = 1
and x? + z? = 1, one-eighth of which is shown in the accompa-

nying figure.

e il

.r2+,\’1= 1

X

30. The region in the first octant bounded by the coordinate planes
and the surface z = 4 — x? — y

31. The region in the first octant bounded by the coordinate planes,
the plane x + y = 4, and the cylinder y* + 4z% = 16

32. The region cut from the cylinder x? + y? = 4 by the plane z = ¢
and the planex + z = 3

33, The region between the planes x + y + 2z = 2 and 2x + 2y +
= 4 in the first octant

34. The finite region bounded by the planesz = x,x + z = 8,z = ,
y=8,andz = 0.

35. The region cut from the solid elliptical cylinder x> + 4y® < 4 by
the xy-plane and the plane z = x + 2

36. The region bounded in back by the plane x = 0, on the front and
sides by the parabolic cylinder x = 1 — 2, on the top by the pa-
raboloid z = x* + y?, and on the bottom by the xy-plane

Average Values

In Exercises 3740, find the average value of F(x, y, z) over the given

region.

37. Flx,y,z) = x2 + 9 over the cube in the first octant bounded by
the coordinate planes and the planes x = 2,y = 2,andz = 2

38. F(x,y,z) = x + y — z over the rectangular solid in the first
octant bounded by the coordinate planes and the planes
x=1,y=l,andz=2

39, Flx,y,z) = x> + y? + z? over the cube in the first octant
bounded by the coordinate planes and the planes x = 1,y = L,
andz = |

40. F(x,y,z) = xyz over the cube in the first octant bounded by the
coordinate planes and the planesx = 2,y = 2,and z = 2

Changing the Order of Integration

Evaluate the integrals in Exercises 41-44 by changing the order of in-
tegration in an appropriate way.

24 2
a1. f// cmu)dxafvdz
2y
42././/1]2xze:":dvdxdz
In3 re2* smm’
43. ——————dxdydz
¥z Jo
4-x
44. /] /ﬂrﬁ'dtd.dr
0




Theory and Examples

45. Finding upper limit of iterated integral

/ / / dz dy dx

Sar e e ar b AR -k

COMPUTER EXPLORATIONS

Solve for a: Numerical Evaluations
In Exercises 49-52, use a CAS integration utility to evaluate the triple
15 integral of the given function over the specified solid region.

49. Flx,»,z) = x>»’z over the solid cylinder bounded by

46. Ellipsoid For what value of ¢ is the volume of the ellipsoid x* + y? = | and the planes z = Qand z = |

4 (2P + (z/e) = 1 equal to 87?

50. Flx,y,z) = |xyz|over the solid bounded below by the paraboloid

47. Minimizing a triple integral What domain D in space mini- z = x? + p? and above by the plane z = |
mizes the value of the integral 5 _
2 5L Flx;y,2) = — : 5375 over the solid bounded below by
i T (x? + 2 + 222
X+ ay2 + 22 — 4) dv? =
./f/{JH b ‘ the cone z = Vx~ + y~ and above by the plane z = |
D

Give reasons for your answer.

52. F(x,y,2) = x* + y* + z* over the solid sphere x* + y? +
5

48. Maximizing a triple integral What domain D in space maxi- =1
mizes the value of the integral
///H —x2—y? = z)dv?
D
Give reasons for your answer.
15.5 Masses and Moments in Three Dimensions

FIGURE 15.32 To define an object’s
mass and moment of inertia about a line,
we first imagine it to be partitioned into a
finite number of mass elements Amy.

This section shows how to calculate the masses and moments of three-dimensional objects
in Cartesian coordinates. The formulas are similar to those for two-dimensional objects.
For calculations in spherical and cylindrical coordinates, see Section 15.6.

Masses and Moments

I£8(x, y, z) is the density of an object occupying a region D in space (mass per unit volume),
the integral of 8 over D gives the mass of the object. To see why, imagine partitioning the
object into n mass elements like the one in Figure 15.32. The object’s mass is the limit

"

M= lim > Amg = lim 25‘1’;1_"&.3&)3’/& :/f o(x, y, z)dV.
n—00 =
b

Ul =

We now derive a formula for the moment of inertia. If r(x, ¥, z) is the distance from the
point (x, y, z) in D to a line L, then the moment of inertia of the mass Amy =
0(xy, vi, z)AV, about the line L (shown in Figure 15.32) is approximately A/, =
2 (xs, Vi z) Amy;. The moment of inertia about L of the entire object is

I; = lim E Al = lim E ri(x,, Vi Zk) 8(xk, i, zi) AV = //] r28dv.
| v

n—0o f n—00 f—4 .
D

"

+ z* (Figure 15.33) and

I = ///{yf + z3) 84V,

D

If L is the x-axis, then r* = y
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EXERCISES 15.5

Constant Density
The solids in Exercises 1-12 all have constant density 6 = 1.

1. (Example 1 Revisited.) Evaluate the integral for /, in Table 15.3
directly to show that the shortcut in Example 2 gives the same an-
swer. Use the results in Example 2 to find the radius of gyration
of the rectangular solid about each coordinate axis.

2. Moments of inertia The coordinate axes in the figure run
through the centroid of a solid wedge paralld to the labeled
edges. Find /., /,,and I.ifa = b = 6andc =

< Centroid
at (0, 0, 0)
=Y

3. Moments of inertia Find the moments of inertia of the rectan-
gular solid shown here with respect to its edges by calculating
I, I,,and I..

;
4. a. Centroid and moments of inertia Find the centroid and the

moments of inertia I, /,, and /. of the tetrahedron whose ver-
tices are the points (0, 0, 0}, (1, 0, 0), (0, 1, 0), and (0, 0, 1).

b. Radius of gyration Find the radius of gyration of the
tetrahedron about the x-axis. Compare it with the distance
from the centroid to the x-axis.

5, Center of mass and moments of inertia A solid “trough™ of
constant density is bounded below by the surface z = 4y?, above
by the plane z = 4, and on the ends by the planes x = | and
x = —1. Find the center of mass and the moments of inertia with
respect to the three axes.

6. Center of mass A solid of constant density is bounded below
by the plane z = 0, on the sides by the elliptical cylinder
v? + 4y? = 4, and above by the plane z = 2 — x (see the ac-
companying figure).

10.

11.

. a. Center of mass

. Moments and radii of gyration

a. Find x and y.

b. Evaluate the integral

(1/2)V4~x
M, = [ [ / z dz dy dx
(/21 4 v/

using integral tables to carry out the final integration with
respect to x. Then divide M,, by M to verify that z = 5/4.

1=2=x
.
N 2 /
] . x=-2
s 1
| e
S— I # I.'I
] 4
Tl
/ Y >/I-H\H‘H’\
I R
, >~ N
S x* + 4y~ =

Find the center of mass of a solid of con-
stant density bounded below by the paraboloid z = x* +
and above by the plane z = 4.

b. Find the plane z = ¢ that divides the solid into two parts of
equal volume. This plane does not pass through the center of
mass.

A solid cube, 2 units on a side,

is bounded by the planes x = +1,z = +1,y = 3, and y = 3.

Find the center of mass and the moments of inertia and radii of

gyration about the coordinate axes.

. Moment of inertia and radius of gyration about a line A

wedge like the one in Exercise 2 has @ = 4,b = 6, and ¢ = 3.
Make a quick sketch to check for yourself that the square of the
distance from a typical point (x, y, z) of the wedge to the line
:z2=0,y = 61isr> = (y — 6)* + z°. Then calculate the mo-
ment of inertia and radius of gyration of the wedge about L.

Moment of inertia and radius of gyration about a line A
wedge like the one in Exercise 2 has a = 4,b = 6, and ¢ =
Make a quick sketch to check for yourself that the square of the
distance from a typical point (x, y, z) of the wedge to the line
L:x =4,y = 0is r’ = (x — 4)* + y2. Then calculate the mo-
ment of inertia and radius of gyration of the wedge about L.

Moment of inertia and radius of gyration about a line A
solid like the one in Exercise 3 has a = 4,b = 2, and ¢ = 1.
Make a quick sketch to check for yourself that the square of the
distance between a typical point (x, y, z) of the solid and the line
Liy=2z=0isr’ = (y — 2)* + z% Then find the moment of
inertia and radius of gyration of the solid about L.




12. Moment of inertia and radius of gyration about a line A
solid like the one in Exercise 3 has a = 4,b = 2, and ¢ = 1.
Make a quick sketch to check for yourself that the square of the
distance between a typical point (x, y, z) of the solid and the line
Lix=4,y=0is r’ = (x — 4> + y°. Then find the moment
of inertia and radius of gyration of the solid about L.

Variable Density

In Exercises 13 and 14, find
a. the mass of the solid.
b. the center of mass.

13. A solid region in the first octant is bounded by the coordinate
planes and the plane x + y + z = 2. The density of the solid is
dx, v, z) = 2x.

14. A solid in the first octant is bounded by the planes y = 0 and
z=0 and by the surfaces z = 4 — x? and x = y* (see the
accompanying figure). Its density function is 8(x, y, z) = kxy. ka
constant.

In Exercises 15 and 16, find
a. the mass of the solid.
b. the center of mass.
¢. the moments of inertia about the coordinate axes.
d. the radii of gyration about the coordinate axes.

I5. A solid cube in the first octant is bounded by the coordinate
planes and by the planes x = |,y = 1, and z = 1. The density of
the cube is 8(x, v, z) = x +y + z + 1.

16. A wedge like the one in Exercise 2 has dimensions @ = 2, b = 6,
and ¢ = 3. The density is 8(x,y,z) = x + . Notice that if the
density is constant, the center of mass will be (0, 0, 0).

17. Mass Find the mass of the solid bounded by the planes
x+z=1lLx—-z=-1,y=0 and the surface y = Vz. The
density of the solid is 6(x, y,z) = 2y + 5,

15.5 Masses and Moments in Three Dimensions 1113

18. Mass Find the mass of the solid region bounded by the para-
bolic surfaces z = 16 — 2x* — 2y? and z = 2x? + 22 if the

density of the solid is 8(x, y, z) = Vx? + 2.

Work

In Exercises 19 and 20, calculate the following.

a. The amount of work done by (constant) gravity g in moving the
liquid filling in the container to the xy-plane. (Hint: Partition
the liquid into small volume elements A ¥; and find the work
done (approximately) by gravity on each element. Summation
and passage to the limit gives a triple integral to evaluate.)

b. The work done by gravity in moving the center of mass down
to the xy-plane.

19. The container is a cubical box in the first octant bounded by the
coordinate planes and the planes x = I,y = 1, and z = 1. The
density of the liquid filling the box is 8(x, y,z) = x + y + 2 + 1
(see Exercise 15).

20. The container is in the shape of the region bounded by
y=10,z=0,z=4-x*and x =y The density of the liquid
filling the region is &(x,y,z) = kxy, k a constant (see
Exercise 14).

The Parallel Axis Theorem

The Parallel Axis Theorem (Exercises 15.2) holds in three dimensions
as well as in two. Let L., be a line through the center of mass of a
body of mass m and let L be a parallel line 4 units away from L. ,. The
Parallel Axis Theorem says that the moments of inertia /., and /; of

the body about L. ,, and L satisfy the equation
I = I + mh® (1)

As in the two-dimensional case, the theorem gives a quick way to
calculate one moment when the other moment and the mass are
known.

21. Proof of the Parallel Axis Theorem

a. Show that the first moment of a body in space about any
plane through the body’s center of mass is zero. (Hint: Place
the body’s center of mass at the origin and let the plane be
the yz-plane. What does the formula ¥ = M, /M then tell
you?)
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b. To prove the Parallel Axis Theorem, place the body with its
center of mass at the origin, with the line L., along the z-axis
and the line L perpendicular to the xy-plane at the point
(h. 0,0). Let D be the region of space occupied by the body.
Then, in the notation of the figure,

I = j] [v — hil* dm.
D’

Expand the integrand in this integral and complete the proof.

22. The moment of inertia about a diameter of a solid sphere of constant
density and radius a is (2/5)ma’, where m is the mass of the sphere.
Find the moment of inertia about a line tangent to the sphere.

23. The moment of inertia of the solid in Exercise 3 about the z-axis
is I. = abe(a® + b?)/3.

a. Use Equation (1) to find the moment of inertia and radius of
gyration of the solid about the line parallel to the z-axis
through the solid’s center of mass.

b. Use Equation (1) and the result in part (a) to find the moment
of inertia and radius of gyration of the solid about the line
x=0,y=2b.

24. If a = b = 6 and ¢ = 4, the moment of inertia of the solid
wedge in Exercise 2 about the x-axis is [, = 208. Find the mo-
ment of inertia of the wedge about the line y = 4,z = —4/3 (the
edge of the wedge’s narrow end).

Pappus’s Formula

Pappus’s formula (Exercises 15.2) holds in three dimensions as well as
in two. Suppose that bodies B and B> of mass m; and m;, respec-
tively, occupy nonoverlapping regions in space and that ¢; and ¢; are
the vectors from the origin to the bodies’ respective centers of mass.
Then the center of mass of the union B, U B, of the two bodies is
determined by the vector

mc + ma
m + m

As before, this formula is called Pappus’s formula. As in the two-
dimensional case, the formula generalizes to

mie) + M3y + T MuCy

my+my+-tomy,

for n bodies.

15.6

Triple Integrals in Cylindrical and Spherical Coordinates

25, Derive Pappus’s formula. (Hint: Sketch B, and B as nonoverlap-
ping regions in the first octant and label their centers of mass
(x1, 71, 7) and (X5, y2, 22). Express the moments of By U B; about
the coordinate planes in terms of the masses m; and m; and the
coordinates of these centers.)

26. The accompanying figure shows a solid made from three rectan-
gular solids of constant density 6 = 1. Use Pappus’s formula 1
find the center of mass of

a AUB
c. BUC

b AUC
d AUBUC.

L [(} 12
2.0, “y—m——/i v

/f"'nm /[Ih 2

x S

]

(5]

il
=3.6,-2)

27. a. Suppose that a solid right circular cone C of base radius a and
altitude A is constructed on the circular base of a solid hemi-
sphere S of radius a so that the union of the two solids resem-
bles an ice cream cone. The centroid of a solid cone lies one-
fourth of the way from the base toward the vertex. The
centroid of a solid hemisphere lies three-eighths of the way
from the base to the top. What relation must hold between /i
and a to place the centroid of CU § in the common base of the
two solids?

b. If you have not already done so, answer the analogous
question about a triangle and a semicircle (Section 15.2,
Exercise 55). The answers are not the same.

28. A solid pyramid P with height h and four congruent sides is built
with its base as one face of a solid cube C whose edges have
length s. The centroid of a solid pyramid lies one-fourth of the
way from the base toward the vertex. What relation must hold
between h and s to place the centroid of PU C in the base of the
pyramid? Compare your answer with the answer to Exercise 27
Also compare it with the answer to Exercise 56 in Section 15.2.

When a calculation in physics, engineering, or geometry involves a cylinder, cone, O
sphere, we can often simplify our work by using cylindrical or spherical coordinat€s
which are introduced in this section. The procedure for transforming to these coordinates

and evaluating the resulting triple integrals is similar to the transformation to polar coordi-
matac 10 the nlane ctiudiad in Sertinn 18§ 31
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In the next section we offer a more general procedure for determining dV in cylindri.
cal and spherical coordinates. The results, of course, will be the same.

EXERCISES 15.6

Evaluating Integrals in Cylindrical Coordinates

Evaluate the cylindrical coordinate integrals in Exercises 1-6.

m ol PV
1. / / / dz rdrdf
J10 JO S
2w p3 VIR
; / / / dz rdr df
Jo Jo S
2m fO2m 34247
A / / [ dz rdrdf
L ] JO )
w pifm pINVE—r?
// / __zdzrdrdd
o Jo J-Va-r?

2 flPIYV2-F
5. /. / / 3dzrdrdd
JUJ0 S
2 1 12
; / / [ (r*sin’0 + z2) dz rdrdo
JOoJO J=1/2

Changing Order of Integration in

Cylindrical Coordinates

The integrals we have seen so far suggest that there are preferred or-
ders of integration for cylindrical coordinates, but other orders usually
work well and are occasionally easier to evaluate. Evaluate the inte-
grals in Exercises 7-10.

2o f3 23
7. / / [ r dr dz do
Jo Jo Jo
| f2m pl4cosh
8. / [ / 4r dr df dz
J=LJ0 S0
ol | \.'-: 27
9. / / / (r*cos’@ + z%)rdf dr dz
Jo Jo Jo
2 PVa=r pln
10. // / (rsin® + 1) rdf dz dr
JO JSr=2 JO

11. Let D be the region bounded below by the plane z = 0, above
by the sphere x? + y? + 22 = 4, and on the sides by the cylin-
der x> + y* = 1. Set up the triple integrals in cylindrical coor-
dinates that give the volume of D using the following orders of
integration.

a. dzdrdb
b. drdzdo

c. dfdzdr

[

(]

&

=2l

12. Let D be the region bounded below by the cone z = Va4 _1.-_3
and above by the paraboloid z = 2 — x* — y?. Set up the triple
integrals in cylindrical coordinates that give the volume of D
using the following orders of integration.

A, dzdrdb
b. drdz db
c. db dz dr

13. Give the limits of integration for evaluating the integral

/] f(r,8,z)dzrdrdo

as an iterated integral over the region that is bounded below by the
plane z = 0, on the side by the cylinder r = cos @, and on top by
the paraboloid z = 377 .

14. Convert the integral

1 VIS px
// / (x> + y*) dzdx dy
~1Jo 0

to an equivalent integral in cylindrical coordinates and evaluate
the result.

Finding Iterated Integrals in Cylindrical
Coordinates

In Exercises 15-20, set up the iterated integral for evaluating
[, f(r. 6.2) dz r dr db over the given region D.

15. D is the right circular cylinder whose base is the circle » = 2 sin
in the xy-plane and whose top lies in the plane z = 4 — y.

z=4-—y

L _*—n

X r=2sin#

16. D is the right circular cylinder whose base is the circle
r = 3 cos 6 and whose top lies in the plane z = 5 — x.




oy L L

N\
r=3cos#f

17. D is the solid right cylinder whose base is the region in the xy-
plane that lies inside the cardioid » = 1 + cos @ and outside the
circle » = 1 and whose top lies in the plane z = 4.

./[L:‘L

I
|
?(- —=F
[
/4 \\.‘
>“~_—’/ Sr=1
\

™,

X .
r=1+cosé

I8. D is the solid right cylinder whose base is the region between the
circles » = cos @ and r = 2 cos @ and whose top lies in the plane
T=3=

1 \
| r=cos#f

r=2cosf
19. D is the prism whose base is the triangle in the xy-plane bounded

by the x-axis and the lines y = x and x = 1 and whose top lies in
the planez = 2 — y,
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20. D is the prism whose base is the triangle in the xy-plane bounded
by the y-axis and the lines y = x and ¥ = I and whose top lies in
the planez = 2 — x.

a2

\, /

x

Evaluating Integrals in Spherical Coordinates

Evaluate the spherical coordinate integrals in Exercises 21-26.

T fw flsing
21. /f/ p*sin ¢ dp de db
JO SO Jo
2r /4 2
22, / / [ (pcos ) p*sin ¢ dp dep do
0 0 JO
2w pl-cos )2
23, / / / prsind dp dob do
JUEJO S0
“Imf2 ro ol
24, / / / 5p° sin® ¢ dp dop d
0 0 Jo
2z fw/3 pr2
25, / / f 3p?sin ¢ dp dep do
0 0 sec b

2w prw/d psecd
26. / / / (pcos ) p’sin ¢ dp dip db
JO 0 0

Changing Order of Integration
in Spherical Coordinates

The previous integrals suggest there are preferred orders of integra-
tion for spherical coordinates, but other orders are possible and occa-
sionally easier to evaluate. Evaluate the integrals in Exercises 27-30.

2 0 wf2
27. / / / p’ sin 26 dp d dp
0 J—7 Ju/4
w3 flescd fOm
28. / / f p’sin ¢ d6 dp dp
w/h Jescd 0
| po ro/d
29. / / / 12psin’ ¢ d db dp
JO JO Jo
T/ rwi2 2
30. / / / 5p*sin’ ¢ dp d6 dp
w6 J-mi2 Jesc g

31. Let D be the region in Exercise 11. Set up the triple integrals in
spherical coordinates that give the volume of D using the follow-
ing orders of integration.

a. dpdd do b. d¢ dp db
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32. Let D be the region bounded below by the cone z = Vx? + y?
and above by the plane z = 1. Set up the triple integrals in spher-
ical coordinates that give the volume of D using the following
orders of integration.

a. dpdd db b. d¢ dp do
Finding Iterated Integrals in Spherical
Coordinates

In Exercises 33-38, (a) find the spherical coordinate limits for the in-
tegral that calculates the volume of the given solid and (b) then evalu-
ate the integral.

33. The solid between the sphere p = cos¢ and the hemisphere
p=2z=0

34. The solid bounded below by the hemisphere p = 1,z = 0, and
above by the cardioid of revolution p = | + cos ¢

p=1+cosd

X

35. The solid enclosed by the cardioid of revolutionp = 1 — cos ¢
36. The upper portion cut from the solid in Exercise 35 by the xy-
plane

37. The solid bounded below by the sphere p = 2 cos ¢ and above by
the cone z = Vx?* + y*

38. The solid bounded below by the xy-plane, on the sides by the
sphere p = 2, and above by the cone ¢ = /3

Rectangular, Cylindrical, and Spherical

Coordinates

39. Set up triple integrals for the volume of the sphere p = 2 in
(a) spherical, (b) cylindrical, and (c) rectangular coordinates.

40. Let D be the region in the first octant that is bounded below by
the cone ¢ = /4 and above by the sphere p = 3. Express the
volume of D as an iterated triple integral in (a) cylindrical and
(b) spherical coordinates. Then (c) find V.

41. Let D be the smaller cap cut from a solid ball of radius 2 units by
a plane 1 unit from the center of the sphere. Express the volume
of D as an iterated triple integral in (a) spherical, (b) cylindrical,
and (c) rectangular coordinates. Then (d) find the volume by eval-
uating one of the three triple integrals.

42

Express the moment of inertia I of the solid hemisphere

x? +y? + 2% = 1,z = 0, as an iterated integral in (a) cylindri-
cal and (b) spherical coordinates. Then () find /..

Volumes
Find the volumes of the solids in Exercises 43—48.
43. 44.

r=3cosh

A r=-3cost




47.

49.

wn
°

60,

61,

62,

48.

J."'II / i
r

"= cos f

Sphere and cones Find the volume of the portion of the solid
sphere p < a4 that lies between the cones ¢ =m/3 and
¢ = 27/3.

Sphere and half-planes  Find the volume of the region cut from
the solid sphere p = a by the half-planes 6 = (0 and 6 = /6 in
the first octant.

. Sphere and plane Find the volume of the smaller region cut

from the solid sphere p < 2 by the plane z = 1,
Cone and planes _Find the volume of the solid enclosed by the

conez = Vx? + »? between the planes z = l and z = 2.

- Cylinder and paraboloid Find the volume of the region

bounded below by the plane z = 0, laterally by the cylinder
X+ y? = 1, and above by the paraboloid z = x? + 2,

Cylinder and paraboloids Find the volume of the region
bounded below by the paraboloid z = x? + ¥, laterally by the

cylinder x? + y> =1, and above by the paraboloid z =
x>+ y? + 1.

- Cylinder and cones Find the volume of the solid cut from the

thick-walled cylinder 1 < x? +y¥=<2 by the cones z =
+Vx2 + 2
Sphere and cylinder Find the volume of the region that lies in-
side the sphere x> + 32 + 22 = 2 and outside the cylinder
4=,

. Cylinder and planes Find the volume of the region enclosed by

the cylinder x* + y? = 4 and the planesz = Oand y + z = 4.

- Cylinder and planes Find the volume of the region enclosed by

the cylinder »* + )2 = and the z=0 and

x+tyter=iy§
Region trapped by paraboloids  Find the volume of the region

bounded above by the paraboloid z = 5 — x — y? and below by
the paraboloid z = 4x? + 4,2

planes

Paraboloid and cylinder Find the volume of the region
bounded above by the paraboloid z = 9 — 2 — v2, below by the
xy-plane, and lying outside the cylinder x* + yr=k

Cylinder and sphere Find the volume of the region cut from
the solid cylinder x* + y? < 1 by the sphere x> + v+ =4
Sphere and paraboloid  Find the volume of the region bounded
above by the sphere x* + y? + z? = 2 and below by the parabo-
loidz = x* + y2
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Average Values

63.

64.

65.

66.

Find the average value of the function f(r, 8,z) = r over the re-

gion bounded by the cylinder » = | between the planes z = —|

andz = |,

Find the average value of the function f(r, 8, z) = r over the solid
> 3 . .

ball bounded by the sphere r* + z* = 1. (This is the sphere

x4+ yz Fz2=1)

Find the average value of the function fp.d,8) = p over the

solid ball p = 1.

Find the average value of the function flp, &, 8) = pcos o over

the solid upperballp < 1,0 = ¢ =< 7/2.

Masses, Moments, and Centroids

67.

68.

69.
70.

71.

72

T3

74.

75.

76

Tl

78.

Center of mass A solid of constant density is bounded below
by the plane z = 0, above by the cone z = r, r = 0, and on the
sides by the cylinder » = 1. Find the center of mass.

Centroid Find the centroid of the region in the first octant that
is bounded above by the cone z = Vx? + 2, below by the plane
z =10, and on the sides by the cylinder x? + ¥? =4 and the
planes x = Oand y = 0.

Centroid  Find the centroid of the solid in Exercise 38.
Centroid Find the centroid of the solid bounded above by the
sphere p = a and below by the cone ¢ = w/4.

Centroid Find the centroid of the region that is bounded above
by the surface z = \V/r, on the sides by the cylinder r = 4, and
below by the xy-plane.

Centroid Find the centroid of the region cut from the solid ball
r*+z =<1 by the half-planes 6 = -m/3,r =0, and
0=m/3,r=0.

Inertia and radius of gyration
radius of gyration about the z-axis of a thick-walled right circular
cylinder bounded on the inside by the cylinder r = 1. on the out-
side by the cylinder » = 2, and on the top and bottom by the
planesz = 4and z = (. (Take 6 = 1)

Find the moment of inertia and

Moments of inertia of solid circular cylinder Find the mo-
ment of inertia of a solid circular cylinder of radius 1 and
height 2 (a) about the axis of the cylinder and (b) about a line
through the centroid perpendicular to the axis of the cylinder,
(Take 6 = 1.)

Moment of inertia of solid cone Find the moment of inertia of
a right circular cone of base radius 1 and height | about an axis
through the vertex parallel to the base. (Take 8 = 1.)

Moment of inertia of solid sphere Find the moment of inertia
of a solid sphere of radius a about a diameter. (Take § = ]

Moment of inertia of solid cone Find the moment of inertia of
a right circular cone of base radius g and height /# about its axis.
(Hint: Place the cone with its vertex at the origin and its axis
along the z-axis.)

Variable density A solid is bounded on the top by the parabo-
loid z = »2, on the bottom by the plane z = 0, and on the sides by
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80

81

82

the cylinder » = 1. Find the center of mass and the moment of
inertia and radius of gyration about the z-axis if the density is

& o(r.0,z)=1:z

b. &(r,0,z) = r.

. Variable density A solid is bounded below by the cone
z = Vx* + y? and above by the plane z = 1. Find the center of
mass and the moment of inertia and radius of gyration about the
z-axis if the density is
a, 6(r,6,z) =z
b. 8(r,8,z) = 2%

. Variable density A solid ball is bounded by the sphere p = a.
Find the moment of inertia and radius of gyration about the z-axis
if the density is
a. 8(p, ¢, 0) = p*

b. 8(p, ¢, 8) = r = psindg.

. Centroid of solid semiellipsoid Show that the centroid of the
solid semiellipsoid of revolution (r*/a®) + (z*/h%) = 1,z = 0,
lies on the z-axis three-eighths of the way from the base to the top.
The special case i = a gives a solid hemisphere. Thus, the cen-
troid of a solid hemisphere lies on the axis of symmetry three-
eighths of the way from the base to the top.

. Centroid of solid cone Show that the centroid of a solid right
circular cone is one-fourth of the way from the base to the vertex.
(In general, the centroid of a solid cone or pyramid is one-fourth
of the way from the centroid of the base to the vertex.)

. Variable density A solid right circular cylinder is bounded by
the cylinder r = a and the planes z = O and z = h, h > 0. Find
the center of mass and the moment of inertia and radius of gyra-
tion about the z-axis if the density is 8(r, 0,z) = z + 1.

15.7

84. Mass of planet’s atmosphere A spherical planet of radius &
has an atmosphere whose density is u = pge ", where 4 is the
altitude above the surface of the planet, uq is the density at seq
level, and ¢ 1s a positive constant. Find the mass of the planet’s
atmosphere.

85. Density of center of a planet A planet is in the shape of a
sphere of radius R and total mass M with spherically symmetric
density distribution that increases linearly as one approaches its
center. What is the density at the center of this planet if the den-
sity at its edge (surface) is taken to be zero?

Theory and Examples
86. Vertical circular cylinders in spherical coordinates Find an
equation of the form p = f(¢) for the cylinder x* + y? = 42,
87. Vertical planes in cylindrical coordinates
a. Show that planes perpendicular to the x-axis have equations
of the form r = a sec 8 in cylindrical coordinates.
b. Show that planes perpendicular to the y-axis have equations
of the form r = bcsc 6.
88. (Continuation of Exercise 87.) Find an equation of the form
r = f(6) in cylindrical coordinates for the plane ax + by = ¢,
c# 0.
Symmetry What symmetry will you find in a surface that has
an equation of the form r = f(z) in cylindrical coordinates? Give
reasons for your answer.

89

90

Symmetry What symmetry will you find in a surface that has
an equation of the form p = f(¢) in spherical coordinates? Give
reasons for your answer.

Substitutions in Multiple Integrals

This section shows how to evaluate multiple integrals by substitution. As in single
integration, the goal of substitution is to replace complicated integrals by ones that are
easier to evaluate. Substitutions accomplish this by simplifying the integrand, the limits
of integration, or both.

Substitutions in Double Integrals

The polar coordinate substitution of Section 15.3 is a special case of a more general sub-
stitution method for double integrals, a method that pictures changes in variables as trans-
formations of regions.

Suppose that a region G in the wv-plane is transformed one-to-one into the region & in

the xy-plane by equations of the form
x = glu, v), v = hlu, v),

as suggested in Figure 15.47. We call R the image of G under the transformation, and &
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