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xyz-equations for Corresponding nvw-equations Simplified

the boundary of D for the boundary of G uvw-equations
x=y/2 utv=2u2=uv u=10
x=(y/2) +1 utv=_2v2)+1=v+1 u=1
y=0 2v=20 v=10
y=4 2v=4 v=2
z=10 3Jw=20 w=10
z=3 Jw=3 w=1

The Jacobian of the transformation, again from Equations (9), is

dx dx ox
du duv  dw

z X P L 1 B
dy dy dy| B
Ju,v,w) = % 30 Il = 0 2 0] =6
0 0 3

az oz o

ou v aw

We now have everything we need to apply Equation (7):

3 4 px=(y/2)+1 (Zx —
= 4
ll[#w‘l 2
L r2 pl
- fj / (u + w)|Hu, v, w)|du dv dw
0 Jo Jo
oo I o SU0F A | 1. 2 ) 1
:] // (u + w)(6) du dv dw = 6// [& + uw} dv dw
0 Jo JO 0 JO 2 0
1 2 1 g N b, 1
=6// (E-i-w)dvdw:f)/ {E“Fvw} dw*=6/{i+2w)dw
o Jo 0 0 Jo

= 6|w + w?] = 6(2) = 12, "

) dx dy dz

(SN ]

The goal of this section was to introduce you to the ideas involved in coordinate transfor-
mations. A thorough discussion of transformations, the Jacobian, and multivariable substi-
tution is best given in an advanced calculus course after a study of linear algebra,

EXERCISES 15.7

Finding Jacobians and Transformed Regions v = 2x + y of the triangular region with vertices (0, 0),
for Two Variables (I, 1),and (1, —2) in the xy-plane. Sketch the transformed

region in the uv-plane.
1. a, Solve the system
2. a. Solve the system
u=x-—y, v=2x+y
_ u=x+2, v=x-—y
for x and y in terms of « and v. Then find the value of the
Jacobian a(x, y)/a(u, v).

for x and y in terms of u and v. Then find the value of the
b. Find the image under the transformation u = x — y, Jacobian d(x, y)/d(u, v).
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b. Find the image under the transformation v = x + 2y,
v = x — yof the triangular region in the xy-plane bounded
by the lines y = 0,y = x,and x + 2y = 2. Sketch the
transformed region in the wv-plane.

3. a. Solve the system

u = 3x + 2y, v=ux+4y

for x and v in terms of u and v. Then find the value of the
Jacobian a(x, y)/d(u, v).

b. Find the image under the transformation
= 3x + 2y, v = x + 4y of the triangular region in the xy-
plane bounded by the x-axis, the y-axis, and the line
x + y = 1. Sketch the transformed region in the yv-plane.

4. a. Solve the system

u=2x— 3y v=-x+y

for x and y in terms of  and v. Then find the value of the
Jacobian a(x, y)/d(u, v).

b. Find the image under the transformation ¥ = 2x — 3y,
v = —x + yof the parallelogram R in the xy-plane with
boundaries x = —3,x = 0,y = x,and y = x + | . Sketch
the transformed region in the ywv-plane.

Applying Transformations to Evaluate
Double Integrals

5. Evaluate the integral

4 ra=(y2)+1 Ix—y
/ [ . —5——dxdy
JO Jx=y2 -

from Example 1 directly by integration with respect to x and y to
confirm that its value is 2.

6. Use the transformation in Exercise 1 to evaluate the integral

//{Z\'z =P = v2) dx dy
"k

for the region R in the first quadrant bounded by the lines
y=-~+4y=-u+Ty=x-2,andy=x+ 1.

7. Use the transformation in Exercise 3 to evaluate the integral

/ (3x2 + 14xy + 8p?) dx dy
R

for the region R in the first quadrant bounded by the lines
yv=—32x+ lL,y=—(3/2;x + 3,y = —(1/4)x, and y =
—=(1/4)x + 1.

Use the transformation and parallelogram R in Exercise 4 to eval-

uate the integral
//2[.( — y)dxdy.

R

oo

9. Let R be the region in the first quadrant of the xy-plane boundeq
by the hyperbolas xy = 1,xy = 9 and the lines y = x,y = 4y,
Use the transformation x = /v,y = uv withu > Oand v >

to rewrite
['}:I. x'll x i
\{/(\’A + \/ )d 0{1

as an integral over an appropriate region G in the wv-plane. Then
evaluate the uv-integral over G.

10. a. Find the Jacobian of the transformation x = u, y = wuv, and
sketchtheregion G: 1 = v = 2,1 = uv = 2 in the uv-plane,

b. Then use Equation (1) to transform the integral

202y
/|[1 Ed)-'d.r

into an integral over G, and evaluate both integrals.

11. Polar moment of inertia of an elliptical plate A thin plate of
constant density covers the region bounded by the ellipse
x*/a®* + y*/b* = 1,a > 0,b > 0, in the xy-plane. Find the
first moment of the plate about the origin. (Hint: Use the transfor-
mation x = arcosf,y = brsinfl.)

12. The area of an ellipse The area wab of the ellipse
x*/a* + y*/b* = 1 can be found by integrating the function
fl(x, v) = 1 over the region bounded by the ellipse in the xy-plane.
Evaluating the integral directly requires a trigonometric substitu-
tion. An easier way to evaluate the integral is to use the transfor-
mation x = au, y = bv and evaluate the transformed integral over
the disk G: #®> + v® < 1 in the uv-plane. Find the area this way.

13. Use the transformation in Exercise 2 to evaluate the integral

23 p2-2
f / (x + 2p)e" ¥ dr dy
Lt i

by first writing it as an integral over a region G in the uv-plane.

14. Use the transformation x = u + (1/2)v,y = v to evaluate the

integral
2 ply+4)2 )
/ / yi2x — Ve dy dy
JO Jyf2

by first writing it as an integral over a region G in the uv-planc.

Finding Jacobian Determinants
15. Find the Jacobian a(x, y)/d(u, v) for the transformation
4 X = ucosv, y = usinv
b. x =usinv, y = wucosv.
16. Find the Jacobian d(x, y, z)/d(u, v, w) of the transformation
a8 X = ucosvy, y=usinv, z=w
b. x=2u—1, y=3v-—4, z=(1/2)(w—4).

17. Evaluate the appropriate determinant to show that the Jacobian of
the transformation from Cartesian p¢f-space to Cartesian %
space is p” sin ¢ .




18. Substitutions in single integrals How can substitutions in
single definite integrals be viewed as transformations of
regions? What is the Jacobian in such a case? Illustrate with an
example.

Applying Transformations to Evaluate
Triple Integrals

19. Evaluate the integral in Example 3 by integrating with respect to

X, ¥, and z.
20. Volume of an ellipsoid Find the volume of the ellipsoid
2 |"T' e
S b,
a- b e

(Hint: Letx = au,y = bv,and z = cw . Then find the volume of
an appropriate region in uuw-space.)

// |xyz|dx dy dz

over the solid ellipsoid

21. Evaluate

(5]
(=

2

Iz' i
a

Z

HE = 1,

o |’f_'
"~
iy

(Hint: Let x = au,y = bv, and z = cw . Then integrate over an
appropriate region in uvw-space.)

Chapter 15 Questions to Guide Your Review 1137

22. Let D be the region in xyz-space defined by the inequalities

|l =x=2

= J = £,

[/ (x?y + 3xyz) dx dy dz
D

by applying the transformation

O0=xy=2 0=sz=l.

Evaluate

U=x, v=xy, w=3z

and integrating over an appropriate region G in uvw-space.

23. Centroid of a solid semiellipsoid Assuming the result that
the centroid of a solid hemisphere lies on the axis of symmetry
three-eighths of the way from the base toward the top, show, by
transforming the appropriate integrals, that the center of mass
of a solid semiellipsoid (x%/a?) + (y?/b?) + (z%/c?) = 1,
z = 0, lies on the z-axis three-eighths of the way from the base
toward the top. (You can do this without evaluating any of the
integrals.)

24. Cylindrical shells In Section 6.2, we learned how to find the
volume of a solid of revolution using the shell method: namely, if
the region between the curve y = f(x) and the x-axis from a to b
(0 < a < b) is revolved about the yp-axis, the volume of the
resulting solid is /' 2xf(x) dx . Prove that finding volumes by
using triple integrals gives the same result. (Hint: Use cylindrical
coordinates with the roles of y and z changed.)

. Define the double integral of a function of two variables over a
bounded region in the coordinate plane.

2. How are double integrals evaluated as iterated integrals? Does the
order of integration matter? How are the limits of integration de-
termined? Give examples.

3. How are double integrals used to calculate areas, average values,
masses, moments, centers of mass, and radii of gyration? Give
examples.

4. How can you change a double integral in rectangular coordinates
into a double integral in polar coordinates? Why might it be
worthwhile to do so? Give an example.

5. Define the triple integral of a function f(x, y, z) over a bounded
region in space.

L

How are triple integrals in rectangular coordinates evaluated?
How are the limits of integration determined? Give an example.

Questions to Guide Your Review

7. How are triple integrals in rectangular coordinates used to calcu-
late volumes, average values, masses, moments, centers of mass,
and radii of gyration? Give examples.

8. How are triple integrals defined in cylindrical and spherical coor-
dinates? Why might one prefer working in one of these coordinate
systems to working in rectangular coordinates?

9. How are triple integrals in cylindrical and spherical coordinates

evaluated? How are the limits of integration found? Give examples.

10. How are substitutions in double integrals pictured as transforma-
tions of two-dimensional regions? Give a sample calculation,

1. How are substitutions in triple integrals pictured as transforma-
tions of three-dimensional regions? Give a sample calculation,
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The glider’s velocity as a function of time is

DR In
/ Fin
% = v(t) = —(3sin )i + (3 cost)j + 2tk. ] TE
15
Integrating both sides of this last differential equation gives -
16
ri7) = (3cos )i + (3sinz)j + 1%k + C.. .
: N 17
We then use the initial condition r(0) = 3ito find C,:
i P . i 2 [ 18
3i = (3cos0)i + (3sin 0)j + (0°)k + C, 3
3i=3i+(0)j + (0k + C, In
Cg = . at
1 lo
The glider’s position as a function of tis [ 1
r(r) = (3cos )i + (3sins)j + 12k A
This is the path of the glider we know from Example 4 and is shown in Figure 13.7, I
l_ E
Note: 1t was peculiar to this example that both of the constant vectors of integration,
Ci and C;, turned out to be 0. Exercises 31 and 32 give different results for these 2l
constants. .
2

i
EXERCISES 13.1

2,
Motion in the xy-plane 7. Motion on the ceyeloid x = ¢ — siny, y=1- cost 2
In Exercises 1-4, r(r) is the position of a particle in the xy-plane at r(r) = (¢t — sin#)i + (1 — cos j: t= mand37/2
time 7. Find an equation in x and y whose graph is the path of the par-
ticle. Then find the particle’s velocity and acceleration vectors at the 8. Motion on the parabola y = x? + | :
given value of 1. 3 ) =ti+ (1 +1)j = —1,0, and 1
Lr()=(+Di+(2-1), 1= I
2. = 2 -+ i V- i = _;2 " . . F
MO =(E+ D+ @), 1=, Velocity and Acceleration in Space .
3or(r) =ei + %ﬁ’j. t=1In3 In Exercises 9-14, r(z) is the position of a particle in space at time /. r
Find the particle’s velocity and acceleration vectors, Then find the par-
4. r(1) = (cos 21)i + (3 sin 20)j, 1=0 ticle’s speed and direction of motion at the given value of 7. Writelth'3 ; )
. . i . article’s it i i and direction.
Exercises 5-8 give the position vectors of particles moving along vari- pasticle’ yelocity aE Wiat ujmc o fhe product of its speed an
Ous curves in the xy-plane. In each case, find the particle’s velocity - r() =1+ i+ (2 - 1)j + 21k, 1=1 :
and acc‘elerminn vectors at the stated times and sketch them as vectors TR —"E:j i t* . p=1 E 2
on the curve. V2 3
5. Motion on the circle x? + y? = I 1) = 2cos )i + (3sinn)j + ark, ¢ = /2
= (sinDi + (cos Nic 1 = /4 . /s : ) _ :
r{t) = (sin )i 4 (cost)i; 1= m/dand =/2 12. r(t) = (sect)i + (tan 1)j + ;—‘;k, =il . _
6. Motion on the circle x? + =16

13. r() = 2In(r + 1))i + 12 + 5K i=1

- T 4 R Y — %)
r(z) (4(.0!\2)‘ + (4 smz)j. ! = mand 37/2 14. r(r) = (e™)i + (2 cos 3Nj + (2sin3n)k, 1 =0




in Exercises 15-18, r(r) is the position of a particle in space at time .
find the angle between the velocity and acceleration vectors at time

(5. rl(f) = (3t + i+ Vitj + r’k

.\f’j \/(2 3 \a
16, rif) = ( )Zr)i + ( T lm—)J
17, r(t) = (In (2 + 1))i + (tan ' 0)j + V2 + 1k
e i 3/2: 4 L T i l
18. rtr)—9t1+;) |+qll t) 1+3rk

In Exercises 19 and 20, r(1) is the position vector of a particle in space
at time 7. Find the time or times in the given time interval when the ve-
Jocity and acceleration vectors are orthogonal.

19, r(r) = — sinf)i + (1 —cosn)j, 0=t=2m

20. r(f) = (sinp)i +¢j + (cost)k, t=0

Integrating Vector-Valued Functions

Evaluate the integrals in Exercises 21-26.

o |
2. / [0+ 7j + (0 + DKl dt
{

JU

2. /-ltb — 6 + 3V + (“ﬁ)klm
J o

w/4
23. [ [(sint)i + (1 + cost)j + (sec? K] dt

- /4

o k]
4. / [(secttant)i + (tant)j + (2 sin ¢ cos t)k] dt
0
1.

5 A -|+L‘+—lkd.-
=Lt s— 7 2

-l ‘, Jr_
26. / [— ——f ijkldr

=

1 +¢

Initial Value Problems for Vector-Valued
Functions

Solve the initial value problems in Exercises 27-32 for r as a vector
function of 1.

27. Differential equation: df_: =
[

r(0) =i+ 2j + 3k

—ti —tj — tk

Initial condition:

28. Differential equation: ”;: = (1800)i + (1801 — 16t%)]

L

Initial condition: r(0) = 100j
29. Differenti o T =3¢+ 1) b el
ifferential equation: T 2{! DY+ e T+ 1
Initial condition: r(0) =k
30. Differential equation: %: =+ 40i + 1j + 27k

Initial condition:

r(0) =i+

13,1 Vector Functions 917

31. Differential equation: _d{_l“ = —32k
dat~

r(0) = 100k and
dr
dt
d?[ =
d?
r(0) = 10i + 10j + 10k and
dr
dt

Initial conditions:

\ = 8i + 8j
=0

32, Differential equation: (i + ]+ k)
Initial conditions:

=10

Tangent Lines to Smooth Curves

As mentioned in the text, the tangent line to a smooth curve
v(t) = f(0i + g()j + h(Dkatt =t is the line that passes through
the point (f(1o), g(to), Alty)) parallel to v(fo), the curve’s velocity vec-
tor at f. In Exercises 33-36, find parametric equations for the line
that is tangent to the given curve at the given parameter value t = fo.

33, r(t) = (sint)i + (12 —cost)j + e'k, 1 =10

34, () = (2sine)i + (2cost)j + Stk, ty = 4w

35, r(t) = (asini)i + (acost)j + btk, fy= 2w

36. (1) = (cos )i + (sint)j + (sin20)k, # =

e

Motion on Circular Paths

37. Each of the following equations in parts (a)-(e) describes the mo-
tion of a particle having the same path, namely the unit circle
x? + y? = 1. Although the path of each particle in parts (a)-{¢)
is the same, the behavior, or “dynamics,” of each particle is differ-
ent. For each particle, answer the following questions.

i. Does the particle have constant speed? If so, what is its con-
stant speed?

ii. Is the particle’s acceleration vector always orthogonal to its
velocity vector?

iii. Does the particle move clockwise or counterclockwise
around the circle?

iv. Does the particle begin at the point (1, 0)?
a. r(t) = (cost)i+ (sinr)j, +=0
b. r(t) = cos(20)i + sin(20)j, =0
c. r(f) = cos(t — /2 + sin(t — m/2)j, =0
d. r(t) = (cost)i = (sinn)j, t=0
e. (1) = cos ()i + sin(?)j, =0
38. Show that the vector-valued function

r() = (2i +2j + K

. I, . | : 1
+ cost(—]',_i - '_j) + sm.'(—--f—_| + —I;j + —J,-k)
V2 V2 Vi V3 V3,
describes the motion of a particle moving in the circle of radius |

centered at the point (2, 2, 1) and lying mn the plane
x+y—22=2.
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Motion Along a Straight Line

39. Attime ¢ = 0, a particle is located at the point (1, 2. 3). It travels
in a straight line to the point (4, 1, 4), has speed 2 at (1, 2, 3) and
constant acceleration 3i — j + k. Find an equation for the posi-
tion vector r(/) of the particle at time 7.

40. A particle traveling in a straight line is located at the point
(1,~1,2) and has speed 2 at time 1 = 0. The particle moves to-
ward the point (3, 0, 3) with constant acceleration 2i + j + k.
Find its position vector r(r) at time .

Theory and Examples

41. Motion along a parabola A particle moves along the top of the
parabola y? = 2x from left to right at a constant speed of 5 units
per second. Find the velocity of the particle as it moves through
the point (2, 2).

42. Motion along a cycloid A particle moves in the xy-plane in
such a way that its position at time f is

r(t) = (1 — sinf)i + (1 — cost)j.

K@ 2. Graph r(r). The resulting curve is a cycloid.

b. Find the maximum and minimum values of |v|and |a|. (Hint:
Find the extreme values of |v|* and |a|* first and take square
roots later.)

43. Motion along an ellipse A particle moves around the ellipse
(»/3)* + (z/2)> = 1 in the yz-plane in such a way that its posi-
tion at time ¢ is

r(r) = (3cost)j + (2sint)k.

Find the maximum and minimum values of |v| and |a|. (Hint:
Find the extreme values of |v|* and |a|* first and take square
roots later.)

44, A satellite in circular orbit
at a constant speed v around a body of mass M (Earth, for exam-
ple) in a circular orbit of radius r; (measured from the body’s cen-
ter of mass). Determine the satellite’s orbital period T (the time to
complete one full orbit), as follows:

A satellite of mass m is revolving

a. Coordinatize the orbital plane by placing the origin at the
body’s center of mass, with the satellite on the x-axis at
= () and moving counterclockwise, as in the
accompanying figure.

-

Let r(7) be the satellite’s position vector at time £. Show that
6 = vi/ry and hence that

vl \, .wl,
r(t) = (J‘:;C(}br—u)l + (rnsm r_u)-"

b. Find the acceleration of the satellite.
¢. According to Newton's law of gravitation, the gravitational force
exerted on the satellite is directed toward M and is given by

GmM \r
()
ro” ro

where G is the universal constant of gravitation. Using
Newton’s second law, F = ma, show that v* = GM/r,

d. Show that the orbital period T satisfies vT = 27ry.
e. From parts (c) and (d), deduce that

4’ 5

Tz - G__‘]Lr"' 3

That is, the square of the period of a satellite in circular orbit is
proportional to the cube of the radius from the orbital center.

45. Let v be a differentiable vector function of 7. Show that if
v+ (dv/dt) = 0 forall 1, then | v| is constant.

46. Derivatives of triple scalar products
a. Show that i u, v, and w are differentiable vector functions of

t, then
-é(u-va}=d—u-v><w+u-gX><w+
di dt di (?}
u'v X dw
dt’
b. Show that Equation (7) is equivalent to
du;  du diur
; oty U dt dt dt
;f:f v v, V3| T | V2 v3
Wi oWy w3 Wy W2 Wy
Uy Uz U3
dvy dvy dvy
+ i+ e
dt dt dt
Wy W2 Wa
) s U3
" vy 2 vy I [:8)
dt dt dr

Equation (8) says that the derivative of a 3 by 3 determinani of
differentiable functions is the sum of the three determinants ©
tained from the original by differentiating one row at a time. The
result extends to determinants of any order.




47.

48.

49.

50.

. Component Test for Continuity at a Point

. Limits of cross products of vector functions

. Differentiable vector functions are continuous

(Continuation of Exercise 46.) Suppose that r(1) = f(oi +
g(0)j + h(r)k and that f. g, and h have derivatives through order
three. Use Equation (7) or (8) to show that

d( dr_ dr dr d-‘r)

s | > _1. = v — % . {g

dt ( dt 4 ) (dr dr )
(Hint: Differentiate on the left and look for vectors whose prod-
ucts are zero.)

Constant Function Rule Prove that if u is the vector function
with the constant value C, then du/dt = 0.

Scalar Multiple Rules

a. Prove that if u is a differentiable function of r and ¢ 1s any real
number, then

dcu) _ du
a Cdr

b. Prove that if u is a differentiable function of f and f is a
differentiable scalar function of 1, then

d, .. _4df

5w =

du
dru+fdx"

Sum and Difference Rules Prove that if u and v are differen-

tiable functions of 7, then

d .o _du dv
E{'u V)= dt i dt
and
g{ll = \"} = dll = d_\-’
dt dt dt’

Show that the
vector function r defined by r(¢) = f(1)i + g(nj + Alo)k is
continuous at ¢ = f if and only if f, g, and h are continuous at
fn.

Suppose
that ri(¢) = f1(0i + f2(0)j + f2(Ok, ra(t) = gi(Di + ga(0)j +
ai(t)k, lim;—,r(f) = A, and lim,—, rx(t) = B. Use the deter-
minant formula for cross products and the Limit Product Rule for
scalar functions to show that

lim(ri(s) X ry(2)) = AX B
0
Show that if

r(t) = f(1)i + g(0)j + h(1)k is differentiable at t = ty, then it is
continuous at f; as well.

. Establish the following properties of integrable vector functions.

a. The Constant Scalar Multiple Rule:

b b
/kr(r)dt‘:k/ r(t) dt (any scalar k)

The Rule for Negatives,

o] b
/ (=r(t))dt = —[ r(1) dt,

is obtained by taking k = 1.
b. The Sum and Difference Rules:

b h h
/t_nm + ry(e)) dt = /r.{:)dri / ra(1) dt
Ja od Ja

¢. The Constant Vector Multiple Rules:

h b
[C»rmd; = C-/ r(f)dr (any constant vector C)

and

b b
f CXrlt)dt=0CX j r(t)dr (any constant vector C)

55, Products of scalar and vector functions Suppose that the
scalar function u(¢) and the vector function r(f) are both defined
fora=1t=b.

a. Show that ur is continuous on [a, b] if « and r are continuous
on [a, b].

b. If u and r are both differentiable on [a, b], show that ur is
differentiable on [a, b] and that
du

d _dv du
d;{“r) = + r{”,

56. Antiderivatives of vector functions

a, Use Corollary 2 of the Mean Value Theorem for scalar
functions to show that if two vector functions R,(#) and Ry(1)
have identical derivatives on an interval /, then the functions
differ by a constant vector value throughout /.

b. Use the result in part (a) to show that if R(r) is any anti-
derivative of r(f) on /, then any other antiderivative of r on /
equals R(z) + C for some constant vector C.

57. The Fundamental Theorem of Calculus The Fundamental
Theorem of Calculus for scalar functions of a real variable holds
for vector functions of a real variable as well. Prove this by using
the theorem for scalar functions to show first that if a vector func-
tion r(f) is continuous fora = ¢t = b, then

d [’ N
5 r(r)dr = r(1)

at every point  of (a, b). Then use the conclusion in part (b) of
Exercise 56 to show that if R is any antiderivative of r on [a, b]
then

o]
/ r(r)dt = R(h) — Rla).
a
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COMPUTER EXPLORATIONS
Drawing Tangents to Space Curves

Use a CAS to perform the following steps in Exercises 58-61.

a.

Plot the space curve traced out by the position vector r.

b. Find the components of the velocity vector dr/dt.

. Evaluate dr/dr at the given point 7y and determine the equation of

the tangent line to the curve at r(z).

. Plot the tangent line together with the curve over the given

interval.

. r(t) = (sint — rcost)i + (cost + sint)j + 17K,

0=t=6m 1 =23n/2

L) = Vati + elj+ek, -2=t=3 =1

() = (sm2)i + (In(1 + 1)j +tk, 0=1¢=<4m,
Ig = 77;"4
() = (In( + 2))i + (an'30j + Vi + 1k,

—3=1=5 =3

Modeling Projectile Motion

13.2

In

Exercises 62 and 63, you will explore graphically the behaviy of

the helix

ds

rif) = (cosar)i + (sinat)j + brk.

you change the values of the constants ¢ and b. Use a CAS g per-

form the steps in each exercise.

62

63

- Set b = 1. Plot the helix r(r) together with the tangent line 1o e
curve at { = 3w/2 for a = 1.2.4, and 6 over the interyg|
0 = t = 4. Describe in your own words what happens o the
graph of the helix and the position of the tangent line as ¢ ip.
creases through these positive values.

Seta = 1. Plot the helix r(r) together with the tangent line to the
curve at t = 3m/2 for b = 1/4,1/2,2, and 4 over the interval
0 =t = 4. Describe in your own words what happens 1o the
graph of the helix and the position of the tangent line as b in-
creases through these positive values.

When we shoot a projectile into the air we usually want to know beforehand how far it will
go (will it reach the target?), how high it will rise (will it clear the hill?), and when it will 3
land (when do we get results?). We get this information from the direction and magnitude
of the projectile’s initial velocity vector, using Newton’s second law of motion.

The Vector and Parametric Equations for Ideal Projectile Motion

To derive equations for projectile motion, we assume that the projectile behaves like a par-
ticle moving in a vertical coordinate plane and that the only force acting on the projectile -
during its flight is the constant force of gravity, which always points straight down. It

practice, none of these assumptions really holds. The ground moves beneath the projec(ile '

as the earth turns, the air creates a frictional force that varies with the projectile’s speed
and altitude, and the force of gravity changes as the projectile moves along. All this must &

be taken into account by applying corrections to the predictions of the ideal equations W =%

are about to derive. The corrections, however, are not the subject of this section.
We assume that the projectile is launched from the origin at time + = 0 into the firs* 3
quadrant with an initial velocity v (Figure 13.9). If vy makes an angle « with the horizo®” :

tal, then

¥

0 = (|vo|cos a)i + (]vy|sin a)j.

If we use the simpler notation v, for the initial speed |vg|, then

vo = (vpcosa)i + (vgsina)j.

The projectile’s initial position is

ro = 0i + 0j = 0. (213
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(b) The baseball reaches its highest point when the vertical component of velocity is
zero, or

dy )
— = |52sin20° — 32t = 0,
dt

Solving for ¢ we find

; — 1325in20°

~ 2s
) 1.62 sec.

Substituting this time into the vertical component for r gives the maximum height
=3 + (1525sin20°)(1.62) — 16(1.62)
~ 452 ft.

.I‘IT'H].\

That is, the maximum height of the baseball is about 45.2 ft, reached about 1.6 sec
after leaving the bat.

(¢) To find when the baseball lands, we set the vertical component for r equal to 0 and
solve for t:

3 + (1525sin20°) — 161 = 0
3+ (51.99) — 16t* = 0.
The solution values are about + = 3.3 sec and ¢ = —0.06 sec. Substituting the posi-
tive time into the horizontal component for r, we find the range
R = (152 cos 20° — 8.8)(3.3)
~ 442 ft.
Thus, the horizontal range is about 442 ft, and the flight time is about 3.3 sec. ]

In Exercises 29 through 31, we consider projectile motion when there is air resistance
slowing down the flight.

Projectile flights in the following exercises are to be treated as ideal b. How high overhead will the projectile be when it is § km
unless stated otherwise. All launch angles are assumed to be measured downrange?

from the horizontal. All projectiles are assumed to be launched from
the origin over a horizontal surface unless stated otherwise.

l. Travel time

A projectile is fired at a speed of 840 m/sec at an
angle of 60°, How long will it take to get 21 km downrange?

¢. What is the greatest height reached by the projectile?

4. Throwing a baseball A baseball is thrown from the stands 32 ft
above the field at an angle of 30° up from the horizontal. When
and how far away will the ball strike the ground if its initial speed

2. Finding muzzle speed Find the muzzle speed of a gun whose is 32 ft/sec?
' maximum range is 24.5 km. 5. Shot put An athlete puts a 16-lb shot at an angle of 45° to the
3. Flight time and height A projectile is fired with an initial horizontal from 6.5 ft above the ground at an initial speed of
speed of 500 m/sec at an angle of elevation of 45°. 44 fi/sec as suggested in the accompanying figure. How long af-
a. When and how far away will the projectile strike? ter launch and how far from the inner edge of the stopboard does

the shot land?
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6.5 ft

& _J._-
£-5 '@;—ﬂ"“lﬁ'ﬁ —t
— “Stopboard

6. (Continuation of Exercise 5.) Because of its initial elevation, the
shot in Exercise 5 would have gone slightly farther if it had been
launched at a 40° angle. How much farther? Answer in inches.

7. Firing golf balls A spring gun at ground level fires a golf ball
at an angle of 45°. The ball lands 10 m away.

a. What was the ball’s initial speed?

b. For the same initial speed, find the two firing angles that
make the range 6 m.

8. Beaming electrons An electron in a TV tube is beamed hori-
zontally at a speed of 5 X 10° m/sec toward the face of the tube
40 ¢m away. About how far will the electron drop before it hits?

9. Finding golf ball speed Laboratory tests designed to find how
far golf balls of different hardness go when hit with a driver
showed that a 100-compression ball hit with a club-head speed of
100 mph at a launch angle of 9° carried 248.8 yd, What was the
launch speed of the ball? (It was more than 100 mph. At the same
time the club head was moving forward, the compressed ball was
kicking away from the club face, adding to the ball’s forward
speed.)

10. A human cannonball is to be fired with an initial speed of

vy = 80 \/I_{};’B ft/sec. The circus performer (of the right caliber,
naturally) hopes to land on a special cushion located 200 ft down-
range at the same height as the muzzle of the cannon. The circus
is being held in a large room with a flat ceiling 75 ft higher than
the muzzle. Can the performer be fired to the cushion without
striking the ceiling? If so, what should the cannon’s angle of
elevation be?

11. A golfball leaves the ground at a 30° angle at a speed of 90 fi/sec.
Will it clear the top of a 30-ft tree that is in the way, 135 ft down
the fairway? Explain.

12. Elevated green A golf ball is hit with an initial speed of 116 fi/

sec at an angle of elevation of 45° from the tee to a green that is

elevated 45 ft above the tee as shown in the diagram. Assuming thy,
the pin, 369 ft downrange, does not get in the way, where wil| the
ball land in relation to the pin?

369 ft
NOT TO SCALE

13. The Green Monster A baseball hit by a Boston Red Sox player
at a 20° angle from 3 ft above the ground just cleared the left end

of the “Green Monster,” the left-field wall in Fenway Park. This
wall is 37 ft high and 315 ft from home plate (see the accompany-

ing figure).
a. What was the initial speed of the ball?
b. How long did it take the ball to reach the wall?

14. Equal-range firing angles Show that a projectile fired at an an-
gle of a degrees, 0 < a < 90, has the same range as a projectile
fired at the same speed at an angle of (90 — «) degrees. (In models
that take air resistance into account, this symmetry is lost.)

15. Equal-range firing angles What two angles of elevation will
enable a projectile to reach a target 16 km downrange on the samé
level as the gun if the projectile’s initial speed is 400 m/sec?

16. Range and height versus speed

a. Show that doubling a projectile’s initial speed at a given
launch angle multiplies its range by 4.

b. By about what percentage should you increase the initial
speed to double the height and range?

17. Shot put In Moscow in 1987, Natalya Lisouskaya set a women's
world record by putting an 8 1b 13 oz shot 73 ft 10 in. Assuming
that she launched the shot at a 40° angle to the horizontal from
6.5 ft above the ground, what was the shot’s initial speed?




18.

19.

20.

21,

4,

Height versus time Show that a projectile attains three-quarters
of its maximum height in half the time it takes to reach the maxi-
mum height.

Firing from (xy, yg) Derive the equations

x =xp+ (vgcosa)t,

; 1
y =y + (vysina) - -,,-gr”{

(see Equation (5) in the text) by solving the following initial value
problem for a vector r in the plane.

Differential equation: ‘::;; = —gj
Initial conditions: r(0) = xoi + yoj
'Li',:‘-(m = (vpcos a)i + (vgsin aj

Flaming arrow Using the firing angle found in Example 3,
find the speed at which the flaming arrow left Rebollo’s bow. See
Figure 13.13.

Flaming arrow The cauldron in Example 3 is 12 ft in diameter.
Using Equation (5) and Example 3c, find how long it takes the
flaming arrow to cover the horizontal distance to the rim. How
high is the arrow at this time?

. Describe the path of a projectile given by Equations (4) when

a = 90°.

. Model train The accompanying multiflash photograph shows a

model train engine moving at a constant speed on a straight horizon-
tal track. As the engine moved along, a marble was fired into the air
by a spring in the engine’s smokestack. The marble, which continued
to move with the same forward speed as the engine, rejoined the en-
gine | sec after it was fired. Measure the angle the marble’s path
made with the horizontal and use the information to find how high
the marble went and how fast the engine was moving,

Colliding marbles The figure shows an experiment with two
marbles. Marble 4 was launched toward marble B with launch
angle @ and initial speed vy. At the same instant, marble B was re-
leased to fall from rest at R tan e units directly above a spot R
units downrange from A. The marbles were found to collide

25.

26.

7.

13.2 Modeling Projectile Motion 929

regardless of the value of v, Was this mere coincidence, or must
this happen? Give reasons for your answer.

R tan o

Launching downhill An ideal projectile is launched straight

down an inclined plane as shown in the accompanying figure.

a. Show that the greatest downhill range is achieved when the
initial velocity vector bisects angle AOR.

b. If the projectile were fired uphill instead of down, what
launch angle would maximize its range? Give reasons for
your answer.

Vertical

\{i]

)

Hitting a baseball under a wind gust A baseball is hit when it
is 2.5 ft above the ground. It leaves the bat with an initial velocity
of 145 ft/sec at a launch angle of 23°, At the instant the ball is hit,
an instantaneous gust of wind blows against the ball, adding a
component of —14i (ft/sec) to the balls initial velocity. A 15-fi-
high fence lies 300 ft from home plate in the direction of the flight.
a. Find a vector equation for the path of the baseball.

b. How high does the baseball go, and when does it reach
maximum height?

¢. Find the range and flight time of the baseball, assuming that
the ball is not caught.

d. When is the baseball 20 fi high? How far (ground distance) is
the baseball from home plate at that height?

e. Has the batter hit a home run? Explain.

Volleyball A volleyball is hit when it is 4 ft above the ground

and 12 ft from a 6-fi-high net. It leaves the point of impact with

an initial velocity of 35 ft/sec at an angle of 27° and slips by the

opposing team untouched.
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Find a vector equation for the path of the volleyball.

b. How high does the volleyball go, and when does it reach
maximum height?

c. Find its range and flight time.

d. When is the volleyball 7 ft above the ground? How far

(ground distance) is the volleyball from where it will land?

e. Suppose that the net is raised to 8 ft. Does this change things?
Explain.

28. Where trajectories crest For a projectile fired from the ground
at launch angle e with initial speed vy, consider « as a variable
and vy as a fixed constant. For each @, 0 < a < 7/2, we obtain
a parabolic trajectory as shown in the accompanying figure. Show
that the points in the plane that give the maximum heights of
these parabolic trajectories all lie on the ellipse

2142 4
Uy v
x2+4(--——~—): >

where x = 0.

Ellipse

- /..'
,4"‘— (%R'.me)
7 Parabolic
4 -~ trajectory

S Sem—
~
\\
Se e

Projectile Motion with Linear Drag

The main force affecting the motion of a projectile, other than gravity,
is air resistance. This slowing down force is drag foree, and it acts ina
direction opposite to the velocity of the projectile (see accompanying
figure). For projectiles moving through the air at relatively low speeds,
however, the drag force is (very nearly) proportional to the speed (to
the first power) and so is called linear.

v

]

Velocity

Drag force
Gravity

> X

29. Linear drag Derive the equations

X= %f] — e Mcosa
Yo ki -
y=% (1 —e™)(sina) + kz[] kt —e™)

by solving the following initial value problem for a vector r in the

plane.

. . e B o an o oy
Differential equation: P gj — kv =—gj—k %
Initial conditions: r(0) =10

dr

vop = (vpcos a)i + (vysin @j

E =0

The drag coefficient £ is a positive constant representing re-
sistance due to air density, vy and a are the projectile’s initial
speed and launch angle, and g is the acceleration of gravity.

30. Hitting a baseball with linear drag Consider the baseball
problem in Example 4 when there is linear drag (see Exercise
29). Assume a drag coefficient k = 0.12, but no gust of wind.

a, From Exercise 29, find a vector form for the path of the

baseball.

b. How high does the baseball go, and when does it reach
maximum height?

c¢. Find the range and flight time of the baseball.

d. When is the baseball 30 ft high? How far (ground distance) is
the baseball from home plate at that height?

e. A 10-fi-high outfield fence is 340 ft from home plate in the
direction of the flight of the baseball. The outfielder can jump
and catch any ball up to 11 ft off the ground to stop it from
going over the fence. Has the batter hit a home run?

31. Hitting a baseball with linear drag under a wind gust Con-
sider again the baseball problem in Example 4. This time assume
a drag coefficient of 0.08 and an instantaneous gust of wind that
adds a component of —17.6i (ft/sec) to the initial velocity at the
instant the baseball is hit.

a. Find a vector equation for the path of the baseball.

b. How high does the baseball go, and when does it reach
maximum height?

c. Find the range and flight time of the baseball.

d. When is the baseball 35 ft high? How far (ground distance) 18
the baseball from home plate at that height?

e. A 20-fi-high outfield fence is 380 ft from home plate in the
direction of the flight of the baseball. Has the batter hit a
home run? If “yes,” what change in the horizontal component
of the balls initial velocity would have kept the ball in the
park? If “no,” what change would have allowed it to be a
home run?
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Motion on the Unit Circle

r(1) = (cost)i + (sint)j

-‘r' EXAMPLE 5
24yt=] il For the counterclockwise motion
Plx, y)
r
! around the unit circle,

0 o~

FIGURE 13.18 The motion r(z) =
(cos 1)i + (sin1)j (Example 5).

EXERCISES 13.3

V= (=sinti + (cost)j

is already a unit vector, soT = v (Figure 13.18). [

Finding Unit Tangent Vectors
and Lengths of Curves

In Exercises 1-8, find the curve’s unit tangent vector. Also, find the
length of the indicated portion of the curve.

L r(1) = (2cos )i + (2sing)j + \/grk. O=t=7
< rl7) = (6sin20i + (6cos2t)j + 5tk, 0=t =7
ti+ (2/3)°k, 0<1=<38
(2+)i—-(+1)j+tk, 0=t=3

]

2

3. r(n)

4. r(1)

5. r(t) = (cos’t)j + (sin’t)k, 0=<1=< /2
6. r(t) =671 —28°j - 3%k, 1=1r=<2
7
8
9

If

. r(t) = (tcost)i + (tsinf)j + (2\/5};3),3;2]‘, 0
- Tt) = (tsint + cost)i + (tcost — sint)j, \/5 =t=2

1A
A
=

- Find the point on the curve
r(f) = (Ssint)i + (Scos)j + 12tk

at a distance 264 units along the curve from the origin in the di-
rection of increasing arc length.

10. Find the point on the curve

r(1) = (12sine)i — (12cos1)j + 5tk

at a distance 137 units along the curve from the origin in the
direction opposite to the direction of increasing arc length.

Arc Length Parameter

[_ﬂ Exercises 11-14, find the arc length parameter along the curve
om the point where t = 0 by evaluating the integral

s=/]v(r}|d‘r
0

om Equation (3). Then find the length of the indicated portion of the
Curye,

1L r(r) = (4cost)i + (4sine)j + 3tk, 0 << m/2

12. ¥(t) = (cost + tsint)i + (sint — tcosr)j, ml=t=nw
13. r(r) = (e'cost)i + (e'sinr)j + e'k, —Ind <7 <0

4. r(t) = (1 + 20i + (1 + Mj+(6—-60)k, —1=¢t=0

Theory and Examples
15. Arclength Find the length of the curve

r(0) = (Var)i + (V)i + (1 - Pk
from (0,0, 1) to V2, V/2,0).

16. Length of helix The length 277 \/2 of the turn of the helix in
Example 1 is also the length of the diagonal of a square 27 units
on a side. Show how to obtain this square by cutting away and
flattening a portion of the cylinder around which the helix winds.

17. Ellipse

a. Show that the curve r(s) = (cos #)i + (sin#)j + (1 — cos 1)k,
0 = 1 = 27, is an ellipse by showing that it is the intersection
of a right circular cylinder and a plane. Find equations for the
cylinder and plane.

b. Sketch the ellipse on the cylinder. Add to your sketch the unit
tangent vectors at t = 0, 7r/2, 77, and 37/2.

¢. Show that the acceleration vector always lies parallel to the
plane (orthogonal to a vector normal to the plane). Thus, if
you draw the acceleration as a vector attached to the ellipse, it
will lie in the plane of the ellipse. Add the acceleration
vectors for t = 0, /2, w, and 37/2 to your sketch.

d. Write an integral for the length of the ellipse. Do not try to
evaluate the integral; it is nonelementary.

€. Numerical integrator Estimate the length of the ellipse to
two decimal places.

I8. Length is independent of parametrization To illustrate
that the length of a smooth space curve does not depend on
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the parametrization you use to compute it, calculate the length of
one turn of the helix in Example 1 with the following parame-
trizations.

¢

a. r(71) = (cos4)i + (sind)j + &k, 0 =1t=7/2

b. r(¢) = [cos (#/2)]i + [sin(#/2)]] + (#/2)k, 0 =1 = 47

c. r(t) = (cost)i — (sint)j — th, —2r=1=10

19. The involute of a circle If a string wound around a fixed circle
is unwound while held taut in the plane of the circle, its end P
traces an involute of the circle. In the accompanying figure, the
circle in question is the circle x* + y? = 1 and the tracing point
starts at (1, 0). The unwound portion of the string is tangent to
the circle at @, and ¢ is the radian measure of the angle from the

positive x-axis to segment OQ. Derive the parametric equations
x=cos{+1sint, y=sint—tcost, (>0

of the point P(x, y) for the involute.

13.4

P(x,y)

0 1 (1,0)

20. (Continuation of Exercise 19.) Find the unit tangent vector to the
involute of the circle at the point P(x, y).

Curvature and the Unit Normal Vector N

In this section we study how a curve turns or bends. We look first at curves in the coordi-
¥ nate plane, and then at curves in space.

Curvature of a Plane Curve

As a particle moves along a smooth curve in the plane, T = dr/ds turns as the curve
bends. Since T is a unit vector, its length remains constant and only its direction changes
as the particle moves along the curve. The rate at which T turns per unit of length along
the curve is called the curvature (Figure 13.19). The traditional symbol for the curvature
function is the Greek letter k (“kappa”).

0 ! DEFINITION

FIGURE 13.19 As P moves along the
curve in the direction of increasing arc
length, the unit tangent vector turns. The

value of |dT/ds | at P is called the fe————————=

curvature of the curve at P.

Curvature
If T is the unit vector of a smooth curve, the curvature function of the curve is

dT
ds

If|dT/ds|is large, T turns sharply as the particle passes through P, and the curvature &

P is large. If|d'T/ds|is close to zero, T turns more slowly and the curvature at P is smaller.
If a smooth curve r(¢) is already given in terms of some parameter 7 other than the arc
length parameter 5, we can calculate the curvature as

dT
[IJ.\'
| ds/d]|
_ 1 |ar

[v|| dr|

dT di
dt ds

dT

dr

Cham Rule
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EXERCISES 13.4

Plane Curves

Find T, N, and « for the plane curves in Exercises 1-4.

L r(t) =ti+ (Incost)j, —w/2 <t< 72

2, r(t) = (Insec )i +tj, —w/2<1t< 72

3r(t) = (2t + 3)i + (5= 1Y)j

4. r(r) = (cost + tsint)i + (sinf — fcost)j, >0

5. A formula for the curvature of the graph of a function in the

xyp-plane

a. The graph y = f(x) in the xy-plane automatically has the
parametrization x = x, y = f(x), and the vector formula
r(x) = xi + f(x)j. Use this formula to show that if f is a
twice-differentiable function of x, then

/" (x)]|
[I + [’f’l')'.nﬁli:l ’

K{x) =

b. Use the formula for « in part (a) to find the curvature of
¥ = In(cosx), =m/2 < x < /2. Compare your answer
with the answer in Exercise 1.
c. Show that the curvature is zero at a point of inflection.
. A formula for the curvature of a parametrized plane curve

a. Show that the curvature of a smooth curve r(t) = f(1)i +
g(1)j defined by twice-differentiable functions x = f(r) and
v = gl1) is given by the formula

Apply the formula to find the curvatures of the following curves.
b. r(r) = ti + (Insin?)j, 0<i<mw
c. r(1) = [tan”' (sinh 1)]i + (In cosh 1)j.
. Normals to plane curves
a. Show that n(r) = —g'(1)i + f'(¢)jand —n(7) = g'(1)i —
J'(0)] are both normal to the curve r(1) = f(1)i + g(1)j at the
point ( f(1), g(1)).
To obtain N for a particular plane curve, we can choose the one of
n or —n from part (a) that points toward the concave side of the
curve, and make it into a unit vector. (See Figure 13.21.) Apply
this method to find N for the following curves.

b. r(1) = ri + €%j
e r()=V4a-ri+t, -2=1=<2
8. (Continuation of Exercise 7.)

a. Use the method of Exercise 7 to find N for the curve r(¢) =
i+ (1/3)  jwhent < 0:whent > 0.

b. Calculate

oo dvd
“ larjar) !

for the curve in part (a). Does N exist at ¢ = 07 Graph the
curve and explain what is happening to N as ¢ passes from
negative to positive values.

Space Curves

Find T, N, and « for the space curves in Exercises 916,

9,
10.
11.
12.
13.
14.
15.
16.

r(t) = (3sint)i + (3cost)j + 4tk

r(t) = (cos¢ + tsint)i + (sint — tcost)j + 3k
r(t) = (e'cost)i + (e'sint)j + 2k

r(¢) = (6sin21)i + (6 cos 21)j + 5tk

r(t) = (£/3)i + (#/2)j, 1>0

r(r) = (cos’ i + (sin*1)j, 0<t<mw/2

r(t) = ti + (acosh(t/a))j, a>10

r(t) = (cosh )i — (sinh7)j + rk

More on Curvature

17.

18

19

20

.

21,

Show that the parabola y = ax’, a # 0, has its largest curvature
at its vertex and has no minimum curvature. (Note: Since the cur-
vature of a curve remains the same if the curve is translated or ro-
tated, this result is true for any parabola.)

Show that the ellipse x = acost,y = bsint,a > b > 0, hasits
largest curvature on its major axis and its smallest curvature on its
minor axis. (As in Exercise 17, the same is true for any ellipse.)

Maximizing the curvature of a helix In Example 5, we found
the curvature of the helix r(s) = (acost)i + (asin)j + brk
(a,b = 0) to be k = a/(a* + b?). What is the largest value K
can have for a given value of b? Give reasons for your answer.
Total curvature We find the total curvature of the portion ofa
smooth curve that runs from s = sjtos = §; = sy by integrating
k from s to s,. If the curve has some other parameter, say /. then
the total curvature is

5 1 ds f

where #; and #; correspond to sy and s, . Find the total curvatures of

a. The portion of the helix r(r) = (3 cos t)i + (3sint)j + %
0=1t=4nw.

b. The parabola y = x*, —00 < x < 00,

Find an equation for the circle of curvature of the curve

r(1) = ti + (sin7)j at the point (7/2,1). (The curve paramé

trizes the graph of y = sinx in the xy-plane.)
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172 Find an equation for the circle of curvature of the curve rir) = ¢. Find the unit normal vector N at ;. Notice that the signs of the
(2In0)i — [t + (1/01], et =1=e¢? at the point (0,-2), components of N depend on whether the unit tangent vector T is
wheret = 1. turning clockwise or counterclockwise at 1 = ;. (See Exercise 7.)

_ . d. IfC = ai + bjis the vector from the origin to the center (a. b)
Grapher Exploratwns of the osculating circle, find the center C from the vector equation
The formula

N(rp).

) |
" C =r(n +
|f" ()] U klt)

KX) = —
[1+ (f P2

The point P(xg, yy) on the curve is given by the position vector

rif).
derived in Exercise 5, expresses the curvature k(x) of a twice-differen-

tiable plane curve y = f(x) as a function of x. Find the curvature
function of cach of the curves in Exercises 23-26. Then graph f(x) to-
gether with k(x) over the given interval. You will find some surprises.

23, y = ¥, —2=x=2 24. y=x*4, -2=x=2

e. Plot implicitly the equation (x — a)* + (y — b)* = 1/&? of the
osculating circle. Then plot the curve and osculating circle
together. You may need to experiment with the size of the
viewing window, but be sure it is square.

27. r(r) = (3cost)i + (5sing)j, 0=1=2m f=m/4

! y=siny, 0<x=27r 2. y=¢', —-|l=x=2 . e
4 2. ¥ . 28. r(t) = (cos’ 1)i + {s1n3!}j. 0=st=2m fH=m/4
COMPUTER EXPLORATIONS 9. () =tli+ (P =3j, -d4=t=4, 1=213/5
Circles of Curvature 30. K0 = (P — 2% — )i ¥ ———j, —2=1=5 o=
In Exercises 27-34 you will use a CAS to explore the osculating circle . W =+ "__ -
ata point P on a plane curve where k # 0. Use a CAS to perform the 3L r(t) = (2 — sint)i + (2 — 2cosn)j, 0 =1=3m,
following steps: fy = 3mw/2
a. Plot the plane curve given in parametric or function form over 32 r(t) = (e"cosn)i + (e7'sint)j, 0 =t=6m t=m/4
the specified interval to see what it looks like. B.y=xl-x -2<x=<85 x=1
b. Calculate the curvature k of the curve at the given value f; M. y=x(l —x)*’, —-1l=sx=<2 x=1/2

using the appropriate fuimula from Exercise 5 or 6. Use the
parametrization x = fand y = f(z) if the curve is given as a
function y = f(x).

135 Torsion and the Unit Binormal Vector B

[f you are traveling along a space curve, the Cartesian i, j, and k coordinate system for
representing the vectors describing your motion are not truly relevant to you. What is
meaningful instead are the vectors representative of your forward direction (the unit
tangent vector T), the direction in which your path is turning (the unit normal vector N),
and the tendency of your motion to “twist” out of the plane created by these vectors in the
direction perpendicular to this plane (defined by the unit binormal vector B = T X N).
Expressing the acceleration vector along the curve as a linear combination of this TNB
frame of mutually orthogonal unit vectors traveling with the motion (Figure 13.25) is
particularly revealing of the nature of the path and motion along it.

Torsion

FIGURE 13.25 The TNB frame of The binormal vector of a curve in space is B = T X N, a unit vector orthogonal to both
Mutually orthogonal unit vectors traveling T and N (Figure 13.26). Together T, N, and B define a moving right-handed vector frame
tlong a curve in space. that plays a significant role in calculating the paths of particles moving through space. It is
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Notice that the radius of gyration about the z-axis is the radius of the cylinder around
which the helix winds. &

EXAMPLE 4  Finding an Arch’s Center of Mass

A slender metal arch, denser at the bottom than top, lies along the semicircle
y? + z2 = 1,z = 0, in the yz-plane (Figure 16.5). Find the center of the arch’s mass if the
density at the point (x, y, z) on the arch is 8(x, y,z) = 2 — =

Solution ~ We know that X = 0 and y = 0 because the arch lies in the yz-plane with its
mass distributed symmetrically about the z-axis. To find z , we parametrize the circle as

r(t) = (cosr)j + (sinr)k, Ost=m

FIGURE 16.5 Example 4 shows how to For this parametrization,

find the center of mass of a circular arch of 3 = x

variable density. v()| = 2 P ﬁ)- ¢ (&) = V(0)> + (=sint)? + (cos?)? = 1
dt dr dt : :

The formulas in Table 16.1 then give

" m
.M=/de=/(2—:]ds=f(2—5inf){l}dt=2n-—2
¢ (o} 0
My = fzﬁ ds = fz(Z —z)ds = / (sint)(2 — sint) dt
c c Jo

=/ @it = st di = 2=T
i}

2
. My g7 1 8 —m
E= M T2 dw—2 am=a
) With z to the nearest hundredth, the center of mass is (0, 0, 0.57). @
' Graphs of Vector Equations
Match the vector equations in Exercises 18 with the graphs (a)—(h)
given here.
a b c. d
= 24
1 1 1
¥ y




1148

Chapter 16: Integration in Vector Fields

(1, 1,-1) 2
g h.
2
2 -2
2 } ]
2 ¥
X
X
Lrf)=d+(1—-1j 0=t=1l
Zrt)=i+jt+itk, —-1=1=1
3. r(t) =(2cost)i + (2sint)j, 0=1t=27w
d.rit) =1, —-1l=r=1
Sr)=d+tj+ik, 0=1=2
6. rit) =ij+(2—-2)k, O0=1r=1
T.H)=(2—-1j+2k, —-1=r=1
8. r(z) = (2cost)i + (2sin)k, O=r=mx

Evaluating Line Integrals over Space Curves

12.

13.

14,

15

. Evaluate IL (x + y)ds where C is the straight-line segment

x=ty=(1—=1,z=0,from(0,1,0)to(1,0,0).

. Evaluate ][(1 —y+2z—2)ds where C is the straight-line

segmentx = £,y = (1 — ),z =1, from (0, I, 1) to (1, 0, 1).
Evaluate I/;.l,\.'_r + y+ z)ds along the curve r(r) = 2 +
tj+R2-20k0=t=1

Evaluate jt Vix? + ‘vids along the curve r(7) = (4 cos )i +
(4sin¢)j + 3rk, 27 =t = 2w,

Find the line integral of f(x, y,z) = x + y + z over the straight-
line segment from (1,2,3) to (0, —1, 1).

Find the line integral of f(x,y,z) = V3/(x2 + v+ 22) over
thecurver(t) =ti +¢tj + 1k, 1 =t = o<,

Integrate flx,y,z) =x + Vy — z? over the path from (0, 0, 0)
to (1, 1, 1) (Figure 16.6a) given by

Cp: i) =ti+rY, 0=1r=1

C: r)=i+j+tk, 0=t=1

(0,0, 1)9

(0,0,0 C
Y (1,1, 1) .
(0,0,0)

(1, 1,0)

(b)

FIGURE 16.6 The paths of integration for Exercises 15 and 16,

16. Integrate f(x,y,z) = x + V) — z% over the path from (0, 0. 0)

to (1,1, 1) (Figure 16.6b) given by
Cy: (1) = 1k,
Cy: rit)=1tj+k 0
Cy: ri)=ti+j+k 0=it=1

IA

0=r1

I
IA

17. Integrate f(x,y,z) = (x + y + 2)/(x* + y? + z*) over the path

r()=ti+tj+tk0<a=t=bh

-Vx2 + 22 over the circle

0=r=12m

18. Integrate f(x, y,z) =

r(r) = (acos?)j + (asint)k,

Line Integrals over Plane Curves
In Exercises 19-22, integrate f over the given curve.
19. fix,y)=xy, C y=2x%2 0=x=2

20. f(x,y) = (x +y)/V1+x, C

(0, 0)

21, flx,y)=x+y, C
(2,0)t0 (0, 2)

0. flp)=x*— »n G
(0,2) 10 (V2, V2)

Mass and Moments
23. Mass of a wire

24. Center of mass of a curved wire

and center of mass together.

25. Mass of wire with variable density _Find the mass of a Ehi"
wire lying along the curve r(f) = V24 + \erj + (4 — 1)K

0 = r = 1, if the density is (a) 8 = 3rand (b) 6 = L.

y = x%/2 from (1, 1/2) to
x? 4+ y? = 4 in the first quadrant from

x* + y? = 4 in the first quadrant from

Find the mass of a wire that lies along the curve
r(t) = (1 — 1)j + 2tk. 0 = 1 = |, if the density is & = (3/2)-
s A wire of density
8(x,».z) = 15Vy + 2 lies along the curve r(r) = (t* = 1)i T
2tk, —1 = ¢ = 1. Find its center of mass. Then sketch the curve
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26. Center of mass of wire with variable density Find the center 32. Center of mass, moments of inertia, and radii of gyration for
of mass of a thin wire lying along the curve r(¢) = ri + 2§ + wire with variable density Find the center of mass, and the
(2/3)6*2k,0 = ¢ = 2, if the density is § = 3V5 + 1. moments of inertia and radii of gyration about the coordinate axes

27. Moment of inertia and radius of gyration of wire hoop A of a thin wire lying along the curve
circular wire hoop of constant density & lies along the circle -'\/’i )

x* + y* = a?in the xy-plane. Find the hoop’s moment of inertia () = d+ 22290 + P o0=:< 2.
and radius of gyration about the z-axis. 3 2

28. Inertia and radii of gyration of slender rod A slender rod of if the density is 8 = 1/(1 + 1)
constant density lies along the line segment r(r) = tj +
(2 = 20)k,0 = t = 1, in the yz-plane. Find the moments of iner- COMPUTER EXPLORATIONS

tia and radii of gyration of the rod about the three coordinate axes. . . |
P , . ; Evaluating Line Integrals Numerically
29. Two springs of constant density A spring of constant density 8 S ) ;
lies along the helix In Exercises 3336, use a CAS to perform the following steps to eval-
uate the line integrals.

i = (p i 1 i < 7
rl) = (cosnli + (sine)j + 1k, 0<r<2m a. Findds = |v(1)| dt for the path r() = g(r)i + h(1)j +

k(f)k.

b. Express the integrand f(g(1), h(t), k(r))|v(¢)| as a function of
the parameter ¢,

a. Find /[, and R..

b. Suppose that you have another spring of constant density &
that is twice as long as the spring in part (a) and lies along the

helix for 0 < t < 47. Do you expect /. and R, for the longer c. Evaluate [¢ fds using Equation (2) in the text.
spring to be the same as those for the shorter one, or should 33 f(x,5,2) = V1 + 3022 + 10y; r(r) = ti + 1% + 3%k,
they be different? Check your predictions by calculating /. 0=t=<2
and R for the longer spring. ‘ 4. f(502) = V1 m‘ Ke) = ti + %fzj + Vik,
30. Wire of constant density A wire of constant density 6 = 1 lies 0<t<?2 <
along the curve 35. fO3,2) = xVy = 322 r(r) = (cos 20)i + (sin20)j + Sk,
r(1) = (tcosi + (tsin)f + (2V2/3)P%k, 0=r=<1 0=t=<27 =
9 1n\’ ; ; :
Find z, I,, and R,, 3 Saya = (' y Z:m) » ¥(1) = (cos20)i + (sin20)j +
31. The arch in Example 4 Find /; and , for the arch in Example 4, %k, 0=t=2n

162 Vector Fields, Work, Circulation, and Flux

When we study physical phenomena that are represented by vectors, we replace integrals
over closed intervals by integrals over paths through vector fields. We use such integrals
to find the work done in moving an object along a path against a variable force (such as a

[ vehicle sent into space against Earth’s gravitational field) or to find the work done by a
vector field in moving an object along a path through the field (such as the work done by
an accelerator in raising the energy of a particle). We also use line integrals to find the
rates at which fluids flow along and across curves.

Vector Fields

Suppose a region in the plane or in space is occupied by a moving fluid such as air or water.
Imagine that the fluid is made up of a very large number of particles, and that at any instant
of time a particle has a velocity v. If we take a picture of the velocities of some particles at




